説明

トナー製造方法、トナー製造装置及びトナー

【課題】トナー液滴の合一を確実に防止できるトナー製造方法、トナー製造装置及びトナーを提供する。
【解決手段】液滴吐出手段2から吐出されたトナー液滴21は、第1段目の補助搬送気流503によって液滴吐出手段2の近傍において速度を落とすことなく列を維持しながら搬送される。更に、第1段面の補助搬送気流503に乗って搬送されたトナー液滴は、第2段目の補助搬送気流503によって速度を落とすことなく列を維持しながら搬送される。この搬送を繰り返しながら、トナー液滴を乾燥固化する領域まで搬送される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トナー製造方法、トナー製造装置及びトナーに関するものである。
【背景技術】
【0002】
均一性を要する樹脂微粒子としては、電子写真用のトナー微粒子、液晶パネルのスペーサー粒子や、電子ペーパー用の着色微粒子、医薬品の薬剤担持体としての微粒子等様々な用途で利用されている。均一な微粒子を製造する方法として、ソープフリー重合法など、液中で反応を誘起して均一な粒子径の樹脂微粒子を得る方法が知られている。このソープフリー重合法は、総じて小粒径トナーが得易い、粒径分布がシャープ、形状が球形に近い等の利点がある。しかし、その反面、通常は水である溶媒中でトナー粒子から脱溶剤を行うためその製造効率が悪い。また、重合過程に長時間を必要とし、さらに固化終了後溶媒とトナー粒子を分離し、その後洗浄乾燥を繰り返す必要があり、その間多くの時間と、多量の水、エネルギーを必要とするなどの課題がある。
【0003】
このような課題に対して、本願出願人は、特許文献1に記載されている噴射造粒によるトナー製造方法を提案した。具体的には、このトナー製造方法によれば、トナーの原料となるトナー組成液を液滴噴射する液滴噴射ユニットにて、複数のノズルが形成された薄膜を振動発生手段である電気機械変換素子によって振動させることで、上記薄膜が周期的に上下に振動する。これにより、薄膜で一部構成されている液室内の圧力が周期的に変化し、その周期的変化に対応してノズルから液滴がノズル下に広がる気相の空間へ吐出される。そして、吐出されたトナー液滴は気相の空間内で同一の進行方向に進み、トナー液滴の列を形成する。気相に吐出されたトナー液滴はトナー組成物自体の液相と気相との表面張力差によって球体状に整形され、その後乾燥固化されトナー化される。
【0004】
しかし、上記特許文献1によれば、吐出されたトナー液滴が空気抵抗によって減速し、続けて直後に吐出されたトナー液滴が先に吐出されたトナー液滴に追い付きはじめる。つまり、トナー液滴の前後で速度差が生じる。その前後の液滴の間隔が徐々に狭くなり、ついには合一する。合一したトナー液滴は体積が増加し、更に空気抵抗を受け減速し、後続のトナー液滴が次々と合一し易くなる。そして、合一したトナー液滴と合一しなかったトナー液滴とが気相内に混在することなる。このため、その後乾燥固化され大きさの異なるトナーが製造されることになり、トナーの均一性が損なわれる。
【0005】
このようなトナー液滴の合一を解決するために、本願出願人は特許文献2に記載のトナー製造方法を新たに提案した。具体的には、トナー組成液が複数のノズルから連続して吐出され、各ノズルから吐出されたトナー液滴は列をなして気相の下流側の乾燥固化される領域まで搬送される。そして、吐出孔の孔先から乾燥固化される領域までの搬送路中に、乾燥固化される領域に向けて気流を発生させる。この気流に各列のトナー液滴を乗せることで、トナー液滴を合一する速度にならないようにしてトナー液滴の合一を防止している。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記特許文献2では、ポンプ等で圧力を加えて気相中にかなりの風量の気体を供給することで、搬送路中に気流を形成している。気流を気相内に供給する供給口先の近傍では供給される気体の圧力が加わって圧力が高くなり、供給口先の領域の周辺の圧力は低くなる。このため、供給口先の近傍とその周辺に圧力差が生じる。これにより、供給口から気相内へ供給された気流は、圧力が低い領域、つまり周辺の方向に引き付けられ、徐々に広がりはじめる。列をなして搬送されているトナー液滴の搬送方向も気流に乗って周囲に広がりはじめる。そして、上記のように圧力差のある圧力分布が気相内で生じているため、トナー液滴の各列毎で広がる角度が異なる。このため、隣接する列のトナー液滴同士が交差し、乾燥固化される領域に到達する前に合一してしまうという不具合があった。
【0007】
本発明は以上の問題点に鑑みなされたものであり、その目的は、トナー液滴の合一を確実に防止できるトナー製造方法、トナー製造装置及びトナーを提供することである。
【課題を解決するための手段】
【0008】
上記目的を達成するために、請求項1の発明は、少なくとも樹脂及び着色剤を含有するトナー組成液を少なくとも1つの吐出孔から吐出して液滴化し、液滴化された上記トナー液滴を気流に乗せて搬送し、搬送されながら固化することでトナーを製造するトナー製造方法において、液滴化された上記トナー液滴を複数の気流に順次乗せながら搬送することを特徴とするものである。
また、請求項2の発明は、請求項1記載のトナー製造方法において、上記気流の方向は上記トナー液滴の搬送方向と同じであることを特徴とするものである。
更に、請求項3の発明は、請求項1又は2に記載のトナー製造方法において、上記吐出孔が形成された液柱共鳴液室内の上記トナー組成液に振動を付与して液柱共鳴による定在波を形成し、該定在波の腹となる領域に形成された上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするものである。
また、請求項4の発明は、請求項1又は2に記載のトナー製造方法において、上記吐出孔が形成された液室内の上記トナー組成液に振動を付与することで、上記吐出孔が形成された薄膜を周期的に振動させて上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするものである。
更に、請求項5の発明は、請求項1又は2に記載のトナー製造方法において、上記吐出孔が形成された薄膜に振動を付与することで上記薄膜を周期的に振動させて上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするものである。
また、請求項6の発明は、少なくとも樹脂及び着色剤を含有するトナー組成液を少なくとも1つの吐出孔から吐出して液滴化する液滴吐出手段と、液滴化したトナー液滴を固化する固化手段と、該固化手段まで上記トナー液滴を乗せて搬送する気流を発生する気流発生手段と、を有するトナー製造装置において、上記液滴出手段と上記固化手段との搬送路間に該搬送路に沿って上記気流発生手段を複数設け、上記トナー液滴を上記各気流発生手段によって発生した複数の気流に順次乗せて上記固化手段まで搬送することを特徴とするものである。
更に、請求項7の発明は、請求項1〜5のいずれか1項に記載のトナー製造方法、あるいは請求項6記載のトナー製造装置によって製造されることを特徴とするトナーである。
【0009】
本発明において、トナー組成液を吐出孔から吐出して液滴化されたトナー液滴は吐出孔の孔先から乾燥固化される領域に向かう搬送路中に形成された複数の気流に次々に乗せられて乾燥固化される領域に向けて搬送される。このような搬送を繰り返すことで、吐出されたトナー液滴は、気流に乗って搬送されて上記圧力分布によって気流が徐々に広がりはじめる前に次の気流に乗ることでトナー液滴は列を維持して乾燥固化される領域へ搬送される。これにより、トナー液滴は、合一することなく吐出孔の孔先から乾燥固化される領域まで搬送される。よって、トナー液滴の合一を確実に防止できる。
【発明の効果】
【0010】
以上、本発明によれば、トナー液滴の合一を確実に防止できるという優れた効果がある。
【図面の簡単な説明】
【0011】
【図1】トナー製造装置の全体構成を示す断面図である。
【図2】図1の液滴形成ユニットにおける液滴吐出ヘッドの構成を示す断面図である。
【図3】図1の液滴形成ユニットの構成を示すA−A’線断面図である。
【図4】N=1、2、3の場合の速度及び圧力変動の定在波を示す概略図である。
【図5】N=4、5の場合の速度及び圧力変動の定在波を示す概略図である。
【図6】液滴形成ユニットにおける液滴吐出ヘッド内の液柱共鳴液室で生じる液柱共鳴現象の様子を示す概略図である。
【図7】実際の液滴吐出の様子を示す図である。
【図8】駆動周波数と液滴吐出速度周波数特性を示す特性図である。
【図9】間接振動型吐出手段の構成を示す概略断面図である。
【図10】間接振動型吐出手段における薄膜の構成を示す底面図である。
【図11】薄膜の径方向座標と振動変位の関係を示す特性図である。
【図12】直接振動型吐出手段の構成を示す概略断面図である。
【図13】直接振動型吐出手段における薄膜の構成を示す底面図である。
【図14】吐出孔の断面形状の一例を示す断面図である。
【図15】トナーの製造方法を実施する装置の一例の構成を示す概略図である。
【図16】1つの補助搬送気流による合一防止手段の構成を示す概略断面図である。
【図17】本実施形態の2つの補助搬送気流による合一防止手段の構成を示す概略断面図である。
【図18】本実施形態の合一防止手段によるトナーの個数粒径分布を示す図である。
【図19】1つの補助搬送気流による合一防止手段によるトナーの個数粒径分布を示す図である。
【図20】トナー液滴の吐出開始位置からの距離変化におけるトナー液滴の速度変化を示す特性図である。
【発明を実施するための形態】
【0012】
図1はトナー製造装置の全体構成を示す断面図である。図2は図1の液滴形成ユニットにおける液滴吐出ヘッドの構成を示す断面図である。図3は図1の液滴形成ユニットの構成を示すA−A’線断面図である。図1に示すトナー製造装置1は、主に、液滴形成ユニット10及び乾燥捕集ユニット30を含んで構成されている。液滴形成ユニット10は、吐出孔によって外部と連通する液噴射領域を有する液室であって後述する条件下のもとで液柱共鳴定在波が発生する液柱共鳴液室内のトナー組成液を液滴として吐出孔から噴射する液滴化手段である液滴吐出ヘッド11を複数配列して構成されている。各液滴吐出ヘッド11の両側には液滴吐出ヘッド11から吐出したトナー組成液の液滴が乾燥捕集ユニット30側に流出されるように図示していない気流発生手段によって発生する気流が通る気流通路12が設けられている。また、液滴形成ユニット10は、トナー原料であるトナー組成液14を収容する原料収容器13と、原料収容器13に収容されているトナー組成液14を液供給管16を通して液滴吐出ヘッド11内の後述する液共通供給路17に供給し、更に液戻り管22を通って原料収容器13に戻すために液供給管16内のトナー組成液14を圧送する液循環ポンプ15とを含んで構成されている。更に、液滴吐出ヘッド11は、図2に示すように、液共通供給路17及び液柱共鳴液室18を含んで構成されている。液柱共鳴液室18は、長手方向の両端の壁面のうち一方の壁面に設けられた液共通供給路17と連通されている。また、液柱共鳴液室18は、両端の壁面と連結する壁面のうち一つの壁面にトナー液滴21を吐出する吐出孔19と、吐出孔19と対向する壁面に設けられ、かつ液柱共鳴定在波を形成するために高周波振動を発生する振動発生手段20とを有している。なお、振動発生手段20には、図示していない高周波電源が接続されている。
【0013】
また、図1に示す乾燥捕集ユニット30は、チャンバ31及びトナー捕集部32を含んで構成されている。チャンバ31内では、図示していない気流発生手段によって発生する気流と搬送気流33が合流した大きな下降気流が形成されている。液滴噴射ユニット10の液滴吐出ヘッド11から噴射されたトナー液滴21は、重力よってのみではなく、搬送気流33によっても下方に向けて搬送されるため、噴射されたトナー液滴21が空気抵抗によって減速されることを抑制できる。これにより、トナー液滴21を連続的に噴射したときに、前に噴射されたトナー液滴21が空気抵抗によって減速し、後に噴射されたトナー液滴21が前に噴射されたトナー液滴21に追い付くことで、トナー液滴21同士が合一して一体となり、トナー液滴21の粒径が大きくなることを防止できる。なお、気流発生手段として、上流部分に送風機を設けて加圧する方法と、トナー捕集部32より吸引して減圧する方法のいずれを採用することもできる。また、トナー捕集部32には、鉛直方向に平行な軸周りに回転するような回転気流を発生させる回転気流発生装置(図示せず)が配置されている。更に、トナー捕集部32には、チャンバ31と連通するトナー捕集チューブ34を通った乾燥・固化されたトナー粒子を貯留するトナー貯留部35を有している。
【0014】
次に、図1のトナー製造装置におけるトナー製造工程について概説する。
図1に示す原料収容器13に収容されているトナー組成液14は、当該トナー組成液14を循環させるための液循環ポンプ15によって液供給管16を通って、図3に示す液滴形成ユニット10の液共通供給路17内に流入し、図2に示す液滴吐出ヘッド11の液柱共鳴液室18に供給される。そして、トナー組成液14が充填されている液柱共鳴液室18内には、振動発生手段20によって発生する液柱共鳴定在波により圧力分布が形成される。そして、液柱共鳴定在波において振幅の大きな部分であって圧力変動が大きい、定在波の腹となる領域に配置されている吐出孔19からトナー液滴21が吐出される。この液柱共鳴による定在波の腹となる領域とは、定在波の節以外の領域を意味するものである。好ましくは、定在波の圧力変動が液を吐出するのに十分な大きさの振幅を有する領域であり、より好ましくは圧力定在波の振幅が極大となる位置(速度定在波としての節)から極小となる位置に向かって±1/4波長の範囲である(後述の図21参照)。定在波の腹となる領域であれば、吐出孔が複数で開口されていても、それぞれからほぼ均一な液滴を形成することができ、更には効率的に液滴の吐出を行うことができ、吐出孔の詰まりも生じ難くなる。なお、液共通供給路17を通過したトナー組成液14は液戻り管22を流れて原料収容器13に戻される。トナー液滴21の吐出によって液柱共鳴液室18内のトナー組成液14の量が減少すると、液柱共鳴液室18内の液柱共鳴定在波の作用による吸引力が作用し、液共通供給路17から供給されるトナー組成液14の流量が増加し、液柱共鳴液室18内にトナー組成液14が補充される。そして、液柱共鳴液室18内にトナー組成液14が補充されると、液共通供給路17を通過するトナー組成液14の流量が元に戻り、液供給管16及び液戻り管22には装置内を循環するトナー組成液14の流れが再び形成された状態となる。一方、液滴噴射ユニット10の液滴吐出ヘッド11から噴射されたトナー液滴21は、図1に示すように、重力よってのみではなく、図示していない気流発生手段によって発生する気流が気流通路12を通り形成される搬送気流33によって下方に向けて搬送される。次に、トナー捕集部32における図示していない回転気流発生装置が発生させる回転気流と搬送気流33とによって、トナー捕集部32を構成する円錐状内壁面に沿って螺旋気流が形成され、トナー粒子はその螺旋気流にのって層流状態で乾燥、固化される。乾燥、固化されたトナー粒子はトナー捕集チューブ34を通ってトナー貯留部35に収納される。
【0015】
なお、液滴吐出ヘッド11における液柱共鳴液室18は、金属やセラミックス、シリコンなどの駆動周波数において液体の共鳴周波数に影響を与えない程度の高い剛性を持つ材質により形成されるフレームがそれぞれ接合されて形成されている。また、図2に示すように、液柱共鳴液室18の長手方向の両端の壁面間の長さLは、後述するような液柱共鳴原理に基づいて決定される。また、図3に示す液柱共鳴液室18の幅Wは、液柱共鳴に余分な周波数を与えないように、液柱共鳴液室18の長さLの2分の1より小さいことが望ましい。更に、液柱共鳴液室18は、生産性を飛躍的に向上させるために1つの液滴形成ユニット10に対して複数配置されているほうが好ましい。その範囲に限定はないが、100〜2000個の液柱共鳴液室18が備えられた1つの液滴形成ユニットであれば操作性と生産性が両立でき、もっとも好ましい。また、液柱共鳴液室毎に、液供給のための流路が液共通供給路17から連通接続されており、液共通供給路17には複数の液柱共鳴液室18と連通している。
【0016】
また、液滴吐出ヘッド11における振動発生手段20は所定の周波数で駆動できるものであれば特に制限はないが、圧電体を、弾性板に貼りあわせた形態が望ましい。弾性板は、圧電体が接液しないように液柱共鳴液室の壁の一部を構成している。圧電体は、例えばチタン酸ジルコン酸鉛(PZT)等の圧電セラミックスが挙げられるが、一般に変位量が小さいため積層して使用されることが多い。この他にも、ポリフッ化ビニリデン(PVDF)等の圧電高分子や、水晶、LiNbO、LiTaO、KNbO等の単結晶などが挙げられる。更に、振動発生手段20は、1つの液柱共鳴液室毎に個別に制御できるように配置されていることが望ましい。また、上記の1つの材質のブロック状の振動部材を液柱共鳴液室の配置にあわせて、一部切断し、弾性板を介してそれぞれの液柱共鳴液室を個別制御できるような構成が望ましい。
【0017】
更に、吐出孔19の開口部の直径は、1[μm]〜40[μm]の範囲であることが望ましい。1[μm]より小さいと、形成される液滴が非常に小さくなるためトナーを得ることができない場合があり、またトナーの構成成分として顔料などの固形微粒子が含有された構成の場合吐出孔19において閉塞を頻繁に発生して生産性が低下する恐れがある。また、40[μm]より大きい場合、トナー液滴の直径が大きく、これを乾燥固化させて、所望のトナー粒子径3〜6μmを得る場合、有機溶媒でトナー組成を非常に希薄な液に希釈する必要がある場合があり、一定量のトナーを得るために乾燥エネルギーが大量に必要となってしまい、不都合となる。また、図3からわかるように、吐出孔19を液柱共鳴液室18内の幅方向に設ける構成を採用することは、吐出孔19の開口を多数設けることができ、よって生産効率が高くなるために好ましい。また、吐出孔19の開口配置によって液柱共鳴周波数が変動するため、液柱共鳴周波数は液滴の吐出を確認して適宜決定することが望ましい。
【0018】
次に、トナー製造装置における液滴形成ユニットによる液滴形成のメカニズムについて説明する。
先ず、図2の液滴吐出ヘッド11内の液柱共鳴液室18において生じる液柱共鳴現象の原理について説明すると、液柱共鳴液室内のトナー組成液の音速をcとし、振動発生手段20から媒質であるトナー組成液に与えられた駆動周波数をfとした場合、液体の共鳴が発生する波長λは、
λ=c/f ・・・(式1)
の関係にある。
【0019】
また、図2の液柱共鳴液室18において固定端側のフレームの端部から液共通供給路17側の端部までの長さをLとし、更に液共通供給路17側のフレームの端部の高さh1(=約80[μm])は連通口の高さh2(=約40[μm])の約2倍あり当該端部が閉じている固定端と等価であるとした両側固定端の場合には、長さLが波長λの4分の1の偶数倍に一致する場合に共鳴が最も効率的に形成される。つまり、次の式2で表現される。
L=(N/4)λ ・・・(式2)
(但し、Nは偶数)
【0020】
更に、両端が完全に開いている両側開放端の場合にも上記式2が成り立つ。
同様にして、片方側が圧力の逃げ部がある開放端と等価で、他方側が閉じている(固定端)の場合、つまり片側固定端又は片側開放端の場合には、長さLが波長λの4分の1の奇数倍に一致する場合に共鳴が最も効率的に形成される。つまり、上記式2のNが奇数で表現される。
【0021】
最も効率の高い駆動周波数fは、上記式1と上記式2より、
f=N×c/(4L) ・・・(式3)
と導かれる。しかし、実際には、液体は共鳴を減衰させる粘性を持つために無限に振動が増幅されるわけではなく、Q値を持ち、後述する式4、式5に示すように、式3に示す最も効率の高い駆動周波数fの近傍の周波数でも共鳴は発生する。
【0022】
図4にN=1、2、3の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示し、かつ図5にN=4、5の場合の速度及び圧力変動の定在波の形状(共鳴モード)を示す。本来は疎密波(縦波)であるが、図4及び図5のように表記することが一般的である。実線が速度定在波、点線が圧力定在波である。例えば、N=1の片側固定端の場合を示す図4の(a)からわかるように、速度分布の場合閉口端で速度分布の振幅がゼロとなり、開口端で振幅が最大となり、直感的にわかりやすい。液柱共鳴液室の長手方向の両端の間の長さをLとしたとき、液体が液柱共鳴する波長をλとし、整数Nが1〜5の場合に定在波が最も効率よく発生する。また、両端の開閉状態によっても定在波パターンは異なるため、それらも併記した。後述するが、吐出孔の開口や供給側の開口の状態によって、端部の条件が決まる。なお、音響学において、開口端とは長手方向の媒質(液)の移動速度がゼロとなる端であり、逆に圧力は極大となる。閉口端においては、逆に媒質の移動速度がゼロとなる端と定義される。閉口端は音響的に硬い壁として考え、波の反射が発生する。理想的に完全に閉口、もしくは開口している場合は、波の重ね合わせによって図4及び図5のような形態の共鳴定在波を生じるが、吐出孔数、吐出孔の開口位置によっても定在波パターンは変動し、上記式3より求めた位置からずれた位置に共鳴周波数が現れるが、適宜駆動周波数を調整することで安定吐出条件を作り出すことができる。例えば、液体の音速cが1,200[m/s]、液柱共鳴液室の長さLが1.85[mm]を用い、両端に壁面が存在して、両側固定端と完全に等価のN=2の共鳴モードを用いた場合、上記式(2)より、最も効率の高い共鳴周波数は324kHzと導かれる。他の例では、液体の音速cが1,200[m/s]、液柱共鳴液室の長さLが1.85[mm]と、上記と同じ条件を用い、両端に壁面が存在して、両側固定端と等価のN=4の共鳴モードを用いた場合、上記式(2)より、最も効率の高い共鳴周波数は648kHzと導かれ、同じ構成の液柱共鳴液室においても、より高次の共鳴を利用することができる。
【0023】
なお、図1及び図2に示す液滴形成ユニットの液滴吐出ヘッドにおける液柱共鳴液室は、両端が閉口端状態と等価であるか、吐出孔の開口の影響で、音響的に軟らかい壁として説明できるような端部であることが周波数を高めるためには好ましいが、それに限らず開放端であってもよい。ここでの吐出孔の開口の影響とは、音響インピーダンスが小さくなり、特にコンプライアンス成分が大きくなることを意味する。よって、図4の(b)及び図5の(a)のような液柱共鳴液室の長手方向の両端に壁面を形成する構成は、両側固定端の共鳴モード、そして吐出孔側が開口とみなす片側開放端の全ての共鳴モードが利用できるために、好ましい構成である。
【0024】
また、吐出孔の開口数、開口配置位置、吐出孔の断面形状も駆動周波数を決定する因子となり、駆動周波数はこれに応じて適宜決定することができる。例えば吐出孔の数を多くすると、徐々に固定端であった液柱共鳴液室の先端の拘束が緩くなり、ほぼ開口端に近い共鳴定在波が発生し、駆動周波数は高くなる。更に、最も液供給路側に存在する吐出孔の開口配置位置を起点に緩い拘束条件となり、また吐出孔の断面形状がラウンド形状となったりフレームの厚さによる吐出孔の体積が変動したり、実際上の定在波は短波長となり、駆動周波数よりも高くなる。このように決定された駆動周波数で振動発生手段に電圧を与えたとき、振動発生手段が変形し、駆動周波数にて最も効率よく共鳴定在波を発生する。また、共鳴定在波が最も効率よく発生する駆動周波数の近傍の周波数でも液柱共鳴定在波は発生する。つまり、液柱共鳴液室の長手方向の両端間の長さをL、液供給側の端部に最も近い吐出孔までの距離をLeとしたとき、L及びLeの両方の長さを用いて下記式4及び式5で決定される範囲の駆動周波数fを主成分とした駆動波形を用いて振動発生手段を振動させ、液柱共鳴を誘起して液滴を吐出孔から吐出することが可能である。
【0025】
N×c/(4L)≦f≦N×c/(4Le) ・・・(式4)
N×c/(4L)≦f≦(N+1)×c/(4Le) ・・・(式5)
【0026】
なお、液柱共鳴液室の長手方向の両端間の長さLと、液供給側の端部に最も近い吐出孔までの距離Leの比がLe/L>0.6であることが好ましい。
【0027】
以上説明した液柱共鳴現象の原理を用いて、図2の液柱共鳴液室18において液柱共鳴圧力定在波が形成され、液柱共鳴液室18の一部に配置された吐出孔19において連続的に液滴吐出が発生するのである。なお、定在波の圧力が最も大きく変動する位置に吐出孔19を配置すると、吐出効率が高くなり、低い電圧で駆動することができる点で好ましい。また、吐出孔19は1つの液柱共鳴液室18に1つでも構わないが、複数個配置することが生産性の観点から好ましい。具体的には、2〜100個の間であることが好ましい。100個を超えた場合、100個の吐出孔19から所望のトナー液滴を形成させようとすると、振動発生手段20に与える電圧を高く設定する必要が生じ、振動発生手段20としての圧電体の挙動が不安定となる。また、複数の吐出孔19を開孔する場合、吐出孔間のピッチは20[μm]以上、液柱共鳴液室の長さ以下であることが好ましい。吐出孔間のピッチが20[μm]より大きい場合、隣あう吐出孔より放出された液滴同士が衝突して大きな滴となってしまう確率が高くなり、トナーの粒径分布悪化につながる。
【0028】
次に、液滴形成ユニットにおける液滴吐出ヘッド内の液柱共鳴液室で生じる液柱共鳴現象の様子について当該様子を示す図6を用いて説明する。なお、同図において、液柱共鳴液室内に記した実線は液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における速度をプロットした速度分布を示し、液共通供給路側から液柱共鳴液室への方向を+とし、その逆方向を−とする。また、液柱共鳴液室内に記した点線は液柱共鳴液室内の固定端側から液共通供給路側の端部までの間の任意の各測定位置における圧力値をプロットした圧力分布を示し、大気圧に対して正圧を+とし、負圧は−とする。また、正圧であれば図中の下方向に圧力が加わることになり、負圧であれば図中の上方向に圧力が加わることになる。更に、同図において、上述したように液共通供給路側が開放されているが液共通供給路17と液柱共鳴液室18とが連通する開口の高さ(図2に示す高さh2)に比して固定端となるフレームの高さ(図2に示す高さh1)が約2倍以上であるため、液柱共鳴液室18はほぼ両側固定端であるという近似的な条件のもとでの速度分布及び圧力分布の時間的なそれぞれの変化を示している。
【0029】
同図の(a)は液滴吐出時の液柱共鳴液室18内の圧力波形と速度波形を示している。また、同図の(b)は液滴吐出直後の液引き込みを行った後再びメニスカス圧が増加してくる。これらの同図の(a),(b)に示すように、液柱共鳴液室18における吐出孔19が設けられている流路内での圧力は極大となっている。その後、同図の(c)に示すように、吐出孔19付近の正の圧力は小さくなり、負圧の方向へ移行してトナー液滴21が吐出される。
【0030】
そして、同図の(d)に示すように、吐出孔19付近の圧力は極小になる。このときから液柱共鳴液室18へのトナー組成液14の充填が始まる。その後、同図の(e)に示すように、吐出孔19付近の負の圧力は小さくなり、正圧の方向へ移行する。この時点で、トナー組成液14の充填が終了する。そして、再び、同図の(a)に示すように、液柱共鳴液室18の液滴吐出領域の正の圧力が極大となって、吐出孔19からトナー液滴21が吐出される。このように、液柱共鳴液室内には振動発生手段の高周波駆動によって液柱共鳴による定在波が発生し、また圧力が最も大きく変動する位置となる液柱共鳴による定在波の腹に相当する液滴吐出領域に吐出孔19が配置されていることから、当該腹の周期に応じてトナー液滴21が吐出孔19から連続的に吐出される。
【0031】
次に、実際に液柱共鳴現象によって液滴が吐出された構成の一例について説明する。この一例は、図2において液柱共鳴液室18の長手方向の両端間の長さLが1.85[mm]、N=2の共鳴モードであって、第一から第四の吐出孔がN=2モード圧力定在波の腹の位置に吐出孔を配置し、駆動周波数を340[kHz]のサイン波で行った吐出をレーザーシャドウグラフィ法にて撮影した様子を図7に示す。同図からわかるように、非常に径の揃った、速度もほぼ揃った液滴の吐出が実現している。また、図8は駆動周波数290[kHz]〜395[kHz]の同一振幅サイン波にて駆動した際の液滴速度周波数特性を示す特性図である。同図からわかるように、第一〜第四のノズルにおいて駆動周波数が340[kHz]付近では各ノズルからの吐出速度が均一となって、かつ最大吐出速度となっている。この特性結果から、液柱共鳴周波数の第二モードである340[kHz]において、液柱共鳴定在波の腹の位置で均一吐出が実現していることがわかる。また、図8の特性結果から、第一モードである130[kHz]においての液滴吐出速度ピークと、第二モードである340[kHz]においての液滴吐出速度ピークとの間では液滴は吐出しないという液柱共鳴の特徴的な液柱共鳴定在波の周波数特性が液柱共鳴液室内で発生していることがわかる。
【0032】
次に、膜振動タイプの液滴吐出手段として、間接振動型吐出手段と直接振動型吐出手段について概説する。
図9は間接振動型吐出手段の構成を示す概略断面図である。同図において、図1と同じ参照符号は同じ構成要素を示す。同図に示す間接振動型吐出手段100は、複数の吐出孔19が形成された薄膜101と、この薄膜101を振動させる機械的振動手段102と、薄膜101と機械的振動手段102との間にトナー組成液14を供給する液流路7を形成するフレーム103とを備えている。トナー組成液14は図示されない原料収容器から液循環ポンプによって液供給管を通ってトナー組成液供給口6から供給され、液流路7を通り、トナー組成液排出口8から排出され、図示されない液戻り管を通って再び原料収容器に戻る。
【0033】
複数の吐出孔19を有する薄膜101は、機械的振動手段102の振動面104に対して平行に設置されて、薄膜101の一部がフレーム103に接合固定されている。これにより、機械的振動手段102の振動方向とは実質的に垂直な位置関係となる。機械的振動手段102の振動発生手段20の上下面に電圧信号が付与されるように駆動回路105が設けられている。そして、駆動信号発生源106からの信号が振動発生手段20に付与されて機械的振動に変換される。電気信号を与える回路としては、表面を絶縁被覆されたリード線が適している。また、機械的振動手段102は後述する各種ホーン型振動子、ボルト締めランジュバン型振動子など、振動振幅の大きな素子を用いることが、効率的かつ安定なトナー生産には好適である。
【0034】
また、機械的振動手段102は、振動を発生する振動発生手段20と、この振動発生手段20で発生した振動を増幅する振動増幅手段107とで構成されている。駆動信号発生源106から所要周波数の駆動電圧(駆動信号)が振動発生手段20の電極109間に印加されることによって、振動発生手段20に振動が励起される。この振動が振動増幅手段107で増幅され、薄膜101と平行に配置される振動面104が周期的に振動する。これにより、この振動面104の振動による周期的な圧力によって薄膜101が所要周波数で振動する。なお、図9の振動発生手段20は1つの振動発生部材108を電極109で挟んでいる構成になっているが、これを複数重ねた構造となっていても構わない。
【0035】
この振動発生手段20としては、薄膜101に対して確実な縦振動を一定の周波数で与えることができるものであれば特に制限はなく、適宜選択して使用することができる。しかし、薄膜101を振動させることから、振動発生手段20の振動発生部材108にはバイモルフ型のたわみ振動の励起される圧電体が好ましい。圧電体は、電気的エネルギーを機械的エネルギーに変換する機能を有する。具体的には、電圧を印加することにより、たわみ振動が励起され、薄膜101を振動させることが可能となる。
【0036】
撓み振動は、図11に示すように、薄膜101の中心で変位ΔLが最大(ΔLmax)となる断面形状となり、振動方向に周期的に上下振動する。薄膜101が周期的に上下振動することで吐出孔19からトナー液滴21が周期的に吐出することとなる。トナー液滴21が吐出できる薄膜101の速度範囲は図11のような関係があり、吐出可能な面積範囲は限られるため、この面積範囲に吐出孔19を形成することが望ましい。吐出孔19は図10に示すように薄膜101の中心部に配置されている。
【0037】
振動発生手段20を構成する振動発生部材108の圧電体としては、例えば、チタン酸ジルコン酸鉛(PZT)等の圧電セラミックスが挙げられるが、一般に変位量が小さい為、積層して使用されることが多い。この他にも、ポリフッ化ビニリデン(PVDF)等の圧電高分子や、水晶、LiNbO3、LiTaO3、KNbO3、等の単結晶などが挙げられる。
【0038】
機械的振動手段102は、吐出孔19を有する薄膜101に対して垂直方向の振動を与えるものであれば、どのような配置でもよいが、振動面104と薄膜101とは平行に配置される。
【0039】
図示した例では振動発生手段20と振動増幅手段107で構成される機械的振動手段102としてホーン型振動子を用いている。このホーン型振動子は、圧電素子などの振動発生手段20の振幅を振動増幅手段107で増幅することができるため、機械的振動を発生する振動発生手段20自体は小さな振動でよく、機械的負荷が軽減するために生産装置としての長寿命化につながる。ホーン型振動子としては、公知の代表的なホーン形状でよく。目的に合わせて適宜形状を選択することができる。また、振動発生手段20としては、特に高強度なボルト締めランジュバン型振動子を用いることもできる。このボルト締めランジュバン型振動子は圧電セラミックスが機械的に結合されており、高振幅励振時に破損することがない。
【0040】
機械的振動手段102の大きさは、発振振動数の減少に伴い大きくなることが一般的であり、必要な周波数に応じて、適宜振動手段に直接穴あけ加工を施し貯留部を設けることができる。また、貯留部全体を効率的に振動させることも可能である。
【0041】
図12は直接振動型吐出手段の構成を示す概略断面図である。同図において、図9と同じ参照符号は同じ構成要素を示す。同図に示す直接振動型吐出手段200は、少なくともトナー液滴21を吐出させる吐出孔19を備えた薄膜101と、薄膜101を振動させるための円環状振動発生手段201と、トナー組成液14を供給する流路7を設けたフレーム103とを備えている。トナー組成液14は図示されない原料収容器から液循環ポンプによって液供給管を通ってトナー組成液供給口6から供給される。そして、トナー組成液14は流路7を通り、トナー組成液排出口8から排出され、図示されない液戻り管を通って再び原料収容器に戻る。
【0042】
薄膜101は、外周部をフレーム103に接合固定している。円環状振動発生手段201は、この薄膜101の吐出孔19を設けた領域の周囲に配されている。この円環状振動発生手段201は、円環状圧電体202と電極109によって構成されている。電極109に駆動回路105を通じて駆動信号発生源106から所要周波数の駆動電圧(駆動信号)が印加される。これにより、例えば撓み振動を発生する。円環状圧電体202の種類や電極109は間接振動型吐出手段100で用いるものと同じものを用いることができる。
【0043】
撓み振動は間接振動型吐出手段100と同様に、図11のように薄膜の中心で変位ΔLが最大(ΔLmax)となる断面形状となり、振動方向に周期的に上下振動する。膜が周期的に上下振動することで吐出孔19からトナー液滴21が周期的に吐出される。トナー液滴21が吐出できる薄膜101の速度範囲は図11のような関係があり、吐出可能な面積範囲は限られるため、この面積範囲に吐出孔19を形成することが望ましい。吐出孔19は図13に示すように薄膜101及び円環状振動手段201の中心部に配置されている。
【0044】
(液滴形成メカニズム)
次に、間接振動型液滴吐出手段100及び直接振動型液滴吐出手段200による液滴形成のメカニズムについて概説する。
上述したような、いずれの液滴吐出手段によれば、流路7に臨む複数の吐出孔19を有する薄膜101に振動発生手段によって発生した振動を伝播させて、薄膜101を周期的に振動させる。そして、比較的大面積の領域に複数の吐出孔19を配置し、それら複数の吐出孔19より液滴を周期的に、安定に形成して放出することができる。
【0045】
円形薄膜の振動により、円形膜各所に設けられたノズル近傍の液体には、膜の振動速度Vmに比例した音圧Pacが発生する。音圧は、媒質(トナー組成液)の放射インピーダンスZrの反作用として生じることが知られており、音圧は、放射インピーダンスと膜振動速度Vmの積で下記式(6)の方程式を用いて表される。
Pac(r,t)=Zr・Vm(r,t) ・・・(式6)
膜の振動速度Vmは時間とともに周期的に変動しているため時間(t)の関数であり、例えばサイン波形、矩形波形など、様々な周期変動を形成することが可能である。また、前述のとおり膜の各所で振動方向の振動変位は異なっており、Vmは、膜上の位置座標の関数でもある。ここで用いられる膜の振動形態は、上述のとおり軸対象である。したがって、実質的には半径(r)座標の関数となる。
【0046】
以上のように、分布を持った膜の振動変位速度に対して、それに比例する音圧が発生し、音圧の周期的変化に対応してトナー組成液が、気相へ吐出される。気相へ周期的に排出されたトナー組成液は、液相と気相との表面張力差によって球体を形成するため、液滴化が周期的に発生する。
【0047】
液滴化を可能とする膜の振動周波数としては20kHz〜2.0MHzの領域が用いられ、50kHz〜500kHzの範囲がより好適に用いられる。20kHz以上の振動周期であれば、液体の励振によって、トナー組成液中の顔料やワックスなどの微粒子の分散が促進される。更には、前記音圧の変位量が、10kPa以上となることによって、上述の微粒子分散促進作用がより好適に発生する。
【0048】
(複数のノズルを有する薄膜)
吐出孔19を有する薄膜101は、先にも述べたように、トナー組成物の溶解乃至分散液を、吐出させて液滴とする部材である。この薄膜101の材質、吐出孔19の形状としては、特に制限はなく、適宜選択した形状とすることができる。例えば、薄膜101は厚み5〜500μmの金属板で形成され、かつ吐出孔19の開口径が3〜30μmであることが、吐出孔19からトナー組成液14のトナー液滴21を噴射させるときに、極めて均一な粒子径を有する微小液滴を発生させる観点から好ましい。なお、吐出孔19の開口径は、真円であれば直径を意味し、楕円であれば短径を意味する。また、複数の吐出孔19の個数は、2〜3000個が好ましい。吐出孔19の断面形状は間接振動型液滴吐出手段を示す図9や直接振動型液滴吐出手段を示す図12においては吐出孔19の開口部と接液面とで大きさが変わらない形状として記載されているが、適宜断面形状を変更することができる。
【0049】
図14は吐出孔の断面形状の一例を示す断面図である。同図の(a)は吐出孔19の接液面から吐出口に向かってラウンド形状を持ちながら開口径が狭くなるような形状である。薄膜101が振動した際に吐出孔19の出口付近で液にかかる圧力が最大となるため、吐出の安定化に際しては最も好ましい形状である。同図の(b)は吐出孔19の接液面から吐出口に向かって一定のノズル角度301を持って開口径が狭くなるような形状である。このノズル角度301は適宜変更することができる。同図の(a)と同様にノズル角度301によって薄膜101が振動したときの吐出孔19の出口付近で液にかかる圧力を高めることができるが、そのノズル角度の範囲は60〜90°が好ましい。60°より小さいと液に圧力がかかりにくく、さらに薄膜101の加工もし難いため好ましくない。ノズル角度301が90°である場合は同図の(c)が相当するが出口に圧力がかかりにくくなるため、90°が最大値となる。91°以上は孔12の出口に圧力がかからなくなるため、液滴吐出が非常に不安定化する。同図の(d)は同図の(a)と同図の(c)を組み合わせた形状である。このように段階的に形状を変更しても構わない。
【0050】
先に説明した液滴吐出手段から気体中に吐出させたトナー組成液の液滴を乾燥させた後に、捕集することで本発明のトナーを得ることができる。ここでは乾燥及び捕集を行う手段について概説する。
【0051】
図15はトナーの製造方法を実施する装置の一例の構成を示す概略図である。トナー製造装置1は、主に、液滴吐出手段2及び乾燥捕集ユニット400を含んで構成されている。液滴吐出手段2は、前述のように幾つかの方式の液滴吐出手段を適宜用いることができる。液滴吐出手段2には、トナー組成液14を収容する原料収容器13に収容されているトナー組成液14を通す液供給管16と、原料収容器13に戻す液戻り管22とが接続されている。また、液供給管16を通って原料収容器13に戻すために液供給管16内のトナー組成液14を圧送する液循環ポンプ15が連結されて、トナー組成液14を随時液滴吐出手段2に供給できる。液供給管16には圧力測定器P1が、乾燥捕集ユニットには圧力測定器P2がそれぞれ設けられている。液滴吐出手段2への送液圧力及び乾燥捕集ユニット内の圧力は圧力測定器P1、P2によって管理される。このときに、(圧力測定器P1の圧力値P1)>(圧力測定器P2の圧力値P2)の関係であると、トナー組成液14が吐出孔(図示せず)から染み出す恐れがある。逆に、圧力値P1<圧力値P2の場合には液滴吐出手段2に吐出孔から気体が入り、吐出が停止する恐れがある。そのため、圧力値P1≒圧力値P2があることが望ましい。つまり、液滴吐出手段2と気相内の圧力状態が均等に保たれていることが望ましい。
【0052】
図15に示す乾燥捕集ユニット400は、チャンバ401、トナー捕集手段402及びトナー貯留部403を含んで構成されている。乾燥工程のメカニズムを以下で示す。トナー組成液14で構成されたトナー液滴21は液滴吐出手段2から吐出された直後は液体の状態であるが、チャンバ内を搬送される間にトナー組成液中に含まれる揮発溶剤が揮発することで乾燥が進行し、液体から固体に変化する。このような状態ではもはや粒子同士が接触しても合一は生じないため、トナー捕集手段402によってトナー粉体として回収することができ、トナー貯留部403に格納することができる。トナー貯留部403に格納されたトナーは必要に応じて更に別工程で乾燥される。
【0053】
チャンバ401内では、搬送気流導入口404から作られる下降気流の搬送気流が形成されている。液滴吐出手段2から吐出されたトナー液滴21は、重力よってのみではなく、搬送気流によっても下方に向けて搬送されるため、噴射されたトナー液滴21が空気抵抗によって減速されることを抑制できる。これにより、トナー液滴21を連続的に噴射したときに、前に噴射されたトナー液滴21が乾燥する前に空気抵抗によって減速し、後に噴射されたトナー液滴21が前に噴射されたトナー液滴21に追い付く。そして、トナー液滴21同士が合一して一体となり、トナー液滴21の粒径が大きくなることを抑制できる。図15では液滴吐出手段2は重力方向に向かってトナー液滴21を吐出しているが、必ずしもその必要はなく、吐出させる角度は適宜選択できる。なお、気流発生手段として、チャンバ401上部の搬送気流導入口404に送風機を設けて加圧する方法と、搬送気流排出口405より吸引する方法のいずれを採用することもできる。トナー捕集手段402としては公知の捕集装置を用いることができ、サイクロン捕集機やバックフィルタ等を用いることができる。
【0054】
搬送気流はトナー液滴21同士の合一を抑制することができれば、特に気流の状態として限定されることは無く層流や旋回流や乱流であっても構わない。搬送気流を構成する気体の種類は特に限定は無く、空気であっても窒素等の不燃性気体を用いても良い。前述のようにトナー液滴21が乾燥することで合一しなくなる性質があるために、トナー液滴21の乾燥を促進できる条件を持つことが好ましい。このことから、トナー組成液14に含まれる溶剤の蒸気を含まないことが望ましい。また、搬送気流101の温度は適宜調整可能であり、生産時において変動の無いことが望ましい。また、チャンバ401内に搬送気流の気流状態を変えるような手段をとっても構わない。搬送気流はトナー液滴21同士の合一を防止すだけでなく、液滴がチャンバ401に付着することを防止することに用いても良い。
【0055】
以上説明したように、液滴乾燥捕集手段では合一を搬送気流によって抑えているが、これが充分でない場合は更なる合一防止手段を取り入れることもできる。合一防止手段としては、液滴吐出手段付近での補助搬送気流の導入や、液滴への同一極性の帯電、および電界制御等が挙げられ、適宜用いることができる。
【0056】
図16は1つの補助搬送気流による合一防止手段の構成を示す概略断面図である。液滴吐出手段2の周りにはシュラウド501が配置されており、その一部に補助搬送気流導入口502が配置されている。補助搬送気流導入口502から導入された気体はシュラウド501によって形成された気流通路12を通って液滴吐出手段2の吐出孔19の周辺に補助搬送気流503が作られる。ただし、補助搬送気流503は補助搬送気流導入口502から導入されるだけでなく、搬送気流排出口から引圧で引かれた気体により生ずることもある。液滴吐出手段2から吐出されたトナー液滴21は順次補助搬送気流503によって、液滴吐出手段2の近傍においては速度を落とすことなく移動するので、液滴同士の合一の頻度はきわめて低く抑えることができる。補助搬送気流503の速度は液滴吐出手段2から吐出された直後の液滴速度に対して同じか早いことが望ましく、それより遅い場合は逆効果となる場合もある。
【0057】
図16に示すように、補助搬送気流503はトナー液滴21の進行方向と同一であることが望ましいが、合一を防ぐことができれば液滴吐出方向と補助搬送気流の方向が同じである必要は無い。シュラウド501の形状は図16に示すように液滴吐出手段2の吐出孔19付近で開口部を絞ることによって流速を制御しても良いが、絞りを持たせなくても良適宜選択できる。補助搬送気流503を構成する気体の種類は特に限定は無く、空気であっても窒素等の不燃性気体を用いても良い。
【0058】
図17は本実施形態の2つの補助搬送気流による合一防止手段の構成を示す概略断面図である。液滴吐出手段2の周りにはシュラウド501が2段に配置されている。各補助搬送気流導入口502から導入された気体は、各シュラウド501によって形成された気流通路12を通って液滴吐出手段2の吐出孔19の周辺に補助搬送気流503がそれぞれ作られる。液滴吐出手段2から吐出されたトナー液滴21は、第1段目の補助搬送気流503によって液滴吐出手段2の近傍においては速度を落とすことなく移動し、更に第2段目の補助搬送気流503によって速度を落とすことなく移動する。このため、乾燥領域に至ってトナー液滴21が固化するまでトナー液滴21の速度は維持され、液滴同士の合一の頻度はきわめて低く抑えることができる。このようにして捕集したトナーの粒径分布を示す図18からわかるように、ほとんど単一粒径のトナー粒子しか存在しないことがわかる。これは前述のように吐出されたトナー液滴21が合一することなく、単一粒径のトナー粒子が乾燥して得られていることを示すものである。なお、本実施形態では2つの補助搬送気流による合一防止手段を設けたが、3つ以上の補助搬送気流を気相内に供給する構成でもよい。
【0059】
一方で、液敵状態が合一した場合の捕集したトナーの粒径分布を示す図19からわかるように、微量の搬送気流や補助搬送気流を用いていないだけで他の構成や条件等は図18におけるものと同じとする。液滴吐出手段2から吐出したトナー液滴21は空気抵抗を受けて吐出速度が急速に低下し、かつ自然落下を始める。吐出速度が低下すると液滴間距離が短くなり、やがては液滴間の合一を生じるようになる。また、合一した粒子は空気抵抗が増し、乾燥も遅れるために更に別の液滴と合一を引き起こすようになる。そして、数個の液滴が合一する場合もあり、これが乾燥すると合一した後に乾燥した粒子を生じ、結果として得られるトナーの粒径分布は広くなる。図19に示す粒径分布は捕集したトナーの一例であるが、図中の基本粒径と示したピークを構成する乾燥粒子は合一しなかったトナー液滴21がそのまま乾燥固化したものである。2倍と記載されたピークを形成する乾燥粒子はトナー液滴21が吐出後に合一した後に乾燥固化してえられたものである。同様に3倍、4倍、それ以上の合一が進行していることが粒径分布測定結果から推測することができる。ここで、粒径分布測定はフロー式粒子像解析装置(シスメックス社 FPIA−2000)を用い解析を行うことができる。粒度分布としては体積平均粒子径(Dv)と個数平均粒子径(Dn)の比で比較することができ、Dv/Dnで示すことができる。Dv/Dn値は最も小さいもので1.0であり、これはすべての粒径が同一であることを示している。Dv/Dnが大きいほど粒径分布が広いことを示す。一般的な粉砕トナーはDv/Dn=1.15〜1.25程度である。また、重合トナーはDv/Dn=1.10〜1.15程度である。本発明のトナーはDv/Dn=1.15以下とすることで印刷品質に効果が確認されており、より好ましくはDv/Dn=1.10以下である。電子写真システムにおいては粒径分布が狭いことが現像工程、転写工程、定着工程に求められるため、このような粒径分布の広がりは望ましくない。また、安定的に高精細な画質を得るためにはDv/Dn=1.15以下が望ましく、より高精細な画像を得るためにはDv/Dn=1.10以下がよい。
【0060】
必要に応じて、さらに流動床乾燥や真空乾燥といった二次乾燥が行われる。有機溶剤がトナー中に残留すると耐熱保存性や定着性、帯電特性等のトナー特性が経時で変動するだけでなく、加熱による定着時において有機溶剤が揮発する。そのため、使用者及び周辺機器へ悪影響を及ぼす可能性が高まるため、充分な乾燥を実施する。
【0061】
次に、微粒子の一例として本発明に係るトナーについて説明する。
本発明に係るトナーは上述した本実施の形態に係るトナー製造装置のように、本発明を適用したトナーの製造方法により製造されたトナーであり、これによ、粒度分布が単分散なものが得られる。
【0062】
具体的には、トナーの粒度分布(重量平均粒径/数平均粒径)としては、1.00〜1.15の範囲内にあるのが好ましい。より好ましくは1.00〜1.05である。また、重量平均粒径としては、1〜20[μm]の範囲内にあることが好ましく、より好ましくは3〜10[μm]である。
【0063】
次に、本発明で使用できるトナー材料について説明する。先ず、前述したようにトナー組成物を溶媒に分散、溶解させたトナー組成液について説明する。
トナー材料としては、従来の電子写真用トナーと全く同じ物が使用できる。すなわち、スチレンアクリル系樹脂、ポリエステル系樹脂、ポリオール系樹脂、エポキシ系樹脂、等のトナーバインダーを各種有機溶媒に溶解し、着色剤を分散、かつ、離型剤を分散又は溶解し、これを前記トナー製造方法により微小液滴とし乾燥固化させることで、目的とするトナー粒子を作製することが可能である。
【0064】
〔トナー用材料〕
トナー用材料としては、少なくとも樹脂、着色剤およびワックスを含有し、必要に応じて、帯電調整剤、添加剤およびその他の成分を含有する。
【0065】
〔樹脂〕
樹脂としては、少なくとも結着樹脂が挙げられる。
結着樹脂としては、特に制限はなく、通常使用される樹脂を適宜選択して使用することができるが、例えば、スチレン系単量体、アクリル系単量体、メタクリル系単量体等のビニル重合体、これらの単量体又は2種類以上からなる共重合体、ポリエステル系重合体、ポリオール樹脂、フェノール樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリアミド樹脂、フラン樹脂、エポキシ樹脂、キシレン樹脂、テルペン樹脂、クマロンインデン樹脂、ポリカーボネート樹脂、石油系樹脂、などが挙げられる。
【0066】
スチレン系単量体としては、例えば、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−フエニルスチレン、p−エチルスチレン、2,4−ジメチルスチレン、p−n−アミルスチレン、p−tert−ブチルスチレン、p−n−へキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−クロルスチレン、3,4−ジクロロスチレン、m−ニトロスチレン、o−ニトロスチレン、p−ニトロスチレン等のスチレン、又はその誘導体、などが挙げられる。
【0067】
アクリル系単量体としては、例えば、アクリル酸、あるいはアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸n−オクチル、アクリル酸n−ドデシル、アクリル酸2−エチルへキシル、アクリル酸ステアリル、アクリル酸2−クロルエチル、アクリル酸フェニル等のアクリル酸、又はそのエステル類、などが挙げられる。
【0068】
メタクリル系単量体としては、例えば、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸n−オクチル、メタクリル酸n−ドデシル、メタクリル酸2−エチルへキシル、メタクリル酸ステアリル、メタクリル酸フェニル、メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチル等のメタクリル酸又はそのエステル類、などが挙げられる。
【0069】
前記ビニル重合体、又は共重合体を形成する他のモノマーの例としては、以下の(1)〜(18)が挙げられる。(1)エチレン、プロピレン、ブチレン、イソブチレン等のモノオレフイン類;(2)ブタジエン、イソプレン等のポリエン類;(3)塩化ビニル、塩化ビニルデン、臭化ビニル、フッ化ビニル等のハロゲン化ビニル類;(4)酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル等のビニルエステル類;(5)ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;(6)ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;(7)N−ビニルピロール、N−ビニルカルバゾール、N−ビニルインドール、N−ビニルピロリドン等のN−ビニル化合物;(8)、ビニルナフタリン類;(9)アクリロニトリル、メタクリロニトリル、アクリルアミド等のアクリル酸若しくはメタクリル酸誘導体等;(10)マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸の如き不飽和二塩基酸;(11)マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物の如き不飽和二塩基酸無水物;(12)マレイン酸モノメチルエステル、マレイン酸モノエチルエステル、マレイン酸モノブチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル、シトラコン酸モノブチルエステル、イタコン酸モノメチルエステル、アルケニルコハク酸モノメチルエステル、フマル酸モノメチルエステル、メサコン酸モノメチルエステルの如き不飽和二塩基酸のモノエステル;(13)ジメチルマレイン酸、ジメチルフマル酸の如き不飽和二塩基酸エステル;(14)クロトン酸、ケイヒ酸の如きα,β−不飽和酸;(15)クロトン酸無水物、ケイヒ酸無水物の如きα,β−不飽和酸無水物;(16)該α,β−不飽和酸と低級脂肪酸との無水物、アルケニルマロン酸、アルケニルグルタル酸、アルケニルアジピン酸、これらの酸無水物及びこれらのモノエステルの如きカルボキシル基を有するモノマー;(17)2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート、2−ヒドロキシプロピルメタクリレート等のアクリル酸又はメタクリル酸ヒドロキシアルキルエステル類;(18)4−(1−ヒドロキシ−1−メチルブチル)スチレン、4−(1−ヒドロキシ−1−メチルへキシル)スチレンの如きヒドロキシ基を有するモノマー。
【0070】
本発明に係るトナーにおいて、結着樹脂のビニル重合体、又は共重合体は、ビニル基を2個以上有する架橋剤で架橋された架橋構造を有していてもよい。この場合に用いられる架橋剤としては、芳香族ジビニル化合物として、例えば、ジビニルベンゼン、ジビニルナフタレン、などが挙げられる。アルキル鎖で結ばれたジアクリレート化合物類として、例えば、エチレングリコールジアクリレート、1,3−ブチレングリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,5−ペンタンジオールジアクリレート、1,6へキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、これらの化合物のアクリレートをメタクリレートに代えたもの、などが挙げられる。エーテル結合を含むアルキル鎖で結ばれたジアクリレート化合物類として、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール#400ジアクリレート、ポリエチレングリコール#600ジアクリレート、ジプロピレングリコールジアクリレート、これらの化合物のアクリレートをメタアクリレートに代えたもの、などが挙げられる。
【0071】
その他、芳香族基及びエーテル結合を含む鎖で結ばれたジアクリレート化合物、ジメタクリレート化合物も挙げられる。ポリエステル型ジアクリレート類として、例えば、商品名MANDA(日本化薬社製)が挙げられる。
【0072】
多官能の架橋剤としては、ペンタエリスリトールトリアクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート及び以上の化合物のアクリレートをメタクリレートに代えたもの、トリアリルシアヌレート、トリアリルトリメリテートが挙げられる。
【0073】
これらの架橋剤は、他のモノマー成分100質量部に対して、0.01〜10質量部用いることが好ましく、0.03〜5質量部用いることがより好ましい。これらの架橋性モノマーのうち、トナー用樹脂に定着性、耐オフセット性の点から、芳香族ジビニル化合物(特にジビニルベンゼン)、芳香族基及びエーテル結合を1つ含む結合鎖で結ばれたジアクリレート化合物類が好適に挙げられる。これらの中でも、スチレン系共重合体、スチレン−アクリル系共重合体となるようなモノマーの組み合わせが好ましい。
【0074】
本発明のビニル重合体又は共重合体の製造に用いられる重合開始剤としては、例えば、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2,4−ジメチルバレロニトリル)、2,2'−アゾビス(2−メチルブチロニトリル)、ジメチル−2,2'−アゾビスイソブチレート、1,1'−アゾビス(1−シクロへキサンカルボニトリル)、2−(カルバモイルアゾ)−イソブチロニトリル、2,2'−アゾビス(2,4,4−トリメチルペンタン)、2−フェニルアゾ−2',4'−ジメチル−4'−メトキシバレロニトリル、2,2'−アゾビス(2−メチルプロパン)、メチルエチルケトンパ−オキサイド、アセチルアセトンパーオキサイド、シクロへキサノンパーオキサイド等のケトンパーオキサイド類、2,2−ビス(tert−ブチルパーオキシ)ブタン、tert−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、1,1,3,3−テトラメチルブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルクミルパーオキサイド、ジークミルパーオキサイド、α−(tert−ブチルパーオキシ)イソプロピルべンゼン、イソブチルパーオキサイド、オクタノイルパーオキサイド、デカノイルパーオキサイド、ラウロイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド、ベンゾイルパーオキサイド、m−トリルパーオキサイド、ジ−イソプロピルパーオキシジカーボネート、ジ−2−エチルへキシルパーオキシジカーボネート、ジ−n−プロピルパーオキシジカーボネート、ジ−2−エトキシエチルパーオキシカーボネート、ジ−エトキシイソプロピルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチル)パーオキシカーボネート、アセチルシクロへキシルスルホニルパーオキサイド、tert−ブチルパーオキシアセテート、tert−ブチルパーオキシイソブチレート、tert−ブチルパーオキシ−2−エチルへキサレート、tert−ブチルパーオキシラウレート、tert−ブチル−オキシベンゾエート、tert−ブチルパーオキシイソプロピルカーボネート、ジ−tert−ブチルパーオキシイソフタレート、tert−ブチルパーオキアリルカーボネート、イソアミルパーオキシ−2−エチルへキサノエート、ジ−tert−ブチルパーオキシへキサハイドロテレフタレート、tert−ブチルパーオキシアゼレート、などが挙げられる。
【0075】
結着樹脂がスチレン−アクリル系樹脂の場合、樹脂成分のテトラヒドロフラン(THF)に可溶分のGPCによる分子量分布で、分子量3千〜5万(数平均分子量換算)の領域に少なくとも1つのピークが存在し、分子量10万以上の領域に少なくとも1つのピークが存在する樹脂が、定着性、オフセット性、保存性の点で好ましい。また、THF可溶分としては、分子量分布10万以下の成分が50〜90%となるような結着樹脂が好ましく、分子量5千〜3万の領域にメインピークを有する結着樹脂がより好ましく、5千〜2万の領域にメインピークを有する結着樹脂が最も好ましい。
【0076】
結着樹脂がスチレン−アクリル系樹脂等のビニル重合体のときの酸価としては、0.1[mgKOH/g]〜100[mgKOH/g]であることが好ましく、0.1[mgKOH/g]〜70[mgKOH/g]であることがより好ましく、0.1[mgKOH/g]〜50[mgKOH/g]であることが最も好ましい。
【0077】
ポリエステル系重合体を構成するモノマーとしては、以下のものが挙げられる。
2価のアルコール成分としては、例えば、エチレングリコール、プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンタンジオール、1,6−へキサンジオール、ネオペンチルグリコール、2−エチル−1,3−ヘキサンジオール、水素化ビスフェノールA、又は、ビスフェノールAにエチレンオキシド、プロピレンオキシド等の環状エーテルが重合して得られるジオール、などが挙げられる。
【0078】
ポリエステル樹脂を架橋させるためには、3価以上のアルコールを併用することが好ましい。
前記3価以上の多価アルコールとしては、ソルビトール、1,2,3,6−ヘキサンテトロール、1,4−ソルビタン、ペンタエリスリトール、例えば、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4−ブタントリオール、1,2,5−ペンタトリオール、グリセロール、2−メチルプロパントリオール、2−メチル−1,2,4−ブタントリオール、トリメチロールエタン、トリメチロールプロパン、1,3,5−トリヒドロキシベンゼン、などが挙げられる。
【0079】
ポリエステル系重合体を形成する酸成分としては、例えば、フタル酸、イソフタル酸、テレフタル酸等のべンゼンジカルボン酸類又はその無水物、コハク酸、アジピン酸、セバシン酸、アゼライン酸等のアルキルジカルボン酸類又はその無水物、マレイン酸、シトラコン酸、イタコン酸、アルケニルコハク酸、フマル酸、メサコン酸等の不飽和二塩基酸、マレイン酸無水物、シトラコン酸無水物、イタコン酸無水物、アルケニルコハク酸無水物等の不飽和二塩基酸無水物、などがあげられる。また、3価以上の多価カルボン酸成分としては、トリメット酸、ピロメット酸、1,2,4−ベンゼントリカルボン酸、1,2,5−ベンゼントリカルボン酸、2,5,7−ナフタレントリカルボン酸、1,2,4−ナフタレントリカルボン酸、1,2,4−ブタントリカルボン酸、1,2,5−ヘキサントリカルボン酸、1,3−ジカルボキシ−2−メチル−2−メチレンカルボキシプロパン、テトラ(メチレンカルボキシ)メタン、1,2,7,8−オクタンテトラカルボン酸、エンポール三量体酸、又はこれらの無水物、部分低級アルキルエステル、などが挙げられる。
【0080】
結着樹脂がポリエステル系樹脂の場合は、樹脂成分のTHF可溶成分の分子量分布で、分子量3千〜5万の領域に少なくとも1つのピークが存在するのが、トナーの定着性、耐オフセット性の点で好ましく、また、THF可溶分としては、分子量10万以下の成分が60〜100[%]となるような結着樹脂も好ましく、分子量5千〜2万の領域に少なくとも1つのピークが存在する結着樹脂がより好ましい。
【0081】
結着樹脂がポリエステル樹脂の場合、その酸価としては、0.1[mgKOH/g]〜100[mgKOH/g]であることが好ましく、0.1[mgKOH/g]〜70[mgKOH/g]であることがより好ましく、0.1[mgKOH/g]〜50[mgKOH/g]であることが最も好ましい。
【0082】
本発明において、結着樹脂の分子量分布は、THFを溶媒としたゲルパーミエーションクロマトグラフィー(GPC)により測定される。
【0083】
本発明に係るトナーに使用できる結着樹脂としては、前記ビニル重合体成分及びポリエステル系樹脂成分の少なくともいずれか中に、これらの両樹脂成分と反応し得るモノマー成分を含む樹脂も使用することができる。ポリエステル系樹脂成分を構成するモノマーのうちビニル重合体と反応し得るものとしては、例えば、フタル酸、マレイン酸、シトラコン酸、イタコン酸等の不飽和ジカルボン酸又はその無水物、などが挙げられる。ビニル重合体成分を構成するモノマーとしては、カルボキシル基又はヒドロキシ基を有するものや、アクリル酸若しくはメタクリル酸エステル類が挙げられる。
【0084】
また、ポリエステル系重合体、ビニル重合体とその他の結着樹脂を併用する場合、全体の結着樹脂の酸価が0.1〜50[mgKOH/g]を有する樹脂を60[質量%]以上有するものが好ましい。
【0085】
本発明において、トナー組成物の結着樹脂成分の酸価は、以下の方法により求め、基本操作はJIS K−0070に準ずる。
(1)試料は予め結着樹脂(重合体成分)以外の添加物を除去して使用するか、結着樹脂及び架橋された結着樹脂以外の成分の酸価及び含有量を予め求めておく。試料の粉砕品0.5〜2.0[g]を精秤し、重合体成分の重さをW[g]とする。例えば、トナーから結着樹脂の酸価を測定する場合は、着色剤又は磁性体等の酸価及び含有量を別途測定しておき、計算により結着樹脂の酸価を求める。
(2)300[ml]のビーカーに試料を入れ、トルエン/エタノール(体積比4/1)の混合液150[ml]を加え溶解する。
(3)0.1[mol/l]のKOHのエタノール溶液を用いて、電位差滴定装置を用いて滴定する。
(4)この時のKOH溶液の使用量をS[ml]とし、同時にブランクを測定し、この時のKOH溶液の使用量をB[ml]とし、以下の式で算出する。ただしfはKOHのファクターである。
酸価[mgKOH/g]=[(S−B)×f×5.61]/W
【0086】
トナーの結着樹脂及び結着樹脂を含む組成物は、トナー保存性の観点から、ガラス転移温度(Tg)が35〜80[℃]であるのが好ましく、40〜75[℃]であるのがより好ましい。Tgが35[℃]より低いと高温雰囲気下でトナーが劣化しやすく、また定着時にオフセットが発生しやすくなることがある。また、Tgが80[℃]を超えると、定着性が低下することがある。
【0087】
本発明で使用できる磁性体としては、例えば、(1)マグネタイト、マグヘマイト、フェライトの如き磁性酸化鉄、及び他の金属酸化物を含む酸化鉄、(2)鉄、コバルト、ニッケル等の金属、又は、これらの金属とアルミニウム、コバルト、銅、鉛、マグネシウム、錫、亜鉛、アンチモン、ベリリウム、ビスマス、カドミウム、カルシウム、マンガン、セレン、チタン、タングステン、バナジウム等の金属との合金。(3)及びこれらの混合物、などが用いられる。
【0088】
磁性体として具体的に例示すると、Fe、γ−Fe、ZnFe、YFe12、CdFe、GdFe12、CuFe、PbFe12O、NiFe、NdFeO、BaFe1219、MgFe、MnFe、LaFeO、鉄粉、コバルト粉、ニッケル粉、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。これらの中でも特に、四三酸化鉄、γ−三二酸化鉄の微粉末が好適に挙げられる。
【0089】
また、異種元素を含有するマグネタイト、マグヘマイト、フェライト等の磁性酸化鉄、又はその混合物も使用できる。異種元素を例示すると、例えば、リチウム、ベリリウム、ホウ素、マグネシウム、アルミニウム、ケイ素、リン、ゲルマニウム、ジルコニウム、錫、イオウ、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、などが挙げられる。好ましい異種元素としては、マグネシウム、アルミニウム、ケイ素、リン、又はジルコニウムから選択される。異種元素は、酸化鉄結晶格子の中に取り込まれていてもよいし、酸化物として酸化鉄中に取り込まれていてもよいし、又は表面に酸化物あるいは水酸化物として存在していてもよいが、酸化物として含有されているのが好ましい。
【0090】
異種元素は、磁性体生成時にそれぞれの異種元素の塩を混在させ、pH調整により、粒子中に取り込むことができる。また、磁性体粒子生成後にpH調整、あるいは各々の元素の塩を添加しpH調整することにより、粒子表面に析出することができる。
【0091】
磁性体の使用量としては、結着樹脂100質量部に対して、磁性体10〜200質量部が好ましく、20〜150質量部がより好ましい。これらの磁性体の個数平均粒径としては、0.1[μm]〜2[μm]が好ましく、0.1[μm]〜0.5[μm]がより好ましい。前記個数平均径は、透過電子顕微鏡により拡大撮影した写真をデジタイザー等で測定することにより求めることができる。
【0092】
また、磁性体の磁気特性としては、10Kエルステッド印加での磁気特性がそれぞれ、抗磁力20〜150エルステッド、飽和磁化50〜200[emu/g]、残留磁化2〜20[emu/g]のものが好ましい。磁性体は、着色剤としても使用することができる。
【0093】
〔着色剤〕
着色剤としては、特に制限はなく、通常使用される樹脂を適宜選択して使用することができるが、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミウムレッド、カドミウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン及びこれらの混合物、などが挙げられる。
【0094】
着色剤の含有量としては、トナーに対して1〜15[質量%]が好ましく、3〜10[質量%]がより好ましい。
【0095】
本発明に係るトナーで用いる着色剤は、樹脂と複合化されたマスターバッチとして用いることもできる。マスターバッチの製造またはマスターバッチとともに混練されるバインダー樹脂としては、先にあげた変性、未変性ポリエステル樹脂の他に、例えば、ポリスチレン、ポリp−クロロスチレン、ポリビニルトルエンなどのスチレン及びその置換体の重合体;スチレン−p−クロロスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−ビニルナフタリン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−アクリル酸ブチル共重合体、スチレン−アクリル酸オクチル共重合体、スチレン−メタクリル酸メチル共重合体、スチレン−メタクリル酸エチル共重合体、スチレン−メタクリル酸ブチル共重合体、スチレン−α−クロルメタクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプレン共重合体、スチレン−アクリロニトリル−インデン共重合体、スチレン−マレイン酸共重合体、スチレン−マレイン酸エステル共重合体などのスチレン系共重合体;ポリメチルメタクリレート、ポリブチルメタクリレート、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、ポリエステル、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族叉は脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィンワックス、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を混合して使用してもよい。
【0096】
マスターバッチは、マスターバッチ用の樹脂と着色剤とを高せん断力をかけて混合、混練して得ることができる。この際、着色剤と樹脂の相互作用を高めるために、有機溶剤を用いる事ができる。また、いわゆるフラッシング法と呼ばれる着色剤の、水を含んだ水性ペーストを、樹脂と有機溶剤とともに混合混練し、着色剤を樹脂側に移行させ、水分と有機溶剤成分を除去する方法も、着色剤のウエットケーキをそのまま用いることができるため、乾燥する必要がなく、好適に使用される。混合混練するには、3本ロールミル等の高せん断分散装置が好適に使用される。
【0097】
マスターバッチの使用量としては、結着樹脂100質量部に対して、0.1〜20質量部が好ましい。
【0098】
また、マスターバッチ用の樹脂は、酸価が30[mgKOH/g]以下、アミン価が1〜100で、着色剤を分散させて使用することが好ましく、酸価が20[mgKOH/g]以下、アミン価が10〜50で、着色剤を分散させて使用することがより好ましい。酸価が30[mgKOH/g]を超えると、高湿下での帯電性が低下し、顔料分散性も不十分となることがある。また、アミン価が1未満であるとき、及び、アミン価が100を超えるときにも、顔料分散性が不十分となることがある。なお、酸価はJIS K0070に記載の方法により測定することができ、アミン価はJIS K7237に記載の方法により測定することができる。
【0099】
また、分散剤は、顔料分散性の点で、結着樹脂との相溶性が高いことが好ましく、具体的な市販品としては、「アジスパーPB821」、「アジスパーPB822」(味の素ファインテクノ社製)、「Disperbyk−2001」(ビックケミー社製)、「EFKA−4010」(EFKA社製)、などが挙げられる。
【0100】
分散剤は、トナー中に、着色剤に対して0.1〜10[質量%]の割合で配合することが好ましい。配合割合が0.1[質量%]未満であると、顔料分散性が不十分となることがあり、10[質量%]より多いと、高湿下での帯電性が低下することがある。
【0101】
分散剤の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにおけるスチレン換算重量での、メインピークの極大値の分子量で、500〜100000が好ましく、顔料分散性の観点から、3000〜100000がより好ましい。特に、5000〜50000が好ましく、5000〜30000が最も好ましい。分子量が500未満であると、極性が高くなり、着色剤の分散性が低下することがあり、分子量が100000を超えると、溶剤との親和性が高くなり、着色剤の分散性が低下することがある。
【0102】
分散剤の添加量は、着色剤100質量部に対して1〜200質量部であることが好ましく、5〜80質量部であることがより好ましい。1質量部未満であると分散能が低くなることがあり、200質量部を超えると帯電性が低下することがある。
【0103】
〔ワックス〕
本発明で用いるトナー組成液は、結着樹脂、着色剤とともにワックスを含有する。
ワックスとしては、特に制限はなく、通常使用されるものを適宜選択して使用することができるが、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、サゾールワックス等の脂肪族炭化水素系ワックス、酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物又はそれらのブロック共重合体、キャンデリラワックス、カルナバワックス、木ろう、ホホバろう等の植物系ワックス、みつろう、ラノリン、鯨ろう等の動物系ワックス、オゾケライト、セレシン、ペテロラタム等の鉱物系ワックス、モンタン酸エステルワックス、カスターワックスの等の脂肪酸エステルを主成分とするワックス類。脱酸カルナバワックスの等の脂肪酸エステルを一部又は全部を脱酸化したもの、などが挙げられる。
【0104】
ワックスの例としては、更に、パルミチン酸、ステアリン酸、モンタン酸、あるいは更に直鎖のアルキル基を有する直鎖アルキルカルボン酸類等の飽和直鎖脂肪酸、プランジン酸、エレオステアリン酸、バリナリン酸等の不飽和脂肪酸、ステアリルアルコール、エイコシルアルコール、ベヘニルアルコール、カルナウピルアルコール、セリルアルコール、メシリルアルコール、あるいは長鎖アルキルアルコール等の飽和アルコール、ソルビトール等の多価アルコール、リノール酸アミド、オレフィン酸アミド、ラウリン酸アミド等の脂肪酸アミド、メチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、ヘキサメチレンビスステアリン酸アミド等の飽和脂肪酸ビスアミド、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N'−ジオレイルアジピン酸アミド、N,N'−ジオレイルセパシン酸アミド等の不飽和脂肪酸アミド類、m−キシレンビスステアリン酸アミド、N,N−ジステアリルイソフタル酸アミド等の芳香族系ビスアミド、ステアリン酸カルシウム、ラウリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等の脂肪酸金属塩、脂肪族炭化水素系ワックスにスチレンやアクリル酸等のビニル系モノマーを用いてグラフト化させたワックス、ベヘニン酸モノグリセリド等の脂肪酸と多価アルコールの部分エステル化合物、植物性油脂を水素添加することによって得られるヒドロキシル基を有するメチルエステル化合物が挙げられる。
【0105】
より好適な例としては、オレフィンを高圧下でラジカル重合したポリオレフィン、高分子量ポリオレフィン重合時に得られる低分子量副生成物を精製したポリオレフィン、低圧下でチーグラー触媒、メタロセン触媒の如き触媒を用いて重合したポリオレフィン、放射線、電磁波又は光を利用して重合したポリオレフィン、高分子量ポリオレフィンを熱分解して得られる低分子量ポリオレフィン、パラフィンワックス、マイクロクリスタリンワックス、フィッシャートロプシュワックス、ジントール法、ヒドロコール法、アーゲ法等により合成される合成炭化水素ワックス、炭素数1個の化合物をモノマーとする合成ワックス、水酸基又はカルボキシル基の如き官能基を有する炭化水素系ワックス、炭化水素系ワックスと官能基を有する炭化水素系ワックスとの混合物、これらのワックスを母体としてスチレン、マレイン酸エステル、アクリレート、メタクリレート、無水マレイン酸の如きビニルモノマーでグラフト変性したワックスが挙げられる。
【0106】
また、これらのワックスを、プレス発汗法、溶剤法、再結晶法、真空蒸留法、超臨界ガス抽出法又は溶液晶析法を用いて分子量分布をシャープにしたものや、低分子量固形脂肪酸、低分子量固形アルコール、低分子量固形化合物、その他の不純物を除去したものも好ましく用いられる。
【0107】
ワックスの融点としては、定着性と耐オフセット性のバランスを取るために、70〜140[℃]であることが好ましく、70[℃]〜120[℃]であることがより好ましい。70[℃]未満では耐ブロッキング性が低下することがあり、140[℃]を超えると耐オフセット効果が発現しにくくなることがある。
【0108】
また、2種以上の異なる種類のワックスを併用することにより、ワックスの作用である可塑化作用と離型作用を同時に発現させることができる。可塑化作用を有するワックスの種類としては、例えば融点の低いワックス、分子の構造上に分岐のあるものや極性基を有する構造のもの、などが挙げられる。離型作用を有するワックスとしては、融点の高いワックスが挙げられ、その分子の構造としては、直鎖構造のものや、官能基を有さない無極性のものが挙げられる。使用例としては、2種以上の異なるワックスの融点の差が10[℃]〜100[℃]のものの組み合わせや、ポリオレフィンとグラフト変性ポリオレフィンの組み合わせ、などが挙げられる。
【0109】
2種のワックスを選択する際には、同様構造のワックスの場合は、相対的に、融点の低いワックスが可塑化作用を発揮し、融点の高いワックスが離型作用を発揮する。この時、融点の差が10[℃]〜100[℃]の場合に、機能分離が効果的に発現する。10[℃]未満では機能分離効果が表れにくいことがあり、100[℃]を超える場合には相互作用による機能の強調が行われにくいことがある。このとき、機能分離効果を発揮しやすくなる傾向があることから、少なくとも一方のワックスの融点が70〜120[℃]であることが好ましく、70[℃]〜100[℃]であることがより好ましい。
【0110】
ワックスは、相対的に、枝分かれ構造のものや官能基の如き極性基を有するものや主成分とは異なる成分で変性されたものが可塑作用を発揮し、より直鎖構造のものや官能基を有さない無極性のものや未変性のストレートなものが離型作用を発揮する。好ましい組み合わせとしては、エチレンを主成分とするポリエチレンホモポリマー又はコポリマーとエチレン以外のオレフィンを主成分とするポリオレフィンホモポリマー又はコポリマーの組み合わせ、ポリオレフィンとグラフト変成ポリオレフィンの組み合わせ、アルコールワックス、脂肪酸ワックス又はエステルワックスと炭化水素系ワックスの組み合わせ、フイシャートロプシュワックス又はポリオレフィンワックスとパラフィンワックス又はマイクロクリスタルワックスの組み合わせ、フィッシャトロプシュワックスとポルリオレフィンワックスの組み合わせ、パラフィンワックスとマイクロクリスタルワックスの組み合わせ、カルナバワックズ、キャンデリラワックス、ライスワックス又はモンタンワックスと炭化水素系ワックスの組み合わせが挙げられる。
【0111】
いずれの場合においても、トナー保存性と定着性のバランスをとりやすくなることから、トナーのDSC測定において観測される吸熱ピークにおいて、70〜110[℃]の領域に最大ピークのピークトップ温度があることが好ましく、70〜110[℃]の領域に最大ピークを有しているのがより好ましい。
【0112】
ワックスの総含有量としては、結着樹脂100質量部に対し、0.2〜20質量部が好ましく、0.5〜10質量部がより好ましい。
【0113】
本発明では、DSCにおいて測定されるワックスの吸熱ピークの最大ピークのピークトップの温度をもってワックスの融点とする。
【0114】
ワックス又はトナーのDSC測定機器としては、高精度の内熱式入力補償型の示差走査熱量計で測定することが好ましい。測定方法としては、ASTM D3418−82に準じて行う。本発明に用いられるDSC曲線は、1回昇温、降温させ前履歴を取った後、温度速度10[℃/min]で、昇温させた時に測定されるものを用いる。
【0115】
〔流動性向上剤〕
本発明に係るトナーには、流動性向上剤を添加してもよい。該流動性向上剤は、トナー表面に添加することにより、トナーの流動性を改善(流動しやすくなる)するものである。
【0116】
流動性向上剤としては、例えば、カーボンブラック、フッ化ビニリデン微粉末、ポリテトラフルオロエチレン微粉末の如きフッ素系樹脂粉末、湿式製法シリカ、乾式製法シリカの如き微粉末シリカ、微粉未酸化チタン、微粉未アルミナ、それらをシランカップリング剤、チタンカップリング剤若しくはシリコーンオイルにより表面処理を施した処理シリカ,処理酸化チタン,処理アルミナ、などが挙げられる。これらの中でも、微粉末シリカ、微粉未酸化チタン、微粉未アルミナが好ましく、また、これらをシランカップリング剤やシリコーンオイルにより表面処理を施した処理シリカが更に好ましい。
【0117】
流動性向上剤の粒径としては、平均一次粒径として、0.001[μm]〜2[μm]であることが好ましく、0.002[μm]〜0.2[μm]であることがより好ましい。
【0118】
微粉末シリカは、ケイ素ハロゲン化含物の気相酸化により生成された微粉体であり、いわゆる乾式法シリカ又はヒュームドシリカと称されるものである。
【0119】
ケイ素ハロゲン化合物の気相酸化により生成された市販のシリカ微粉体としては、例えば、AEROSIL(日本アエロジル社商品名、以下同じ)−130、−300、−380、−TT600、−MOX170、−MOX80、−COK84:Ca−O−SiL(CABOT社商品名)−M−5、−MS−7、−MS−75、−HS−5、−EH−5、Wacker HDK(WACKER−CHEMIE社商品名)−N20 V15、−N20E、−T30、−T40:D−CFineSi1ica(ダウコーニング社商品名):Franso1(Fransi1社商品名)、などが挙げられる。
【0120】
更には、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を疎水化処理した処理シリカ微粉体がより好ましい。処理シリカ微粉体において、メタノール滴定試験によって測定された疎水化度が好ましくは30〜80[%]の値を示すようにシリカ微粉体を処理したものが特に好ましい。疎水化は、シリカ微粉体と反応あるいは物理吸着する有機ケイ素化合物等で化学的あるいは物理的に処理することによって付与される。好ましい方法としては、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粉体を有機ケイ素化合物で処理する方法がよい。
【0121】
有機ケイ素化合物としては、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシラン、ビニルメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ジメチルビニルクロロシラン、ジビニルクロロシラン、γ−メタクリルオキシプロピルトリメトキシシラン、へキサメチルジシラン、トリメチルシラン、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン、アリルジメチルクロロシラン、アリルフェニルジクロロシラン、ベンジルジメチルクロロシラン、ブロモメチルジメチルクロロシラン、α−クロルエチルトリクロロシラン、β−クロロエチルトリクロロシラン、クロロメチルジメチルクロロシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、へキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフエニルテトラメチルジシロキサン及び1分子当り2から12個のシロキサン単位を有し、未端に位置する単位にそれぞれSiに結合した水酸基を0〜1個含有するジメチルポリシロキサン等がある。更に、ジメチルシリコーンオイルの如きシリコーンオイルが挙げられる。これらは1種単独で使用してもよいし、2種以上を混合して使用してもよい。
【0122】
流動性向上剤の個数平均粒径としては、5〜100[nm]になるものが好ましく、5〜50[nm]になるものがより好ましい。
【0123】
BET法で測定した窒素吸着による比表面積としては、30[m/g]以上が好ましく、60〜400[m/g]がより好ましい。表面処理された微粉体としては、20[m/g]以上が好ましく、40〜300[m/g]がより好ましい。
【0124】
これらの微粉体の適用量としては、トナー粒子100質量部に対して0.03〜8質量部が好ましい。
【0125】
本発明に係るトナーには、他の添加剤として、静電潜像担持体・キャリアの保護、クリーニング性の向上、熱特性・電気特性・物理特性の調整、抵抗調整、軟化点調整、定着率向上等を目的として、各種金属石けん、フッ素系界面活性剤、フタル酸ジオクチルや、導電性付与剤として酸化スズ、酸化亜鉛、カーボンブラック、酸化アンチモン等や、酸化チタン、酸化アルミニウム、アルミナ等の無機微粉体などを必要に応じて添加することができる。これらの無機微粉体は、必要に応じて疎水化してもよい。また、ポリテトラフルオロエチレン、ステアリン酸亜鉛、ポリフッ化ビニリデン等の滑剤、酸化セシウム、炭化ケイ素、チタン酸ストロンチウム等の研磨剤、ケーキング防止剤、更に、トナー粒子と逆極性の白色微粒子及び黒色微粒子とを、現像性向上剤として少量用いることもできる。
【0126】
これらの添加剤は、帯電量コントロール等の目的でシリコーンワニス、各種変性シリコーンワニス、シリコーンオイル、各種変性シリコーンオイル、シランカップリング剤、官能基を有するシランカップリング剤、その他の有機ケイ素化合物等の処理剤、又は種々の処理剤で処理することも好ましい。
【0127】
現像剤を調製する際には、現像剤の流動性や保存性、現像性、転写性を高めるために、先に挙げた疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。外添剤の混合は、一般の粉体の混合機を適宜選択して使用することができるが、ジャケット等を装備して、内部の温度を調節できることが好ましい。外添剤に与える負荷の履歴を変えるには、途中または漸次外添剤を加えていけばよいし、混合機の回転数、転動速度、時間、温度などを変化させてもよく、はじめに強い負荷を、次に比較的弱い負荷を与えても良いし、その逆でも良い。使用できる混合機の例としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサー、などが挙げられる。
【0128】
得られたトナーの形状をさらに調節する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、結着樹脂、着色剤からなるトナー材料を溶融混練後、微粉砕したものをハイブリタイザー、メカノフュージョン等を用いて、機械的に形状を調節する方法や、いわゆるスプレードライ法と呼ばれるトナー材料をトナーバインダーが可溶な溶剤に溶解分散後、スプレードライ装置を用いて脱溶剤化して球形トナーを得る方法、水系媒体中で加熱することにより球形化する方法、などが挙げられる。
【0129】
外添剤としては、無機微粒子を好ましく用いることができる。無機微粒子としては、例えば、シリカ、アルミナ、酸化チタン、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、酸化スズ、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ペンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、などを挙げることができる。無機微粒子の一次粒子径は、5[mμ]〜2[μm]であることが好ましく、5[mμ]〜500[mμ]であることがより好ましい。
【0130】
BET法による比表面積は、20[m/g]〜500[m/g]であることが好ましい。前記無機微粒子の使用割合は、トナーの0.01[質量%]〜5[質量%]であることが好ましく、0.01[質量%]〜2.0[質量%]であることがより好ましい。
【0131】
この他、高分子系微粒子たとえばソープフリー乳化重合や懸濁重合、分散重合によって得られるポリスチレン、メタクリル酸エステルやアクリル酸エステル共重合体やシリコーン、ベンゾグアナミン、ナイロンなどの重縮合系、熱硬化性樹脂による重合体粒子が挙げられる。
【0132】
このような外添剤は、表面処理剤により、疎水性を上げ、高湿度下においても外添剤自身の劣化を防止することができる。表面処理剤としては、例えば、シランカップリング剤、シリル化剤、フッ化アルキル基を有するシランカップリング剤、有機チタネート系カップリング剤、アルミニウム系のカップリング剤、シリコーンオイル、変性シリコーンオイル、などが好適に挙げられる。
【0133】
無機微粒子の一次粒子径としては、5[mμ]〜2[μm]であることが好ましく、5[mμ]〜500[mμ]であることがより好ましい。また、BET法による比表面積としては、20[m/g]〜500[m/g]であることが好ましい。この無機微粒子の使用割合としては、トナーの0.01[重量%]〜5[重量%]であることが好ましく、0.01[重量%]〜2.0[重量%]であることがより好ましい。
【0134】
静電潜像担持体や一次転写媒体に残存する転写後の現像剤を除去するためのクリーニング性向上剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸等の脂肪酸金属塩、ポリメチルメタクリレート微粒子、ポリスチレン微粒子等のソープフリー乳化重合によって製造されたポリマー微粒子、などを挙げることかできる。ポリマー微粒子は比較的粒度分布が狭く、体積平均粒径が0.01[μm]〜1[μm]のものが好ましい。
【0135】
本発明に係るトナーを用いた現像方法は、従来の電子写真法に使用する静電潜像担持体が全て使用できるが、例えば、有機静電潜像担持体、非晶質シリカ静電潜像担持体、セレン静電潜像担持体、酸化亜鉛静電潜像担持体、などが好適に使用可能である。
【0136】
次に、本実施形態で用いた溶解乃至分散液の処方について概説する。
なお、噴射条件は前述の通りである。
(着色剤分散液の調製)
先ず、着色剤としての、カーボンブラックの分散液を調製した。
カーボンブラック(RegaL400;Cabot社製)17質量部、顔料分散剤3質量部を、酢酸エチル80質量部に、攪拌羽を有するミキサーを使用し、一次分散させた。該顔料分散剤としては、アジスパーPB821(味の素ファインテクノ社製)を使用した。得られた一次分散液を、ビーズミル(アシザワファインテック社製LMZ型、ジルコニアビーズ径0.3mm)を用いて強力なせん断力により細かく分散し、5[μm]以上の凝集体を完全に除去した二次分散液を調製した。
【0137】
(ワックス分散液の調整)
次にワックス分散液を調整した。カルナバワックス18質量部、ワックス分散剤2質量部を、酢酸エチル80質量部に、攪拌羽を有するミキサーを使用し、一次分散させた。この一次分散液を攪拌しながら80℃まで昇温しカルナバワックスを溶解した後、室温まで液温を下げ最大径が3μm以下となるようワックス粒子を析出させた。ワックス分散剤としては、ポリエチレンワックスにスチレン−アクリル酸ブチル共重合体をグラフト化したものを使用した。得られた分散液を、更にビーズミル(アシザワファインテック社製LMZ型、ジルコニアビーズ径0.3mm)を用いて強力なせん断力により細かく分散し、最大径が1[μm]以下なるよう調整した。
【0138】
(溶解乃至分散液の調製)
次に、結着樹脂としての樹脂、上記着色剤分散液及び上記ワックス分散液を添加した下記組成からなるトナー組成液を調製した。結着樹脂としてのポリエステル樹脂100質量部、前記着色剤分散液30質量部、ワックス分散液30質量部を、酢酸エチル840質量部を、攪拌羽を有するミキサーを使用して10分間攪拌を行い、均一に分散させた。溶媒希釈によるショックで顔料やワックス粒子が凝集することはなかった。
【0139】
(トナー製造装置)
図15に示した構成のトナー製造装置1を用い、液滴吐出手段としては幾つかの液滴吐出手段でトナーの製造を行った。
各構成物のサイズ・条件について以下に示す。
【0140】
(液柱共鳴液滴吐出手段)
液柱共鳴液室18の長手方向の両端間の長さLが1.85[mm]、N=2の共鳴モードであって、第1から第4の吐出孔がN=2モード圧力定在波の腹の位置に吐出孔を配置したものを用いた。駆動信号発生源はNF社ファンクションジェネレーターWF1973を用い、ポリエチレン被覆のリード線で振動発生手段に接続した。この時の駆動周波数は液共鳴周波数に合わせて340[kHz]となる。
【0141】
(直接膜振動液滴吐出手段)
フレーム外径は26[mm]、薄膜101はφ20[mm]、厚さ40[μm]のニッケル板である。複数の吐出孔の出口径は10[μm]で、薄膜101の中心部φ1[mm]のエリアに100個空けられている。振動発生手段37の振動発生部材36の外径はφ15.0[mm]、内径はφ4.0[mm]で厚さは0.5[mm]であり、電極109は銀ペーストで作成されている。駆動信号発生源106はNF社ファンクションジェネレーターWF1973を用い、駆動回路105はポリエチレン被覆のリード線で振動発生手段に接続されている。この時の駆動周波数は液共鳴周波数に合わせて108[kHz]となる。
【0142】
(トナー捕集部)
シュラウド501は円筒状であり、径は50[mm]、開口部の径はφ10[mm]である。チャンバ401の内径はφ400[mm]、高さは2000[mm]の円筒形で垂直に固定されている。そして、上端部と下端部が絞られており、搬送気流導入口の径はφ50[mm]、搬送気流出口の径はφ50[mm]である。液滴吐出手段2はチャンバ401内上端より300[mm]の高さでチャンバ401の中央に配置されている。搬送気流は10.0[m/s]、40[℃]の窒素とした。
【0143】
(実施例)
前述のトナー製造装置を元に吐出液滴の気流解析を行った。直径20[mm]、長さ70[mm]以上の円筒状の筒において、中心部に液滴を10[m/s]で噴射させ、2段に分けて補助気流を6[m/s]で与えた。このときの気流を計算した結果、図20の速度分布を得た。最大速度は33[m/s]であり、吐出開始位置から70[mm]進んだ位置でも速度は25[m/s]を保っている。同じ風量の横風を与えた結果を比較すると1段目で与えた気流は減速が早く、乱れも生じている。2段目に分けて与えた気流は比較的安定した流れになっている。
【0144】
(比較例)
前述のトナー製造装置を元に吐出液滴の気流解析を行った。上記実施例と同様の直径20[mm]、長さ70[mm]以上の円筒状の筒において、中心部に液滴を噴射させ、ノズル付近で強い補助気流12[m/s]を与えた。最大速度は45[m/s]であり、70[mm]進んだ位置でも速度は20[m/s]に低下している。同じ風量の横風を与えた結果を比較すると1段目で与えた気流は減速が早く、乱れも生じている。上記実施例の2段に分けて与えた補助気流の方が比較的安定した流れになっている。以上のように、補助気流を数段に分けて与えた方が速度低下も防げ、安定した気流を保つことができることがわかる。
【0145】
以上説明した本実施形態のトナー製造方法によれば、図17に示すように、トナー組成液を吐出孔19から吐出して液滴化する。液滴化されたトナー液滴21は、乾燥固化される固化手段に向けて吐出速度によって搬送し始める。吐出孔19から固化手段に向かう搬送路上に第1段目の気流503を発生させる。トナー液滴はこの第1段目の気流503に乗ってこの気流503による搬送力が加わり、減速せずに固化手段に向かって列をなして搬送される。更には、固化手段に向かう搬送路上に第2段目の気流503を発生させる。トナー液滴は第2段目の気流503に乗って第2段目の気流503による搬送力が再び加わり、合一する速度に減速することなく列を維持しながら固化手段に向かって更に搬送されていく。このような搬送を繰り返しながら、トナー液滴は複数の気流に順次乗りながら搬送される。これにより、トナー液滴は合一が生じる速度まで減速することなく、かつ列を維持しながら固化手段まで搬送される。よって、合一を確実に防止することができる。
【0146】
また、図17に示すように、発生される複数の気流の方向はトナー液滴の搬送方向と同じであることで、気相内の気流状態に乱れを生じさせず、安定した気流を保つことができる。
【0147】
更に、図1及び図2に示すように、吐出孔19が形成された液柱共鳴液室18内のトナー組成液に振動を付与して液柱共鳴による定在波を形成し、この定在波の腹となる領域に形成された吐出孔19からトナー組成液14を吐出して液滴化する。よって、連続的なトナー液滴の吐出が実現でき、高い生産性が期待できる。
【0148】
また、図9に示すように、間接振動型吐出手段100により、吐出孔19が形成された液室内のトナー組成液14に振動を付与することで、吐出孔19が形成された薄膜101を周期的に振動させて吐出孔19からトナー組成液を吐出して液滴化する。また、図12に示すように、直接振動型吐出手段200により、吐出孔19が形成された薄膜101に振動を付与することで薄膜101を周期的に振動させて吐出孔19からトナー組成液14を吐出して液滴化する。よって、連続的なトナー液滴の吐出が実現でき、高い生産性が期待できる。
【符号の説明】
【0149】
1 トナー製造装置
10 液滴形成ユニット
11 液滴吐出ヘッド
12 気流通路
13 原料収容器
14 トナー組成液
15 液循環ポンプ
16 液供給管
17 液共通供給路
18 液柱共鳴液室
19 吐出孔
20 振動発生手段
21 トナー液滴
22 液戻り管
30 乾燥捕集ユニット
31 チャンバ
32 トナー捕集部
33 搬送気流
34 トナー捕集チューブ
35 トナー貯留部
100 間接振動型吐出手段
101 薄膜
102 機械的振動手段
103 フレーム
104 振動面
105 駆動回路
106 駆動信号発生源
107 振動増幅手段
108 振動発生部材
109 電極
200 直接振動型吐出手段
201 円環状振動発生手段
202 円環状圧電体
301 ノズル角度
400 乾燥捕集ユニット
401 チャンバ
402 トナー捕集手段
403 トナー貯留部
404 搬送気流導入口
405 搬送気流排出口
501 シュラウド
502 補助搬送気流導入口
503 補助搬送気流
【先行技術文献】
【特許文献】
【0150】
【特許文献1】特開2007−199463号公報
【特許文献2】特開2008−286947号公報

【特許請求の範囲】
【請求項1】
少なくとも樹脂及び着色剤を含有するトナー組成液を少なくとも1つの吐出孔から吐出して液滴化し、液滴化された上記トナー液滴を気流に乗せて搬送し、搬送されながら固化することでトナーを製造するトナー製造方法において、
液滴化された上記トナー液滴を複数の気流に順次乗せながら搬送することを特徴とするトナー製造方法。
【請求項2】
請求項1記載のトナー製造方法において、
上記各気流の方向は上記トナー液滴の搬送方向と同じであることを特徴とするトナー製造方法。
【請求項3】
請求項1又は2に記載のトナー製造方法において、
上記吐出孔が形成された液柱共鳴液室内の上記トナー組成液に振動を付与して液柱共鳴による定在波を形成し、該定在波の腹となる領域に形成された上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするトナー製造方法。
【請求項4】
請求項1又は2に記載のトナー製造方法において、
上記吐出孔が形成された液室内の上記トナー組成液に振動を付与することで、上記吐出孔が形成された薄膜を周期的に振動させて上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするトナー製造方法。
【請求項5】
請求項1又は2に記載のトナー製造方法において、
上記吐出孔が形成された薄膜に振動を付与することで上記薄膜を周期的に振動させて上記吐出孔から上記トナー組成液を吐出して液滴化することを特徴とするトナー製造方法。
【請求項6】
少なくとも樹脂及び着色剤を含有するトナー組成液を少なくとも1つの吐出孔から吐出して液滴化する液滴吐出手段と、液滴化したトナー液滴を固化する固化手段と、該固化手段まで上記トナー液滴を乗せて搬送する気流を発生する気流発生手段と、を有するトナー製造装置において、
上記液滴出手段と上記固化手段との搬送路間に該搬送路に沿って上記気流発生手段を複数設け、
上記トナー液滴を上記各気流発生手段によってそれぞれ発生させた複数の気流に順次乗せて上記固化手段まで搬送することを特徴とするトナー製造装置。
【請求項7】
請求項1〜5のいずれか1項に記載のトナー製造方法、あるいは請求項6記載のトナー製造装置によって製造されることを特徴とするトナー。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図7】
image rotate


【公開番号】特開2012−113137(P2012−113137A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【出願番号】特願2010−262268(P2010−262268)
【出願日】平成22年11月25日(2010.11.25)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】