説明

ナノ構造体を用いたセンサ素子、分析チップ、分析装置、およびセンサ素子の製造方法

【課題】流路において露出したナノ構造体を有するセンサ素子であり、信頼性が高く簡易に形成できるセンサ素子を提供する。
【解決手段】シリコンナノワイヤ3は、少なくとも一部を溝部5において露出し、かつ、基板2と一体に構成されている。また、基板に形成されたソース半導体領域は溝部5の片側の側壁の一部を成し、ドレイン半導体領域は溝部5のもう片側の側壁の一部を成している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノ構造体を用いたセンサ素子に関し、特にシリコンナノワイヤを用いたセンサ素子およびその製造方法等に関する。
【背景技術】
【0002】
ナノワイヤのようなナノ構造体は、電極間に配置することによりトランジスタを構成し、センサ等に利用されている。例えば特許文献1には、ナノワイヤを基板上に形成し、試料を流すための流路を形成したPDMS(ポリメチルシロキサン)基板を、上記基板に張り合わせることにより、流路中にナノワイヤを配置させたバイオセンサが開示されている。
【0003】
このようなナノワイヤの製造方法は2つに大別され、一方は、金属触媒等を用いてナノワイヤを成長させ、塗布および配列技術を用いて基板に配置させるボトムアップの製造方法である。他方は、シリコン基板またはSOI基板などに、半導体微細加工技術を用いて、ナノワイヤを形成するトップダウンの製造方法である。
【特許文献1】特表2004−515782(2004年5月27日公開)
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記ナノワイヤを用いたセンサにおいて、ボトムアップの製造方法でナノワイヤを形成すると、ナノワイヤを成長により形成し、塗布や配列技術を用いて電極間に配置するため、ナノワイヤを流路の所定位置に精度よく配置することは困難である。つまり、微細なレベルでの配置制御を行うことは困難である。さらに流路へ露出した場合、ナノワイヤは電極間に架橋している場合は、試料の流れの影響で歪んだり折れたりしやすく、耐久性は低い。また、流路における位置制御の自由度が低い。つまり、基板に付着させることしかできない。よって、信頼性の高いラベルフリーセンサを提供できない。
【0005】
他方、トップダウンの製造方法を用いた場合でも、シリコン系樹脂であるPDMS等のカバー層に流路を形成し、人為的な張り合わせにてセンサチップを作成するため、流路とナノワイヤの位置を精度よく制御することが困難である。
【0006】
よって、いずれの方法でも、高性能のセンサを作成することが困難である。
【0007】
さらに、ボトムアップの製造方法では、参照検出部による差動型の検出システムはナノワイヤの特性バラツキが大きく実現が困難である。また、トップダウンの製造方法においても、流路を形成したPDMSを人為的に位置合わせしてナノワイヤ上に貼り合わせるため、特性バラツキが大きく、差動型の検出システムは実現困難である。
【0008】
本発明は上記問題を解決するためになされたものであり、その目的は、流路において露出したナノ構造体を有するセンサ素子であり、信頼性が高く簡易に形成できるセンサ素子を提供することにある。
【課題を解決するための手段】
【0009】
本発明に係るセンサ素子は、上記課題を解決するために、溝部が設けられた面を有する基板と、少なくとも一部を上記溝部において露出し、かつ、上記基板と一体に構成されたナノ構造体と、上記記ナノ構造体と同質の材料で構成され、上記ナノ構造体と接続し、かつ、上記溝部の両側壁のそれぞれ一部を成すように上記基板に形成されたナノ構造体接続領域と、を有していることを特徴としている。
【0010】
上記構成によると、上記ナノ構造体は基板の溝部において露出しており、かつ、基板と一体に構成されている。つまり、ナノ構造体は基板を加工することにより形成され、基板と一体不可分に形成される。また、上記ナノ構造体と接続し、かつ、溝部の両側壁のそれぞれ一部を成すように、上記記ナノ構造体と同質の材料で構成された、ナノ構造体接続領域が形成されている。よって、ナノ構造体接続領域も、溝部およびナノ構造体と同時に形成することができる。このナノ構造体接続領域は、ソース電極およびドレイン電極と接続する領域として用いることができる。
【0011】
ここで、溝部が設けられた基板の表面上に、溝部を形成しない平坦なカバー層を張り合わせるだけで、流路を形成することができ、この流路中上記ナノ構造体が露出して配置させることができる。なお、流路とは、試料等の溶液を流すための通路である。
【0012】
よって、上記構成によると、ナノ構造体を、流路の所定位置へ、微細なレベルで、精度よく配置することが可能となる。また、ナノ構造体と基板が一体であるため、流路に流れる溶液の流れによるナノ構造体のズレや剥がれなどの問題がなく、耐久性が高くなる。そのため、本発明のセンサ素子により、信頼性の高いセンサ素子を提供できる。
【0013】
ここで、上記ナノ構造体および上記基板は、半導体からなっていてもよい。特に、上記ナノ構造体および上記基板は、シリコンからなっていてもよい。
【0014】
また、本発明に係るセンサ素子では、上記構成に加え、上記ナノ構造体は、上記溝部の両側壁に渡って配置されていてもよい。このように、ナノ構造体が、基板の溝部の両側壁に渡って配置されることで、両側壁と連結して固定化されていることにより耐久性が高くなる。さらに、後述するようにナノ構造体が底面に固定化されていると、より耐久性が高くなる。
【0015】
また、上記ナノ構造体は、上記溝部の延伸方向に対して垂直に配置されていてもよい。このように、ナノ構造体を溝部の延伸方向に対し垂直に配置するということは、ナノ構造体は流路の流れ方向に対して垂直に配置されることになる。このような配置により、リガンド溶液を上記流路に流すことで、ナノ構造体の全体にまんべんなくリガンドを固定することができ、標的分子に効率よく反応させることができる。
【0016】
また、上記溝部に、上記ナノ構造体を複数形成するのがよい。溝部に複数のナノ構造体が形成されることにより、流路にナノ構造体が複数配置される。よって、流路内の一部のナノ構造体でキャッチできない標的分子を、流路内の複数のナノ構造体でキャッチすることにより標的分子を均一的に検出することができ、より信頼性が高いセンサを提供することが可能となる。つまり、複数のナノ構造体が配置されることで、全体的に分布した標的分子をその複数のナノ構造体でキャッチでき、平均を取り評価できるので、好ましい。
【0017】
また、本発明に係るセンサ素子では、上記構成に加え、上記ナノ構造体は上記溝部の底面より絶縁体を介して配置されていてもよい。
【0018】
ナノ構造体が、溝部の底部に絶縁体を介して配置されていることで、ナノ構造体は、溝部からなる流路を流れる試料等の溶液による損傷などの影響を受けにくく、溶液の流れで歪んだり折れたりするのを防ぐことができる。よって、ナノ構造体の耐久性を高めることができ、より高品質のセンサ素子を提供することができる。
【0019】
また、本発明に係るセンサ素子は、上記ナノ構造体が設けられた上記溝部二つ有していてもよい。二つの溝部にそれぞれ設けられた基板と一体のナノ構造体は、上記のように、大きさが揃って精度よく配置されているため、差動型分析システムに用いることができるセンサ素子を提供することができる。
【0020】
本発明に係る分析チップでは、上記何れか1つのセンサ素子を有している。また、本発明に係る分析装置は、上記分析チップを有し、上記ナノ構造体にリガンドを固定し、上記ナノ構造体の電気的特性の変化を測定することで標的分子を検出する。
よって、これら分析チップや分析装置を用いることで、精度よく標的分子の分析や検出を行うことができる。
【0021】
また、本発明に係る差動型分析チップは、上記ナノ構造体が設けられた上記溝部を二つ有するセンサ素子を有し、上記二つの溝部のうち、一方の溝部の上記ナノ構造体にはリガンドを修飾して検出部として使用し、他方の溝部のナノ構造体にはリガンドを固定せずに参照検出部として使用する、ことを特徴としている。
【0022】
ここで、サンプル溶液中にはイオン等、電極のインピータンス変化に影響を与える分子が含まれるため、標的分子がナノ構造体に固定化されているリガンドと結合することによるインピータンス変化のみを計測するためには、参照検出部を設ける必要がある。本発明に係るセンサ素子は、ナノ構造体を基板に一体に形成することで、大きさの揃ったナノ構造体の配置を精度よく行うことができるので、差動型センサ素子を実現可能である。よって、差動型センサ素子を用いた差動型分析チップや、この差動型分析チップ有する分析装置により、検出部および参照検出部のインピーダンス変化を測定し、検出部のインピーダンス変化量から参照検出部のインピーダンス変化量を差し引くことで、より正確な標的分子の検出が可能になる。
【0023】
本発明に係るセンサ素子の製造方法は、上記課題を解決するために、溝部が設けられた面を有する基板と、上記基板と一体に構成されたナノ構造体と、上記記ナノ構造体と同質の材料で構成され、上記ナノ構造体と接続し、かつ、上記溝部の両側壁のそれぞれ一部を成すように上記基板に形成されたナノ構造体接続領域とを有する、センサ素子の製造方法であって、上記溝部、上記ナノ構造体、および上記ナノ構造体接続領域とを同時に、かつ、上記ナノ構造体の少なくとも一部が上記溝部において露出するように形成するステップを含むことを特徴としている。
【0024】
上記方法によると、溝部、ナノ構造体、およびナノ構造体接続領域が同時に形成される。この溝部はカバー層で覆われることにより流路が形成される部分である。よって、ナノ構造体が、流路の所定位置に正確に配置されたセンサ素子を製造することができる。また、大きさの揃ったナノ構造体を製造することができる。よって、高信頼性で高性能のセンサ素子を簡易に作成することができる。
【発明の効果】
【0025】
本発明に係るセンサ素子は、以上のように、溝部が設けられた面を有する基板と、少なくとも一部を上記溝部において露出し、かつ、上記基板と一体に構成されたナノ構造体と、上記記ナノ構造体と同質の材料で構成され、上記ナノ構造体と接続し、かつ、上記溝部の両側壁のそれぞれ一部を成すように上記基板に形成されたナノ構造体接続領域と、
を有している。
【0026】
上記構成によると、上記ナノ構造体は基板の溝部において露出しており、かつ、基板と一体に構成されている。つまり、ナノ構造体は基板を加工することにより形成され、基板と一体不可分に形成される。また、上記ナノ構造体と接続し、かつ、溝部の両側壁のそれぞれ一部を成すように、上記記ナノ構造体と同質の材料で構成された、ナノ構造体接続領域が形成されている。よって、ナノ構造体接続領域も、溝部およびナノ構造体と同時に形成することができる。このナノ構造体接続領域は、ソース電極およびドレイン電極と接続する領域として用いることができる。
【0027】
ここで、溝部が設けられた基板の表面上に、溝部を形成しない平坦なカバー層を張り合わせるだけで、流路を形成することができ、この流路中上記ナノ構造体が露出して配置させることができる。なお、流路とは、試料等の溶液を流すための通路である。
【0028】
よって、上記構成によると、ナノ構造体を、流路の所定位置へ、微細なレベルで、精度よく配置することが可能となる。また、ナノ構造体と基板が一体であるため、流路に流れる溶液の流れによるナノ構造体のズレや剥がれなどの問題がなく、耐久性が高くなる。そのため、本発明のセンサ素子により、信頼性の高いセンサ素子を提供できる。
【発明を実施するための最良の形態】
【0029】
以下に、本発明を実施するための最良の形態を、図面を用いて詳細に説明する。
【0030】
〔実施の形態1〕
<センサの構造>
初めに、本発明に係るセンサ素子の構造ついて説明する。図1は本実施形態のセンサ素子1が有するシリコンナノワイヤ3近傍を示す斜視図である。また、図2(a)は、センサ素子1の上面図、図2(b)および(c)は、それぞれ、図2(a)のAA’断面およびBB’断面を示す図である。
【0031】
図1に示すように、センサ素子1は、溝部5が設けられた面を有する基板2と、基板2に設けられたソース電極およびドレイン電極と、溝部5に形成され、ソース電極およびドレイン電極に接続したナノ構造体であるシリコンナノワイヤ3を有している。そして、シリコンナノワイヤ3は、少なくとも一部を溝部5において露出し、かつ、基板2と一体に構成されており、ソース電極は、溝部5の片側の側壁の一部を成し、ドレイン電極は、溝部5のもう片側の側壁の一部を成している。この基板2にカバー層4が張り合わされ、溝部5とカバー層の下面とから流路が形成される。なお、本実施形態では、ナノ構造体をシリコンナノワイヤとするが、例えば、窒化ガリウムナノワイヤ、ガリウム砒素ナノワイヤ、酸化亜鉛ナノワイヤ等であってもよく、半導体材料であれば適用可能である。
【0032】
具体的には、センサ素子1は、流路が基板2およびカバー層4が張り合わされた面内に構成されている。本実施形態では、流路の上面をなす層であるカバー層4は、PDMSからなる。また、流路の底面および側面となる溝部5を成す基板2は、SOI(Silicon On Insulator)基板から形成される。
【0033】
ここで、図2では、流路となる溝部5は、断面図における溝部の側面を説明するために、上面からの形状をコの字形としているが、例えば、直線状となっていてもよい。
【0034】
流路となる溝部5には絶縁体で支持されたシリコンナノワイヤ3が露出しており、センサ素子1は、このシリコンナノワイヤ3を用いて流路を流れる試料(サンプル)を測定することができる。
【0035】
図2(a)〜(c)を用いて、シリコンナノワイヤ3が構成する検出部について説明する。図2(a)の矢印はサンプルの流路での流れを示しいている。溝部5からなる流路にはシリコンナノワイヤ3が形成されている。シリコンナノワイヤ3の両端部(両壁)にソース電極およびドレイン電極となる半導体領域が形成され、それぞれの半導体領域はシリコンナノワイヤと反対側で金属電極6と電気的に接続され、さらに配線されている。本実施形態では、シリコンナノワイヤ、ソース半導体領域(ナノ構造体接続領域)およびドレイン半導体領域(ナノ構造体接続領域)が形成されている部分以外の流路は、絶縁膜(シリコン酸化膜)で形成されている。シリコンナノワイヤ3、ソース半導体領域、および、ドレイン半導体領域は半導体(シリコン)で形成される。それぞれのソース半導体領域およびドレイン半導体領域のシリコンナノワイヤ3と反対側に金属電極6を形成しているため、流路に面することなく、金属電極6を形成することができる。したがって、金属電極6の腐食および流路に面することによる短絡の問題のない、信頼性の高いセンサを提供することができる。
【0036】
さらに、上記シリコンナノワイヤ3は流路内に露出し、基板2であるSOI基板と一体に構成されているすなわち、シリコンナノワイヤはSOI基板の絶縁膜上の半導体膜(SOI膜)を加工することにより形成されており、一体不可分に形成されている。さらに、シリコンナノワイヤ3を支持している絶縁膜もSOI基板の絶縁膜を加工して形成されており、一体不可分に形成されている。従って、シリコンナノワイヤ3の流路の所定位置への微細なレベルでの配置制御を精度よく行うことが可能となる。よって、シリコンナノワイヤ3と基板2が一体であるため流路に流れる溶液の流れによるズレや剥がれなどの問題がなく耐久性が高くなる。さらにシリコンナノワイヤ3の下地が絶縁膜で支持されているため、耐久性は非常に高くなる。
【0037】
なお、シリコンナノワイヤ3、ソース半導体領域およびドレイン半導体領域の不純物の導電型については同じ導電型を有していてもよく、ソース半導体領域およびドレイン半導体領域の導電型は、シリコンナノワイヤ3と異なる導電型であってもよい。
【0038】
<センサの製造方法>
次に、本実施形態のセンサ素子1の製造方法について、図3,4を用いて順に説明する。図3(a1)、(b1)…および図4(a1)、(b1)…は、図2に示すセンサ素子のAA’断面を製造工程順に説明する図である。また、図3(a2)、(b2)…および図4(a2)、(b2)…は、図2に示すBB’断面を製造工程順に説明する図である。
【0039】
まず、図3(a1)、(a2)に示すように、SOI基板である基板2上に、シリコン窒化膜24をCVD(Chemical Vapor Deposition:化学蒸着法)にて堆積する。当該シリコン窒化膜24は後の工程であるCMP(Chemical Mechanical Polishing)工程におけるストッパーとして用いるため、ストッパーとして充分な膜厚であればよい。よって、シリコン窒化膜24は、例えば100nmほど堆積すればよい。そして、ソース半導体領域、ドレイン半導体領域、シリコンナノワイヤ(SiNW)部分を含む流路、およびメタル形成部分を覆うようにフォトリソグラフィー技術を用いてレジスト25を形成する。次に、このレジスト25をマスクとしてシリコン窒化膜24をエッチングすることによりレジスト25と同形にシリコン窒化膜24をパターニングする。
【0040】
なお、絶縁膜上シリコン膜(SOI膜)は、例えばp型の導電型を高濃度にドープされている基板を用いるのが好ましい。このような基板を用いることにより、後のメタル形成工程において好適な接続が得られるからである。また、メタル形成工程で不純物注入を別途行うことにより、適宜ソース半導体領域およびドレイン半導体領域と、シリコンナノワイヤ3の不純物濃度を調整できるため、より検出に適したシリコンナノワイヤの不純物濃度を調整できるので、好ましい。
【0041】
次に、図3(b1)、(b2)に示すように、基板2の絶縁膜上シリコン膜(SOI膜)23を、レジスト25をマスクとしてエッチングし、レジスト25およびシリコン窒化膜24と同形にSOI膜23をパターニングする。なお、SOI膜23の膜厚がその後形成される流路の高さに影響するため、必要とされる流路高さに応じて、10μmから1000μm程度で適宜調整するとよい。本実施形態ではSOI膜厚は50μmとした。また、このパターニングにより、SOI膜23に、流路高さとして必要とされる10μm以上のエッチングをしなければならない。従って、通常の半導体製造工程で用いられるような微細なエッチングを行うとかなり時間がかかってしまう。そこで、シリコンの深堀エッチング装置たとえばICPエッチング装置などを用いてエッチングするのが好ましい。その後、レジスト25を剥離する。なお、レジスト25をマスクとしてシリコン窒化膜24をエッチングした後、レジスト25を剥離して、シリコン窒化膜24をマスクとしてSOI膜23をエッチングしても構わない。
【0042】
次に、図3(c1)、(c2)に示すように、シリコン酸化膜26を、CVDを用いて堆積する。この堆積には、厚膜形成に最適化されたTEOS−CVD装置を用いるのが好ましい。TEOS−CVD装置により10μm以上の厚膜のシリコン酸化膜を形成することができる。また、5μm以下のアモルファスシリコン膜またはエピシリコン膜のCVD堆積工程と、当該アモルファスシリコン膜またはエピシリコン膜の熱酸化工程と、を繰り返すことにより、厚膜のシリコン酸化膜形成をより早く完了することができる。
【0043】
次に、図3(d1)、(d2)に示すように、シリコン窒化膜24をストッパーにしてCMPを行う。その後、残ったシリコン窒化膜24を、リン酸等を用いた選択的ウエットエッチングを用いて除去する。
【0044】
その後、図4(a1)、(a2)に示すように、SOI膜23上にフォトリソグラフィー技術を用いてレジスト27を形成する。このレジスト27はシリコンナノワイヤおよびソース・ドレイン半導体領域を形成する領域を規定するものであり、シリコンナノワイヤおよびソース・ドレイン半導体領域にレジスト27が残るようにパターニングする。
【0045】
次に、図4(b1)、(b2)に示すように、KOHを用いたウエットエッチングによる異方性エッチングを行ない、SOI膜23をエッチングする。KOHを用いることにより、面方位による異方性エッチングが可能となるため、シリコンの微細な細線を形成することができる。本工程は上記以外にも、RIEを用いたドライエッチングによる異方性エッチングを行うことにより、レジスト27の形状に応じたシリコンの微細な細線を形成することもできる。
【0046】
次に、図4(c1)、(c2)に示すように、シリコン窒化膜28を、CVDを用いて堆積する。そして、ソース・ドレイン半導体領域を覆うようにフォトリソグラフィー技術をもちいてレジスト29をパターニングする。次に、このレジスト29をマスクとしてシリコン窒化膜28をエッチングし、レジスト29と同形にシリコン窒化膜28をパターニングする。
【0047】
次に、図4(d1)、(d2)に示すように、レジスト29をマスクに露出している部分のシリコンを、RIEを用いたドライエッチングによる異方性エッチングを行ない、薄膜化する。本工程は、シリコンナノワイヤ形成部分でも流路の高さが充分確保できるようにするためのものである。上記SOI膜エッチング工程と同様に、流路として充分な高さが必要であるので、望ましくは10μm以上のシリコンエッチングを行う。上記SOI膜エッチング工程同様、シリコンの深堀エッチング装置たとえばICPエッチング装置などを用いてエッチングするとよい。その後、レジスト29を除去する。
【0048】
次に、図4(e1)、(e2)に示すように、シリコン窒化膜28を耐酸化膜として用いて、シリコンの露出部分を熱酸化し、シリコンの露出部分に酸化膜30を形成する。当該熱酸化工程により、シリコンナノワイヤ3をより細線化することができる。熱酸化を用いるために微細な、数nmレベルの、シリコンナノワイヤ径を制御することができる。さらに、シリコンナノワイヤの大きさバラツキの抑制ができる。これは次のような理由からである。細線化されたシリコンを熱酸化することにより、酸化膜形成によるシリコンに発生する応力がシリコンに集中し、シリコンの酸化レートが落ちてゆき、最終的には酸化できなくなることが知られている。そして、形状または酸化方法により様々であるが、約5nmから15nm程の大きさ(細線の場合は直径)のシリコンが酸化されずに残ることが知られている。そこで、この原理を利用して、熱酸化により径のバラツキを抑制し、径の揃った細線のシリコンナノワイヤ3を形成することができる。
【0049】
次に、図4(f1)、(f2)に示すように、濃度を充分薄く調整したバッファードフッ酸(BHF)溶液をもちいて酸化膜30を除去する。ここでは、シリコンナノワイヤ3の下地の酸化膜が除去されないように調整するため、充分濃度を薄くしたBHF溶液を用いるとよい。また、BHF溶液を用いると、シリコンナノワイヤ3の表面を、良好に、つまり荒さが無く、保てるために好ましい。また、本工程はウエットエッチングを用いる以外に、酸化膜選択性のRIEドライエッチングを用いることもできる。その場合は、シリコンナノワイヤ3の下地の酸化膜が除去されることは無いため、充分エッチングが可能である。
【0050】
その後、メタル形成工程を行う。具体的には、ソース・ドレイン半導体領域に電気的に接続するように金属電極6の形成を行う。本実施形態においては、既にエッチングによりそれぞれのソース・ドレイン半導体領域のシリコンナノワイヤ3と反対側に、メタル形成領域を形成しているため、流路に面することなく、金属電極6を形成することができる。したがって、メタルの腐食および流路に面することによる短絡の問題のない、信頼性の高いセンサ素子を提供することができる。
【0051】
なお、本実施形態では、シリコンナノワイヤ3は、1つの流路に2つ形成したが、1つでもよいし3つ以上形成してもよい。
【0052】
以上説明したように、本実施形態では、溝部5(カバー層で覆われることにより流路が形成される部分)とシリコンナノワイヤ3が同時に形成されるため、シリコンナノワイヤの流路の所定位置への微細なレベルでの配置制御を、精度よく行うことが可能となる。また、径の揃ったシリコンナノワイヤを形成することができる。
【0053】
また、ボトムアップ製造技術ではナノワイヤは電極間を架橋し形成されるため、流路へ露出した場合、微細なナノワイヤは流れの影響で歪みや折れたりし、耐久性が弱い。しかし、本実施形態によるとシリコンナノワイヤ3の下地が絶縁膜22で支持されているため、耐久性は非常に高くなる。
【0054】
また、溝部5内のシリコンナノワイヤ3の高さ等の位置制御の自由度は、ボトムアップ製造技術ではナノワイヤを基板または電極に付着させることしかできないが、当該実施形態では自由に高さや流れ方向の位置等を設計することができ、また精度もより高くなる。そのため、信頼性の高いラベルフリーセンサを提供できる。
【0055】
一方、トップダウン製法(基板にナノワイヤを微細加工技術により形成する製法)によっても、PDMS等のカバー層により流路を形成し、人為的な張り合わせにてチップを作成していたため、流路とナノワイヤの位置制御を精度良く制御することが困難であった。しかし、本実施形態では、カバー層4には流路が形成されていないので、基板2との位置合わせ制度よく行う必要がないため、センサを簡易に作成することができる。
【0056】
<センサ素子の使用例>
(リガンドの固定化)
次に、上記センサ素子1のシリコンナノワイヤ3へのリガンドの固定化方法について説明する。まず、シランカップリング剤を流路に流し、シリコンナノワイヤ3の表面を修飾する。ここで、シランカップリング剤は末端に官能基として、COOH,NH2,OH,CHO,SH基が修飾されているものを用いるのが望ましい。次に、シリコンナノワイヤ3表面の官能基を活性化させる。その後、標的分子を特異的に認識して結合するリガンド溶液を導入し、シリコンナノワイヤ3表面にリガンドを共有結合により固定化する。リガンドとしては、例えば、抗体、ペプチド、DNA、RNA,アプタマー、リセプター、細胞等が挙げられる。リガンドの固定化後、リガンドと結合してない活性化した官能基を不活性化する。その後、バッファにより洗浄し、シリコンナノワイヤ3表面にリガンドを固定化する。リガンドの固定化方法で光架橋剤を用いることもできる。なお、上記固定化方法は単なる一例であり、上記に限定されることはない。
【0057】
(試料の測定)
次に、本実施形態のセンサ素子を用いた試料の測定について説明する。シリコンナノワイヤ3が形成された溝部5を有するSOI基板である基板2と、サンプル溶液や試薬溶液を注入する注入口と排出口が設けられたPDMS基板であるカバー層4とを、例えば、100W、酸素流量30sccm、60秒の条件で、酸素プラズマ処理を行い、基板2とカバー層4とを活性化させ、張り合わせる。基板2とカバー層4とを張り合わせるために必ずしも酸素プラズマ処理を行う必要はなく、PDMSの自然密着性を用いて、カバー層4を基板2に張り合わせることもできる。溝部5がカバー層4で覆われることにより、シリコンナノワイヤを備えた流路が形成される。
【0058】
標的分子を特異的に認識し結合するリガンドをシリコンナノワイヤ3の表面に固定化してから、シリコンナノワイヤ3の表面に標的分子が非特異的に吸着することを防ぐため、ブロッキングを行う。例えば、ウシ血清アルブミン(BSA;Bovine Serum Albumin)溶液を用いてブロッキングを行えばよい。ブロッキング剤としてはBSA以外に高分子やタンパク質を用いることもできる。ブロッキング後、標的分子が含まれるサンプル溶液(試料)を流路内に導入する。導入されたサンプル溶液中の標的分子はシリコンナノワイヤ3と結合し、ソース電極とドレイン電極間の電気的な特性の変化を引き起こす。またサンプル溶液導入後、シリコンナノワイヤの表面に固定化されたリガンドと結合してない標的分子を洗い流すため、緩衝液を注入するのもよい。ソース電極とドレイン電極間のインピーダンス(シリコンナノワイヤのインピーダンス)の変化は、サンプル溶液に含まれる標的分子の濃度に比例し変化する。よって、ソース電極とドレイン電極間のインピーダンスの変化を測定することで、サンプル溶液中の標的分子の検量が可能になる。
【0059】
(複数の標的分子の測定)
上記では、基板2に、シリコンナノワイヤ3が露出した1つの溝部5を形成したが、シリコンナノワイヤ3が露出した複数の溝部5を形成してもよい。これら複数の溝部5からなる流路にそれぞれに形成されたシリコンナノワイヤ3の表面に、異なる標的分子をそれぞれ特異的に認識する異なるリガンドを、上記リガンドの固定化方法により、それぞれ固定化する。複数の標的分子が含まれたサンプル溶液を、上記複数の流路に導入することで、同時に複数の標的分子を測定することが可能になる。この場合、異なるリガンドを固定させるために、複数の流路は、それぞれ独立した注入口を持ち、異なる注入口に繋がっているものとする。注入口とは、溶液を流路に注入させるための入り口である。
【0060】
また、異なる注入口に繋がった複数の流路にそれぞれの注入口から異なるリガンドを導入する。形成されたそれぞれのシリコンナノワイヤ3の表面に、ある標的分子を特異的に認識するリガンドを固定すると、異なるサンプル溶液について、それらに含まれる標的分子を、同時に測定することができる。また複数の標的分子を含むサンプル溶液中の複数の標的分子を同時に測定することもできる。
【0061】
〔実施の形態2〕
初めに、流路内のシリコンナノワイヤに、標的分子を特異的に認識して結合するリガンドを固定化し、標的分子を含むサンプル溶液を流路内に導入することで標的分子を測定する方法は、サンプル溶液中のイオンや標的分子がシリコンナノワイヤに非特異的に吸着することによる影響で、シリコンナノワイヤのインピーダンスの変化にバラつきが大きくなる。そのため、標的分子を特異的に認識して結合するリガンドを固定化しないシリコンナノワイヤを用いて、マイナスコントロールとして同じサンプル溶液を測定する必要がある。
【0062】
そこで、本実施形態では、図6に示すように、基板上に異なる2つの溝部5を形成し、それぞれの溝部5にシリコンナノワイヤ3を形成した差動型センサ素子について説明する。差動型センサ素子における、溝部5、およびシリコンナノワイヤ3の製造方法は、実施の形態1で説明した方法と同様である。また、溝部5をカバー層4で覆うことで流路が形成されることも実施の形態1と同様である。
【0063】
差動型センサ素子において、一方の溝部5からなる流路のシリコンナノワイヤ3には標的分子を特異的に認識して結合するリガンドを固定化し、検出部60として使用する。固定の方法は、実施形態1と同様である。他方の溝部5からなる流路のシリコンナノワイヤ3にはリガンドを固定化せず、参照検出部61とする。但し、参照検出部61に、BSA溶液を用いてシリコンナノワイヤ表面にブロッキングを行う。このように、一方の流路のシリコンナノワイヤ3にはリガンドを固定し、他方にはリガンドを固定しないので、2つの流路は、それぞれ異なる注入口と繋がっているものとする。なお、2つの流路は、シリコンナノワイヤ3の検出部を通過した下流(吸収部または排出側)では、図6に示すように1つになっていてもよい。
【0064】
標的分子を含むサンプル溶液を溝部5からなる流路に導入すると、サンプル溶液が二つの流路内に流れ、検出部60では、サンプル溶液中の標的分子がシリコンナノワイヤに固定化されているにリガンドと結合し、シリコンナノワイヤのインピーダンスの変化が起きる。他方、参照検出部61では、リガンドが固定されていないため、標的分子との特異的な結合によるシリコンナノワイヤのインピーダンスの変化は起きない。よって、検出部60のインピーダンス変化量から参照検出部61のインピーダンス変化量を差し引くことで、より正確な標的分子の検出が可能になる。
【0065】
従来、ボトムアップの製造技術では、差動型センサは、ナノワイヤの特性バラツキが大きく実現が困難だった。また、トップダウン製法においても、カバー層に流路を形成していたため、特性バラツキが大きく、差動型センサの実現は困難だった。
【0066】
しかし、本実施形態では、実施の形態1と同様に、シリコンナノワイヤと流路になる溝部とを基板に同時に形成することで、大きさの揃ったシリコンナノワイヤの配置を精度よく行うことができるので、差動型センサを実現可能である。
【0067】
〔実施の形態3〕
本実施形態では、実施の形態1で説明したセンサ素子を用いた分析チップについて、図5を用いて説明する。
【0068】
本実施形態のマイクロ分析チップは、図5(a)にその正面図を示すカバー層40と、図5(b)にその正面図を示す分析用基板20とが、張り合わされて成っている。
【0069】
カバー層40は、透明性および加工性が高いものが好ましく、ガラス、石英、高分子樹脂(熱硬化性樹脂、熱可塑性樹脂など)、フィルム等を用いることができる。なかでも、シリコン系樹脂、アクリル系樹脂、スチレン系樹脂等であるのが好ましく、本実施形態では、シリコン系樹脂であるPDMSを用いる。カバー層40には、分析用基板20の液溜51に液体を注入できるように、注入口50が貫通して設けられている。
【0070】
注入口50の大きさは特に限定されず、毛細管力が働かない程度の大きさである場合、注入口50が疎水性を有していても液溜51に液体を注入することができる。注入口50が、毛細管力が働く程度の大きさである場合には、注入口50に親水性を施すことによって、毛細管力により液体を液溜51に注入することができる。
【0071】
また、注入口50は大気開放されていればよい。なお、注入口50にあらかじめ液体を充填したカートリッジを接続する方法で液体を注入することもできる。その場合であっても、液体注入時にはカートリッジは液体を充分に排出できるよう、注入口50との接続口またはそれ以外の部分で大気開放された構成を有するとよい。
【0072】
分析用基板20は、シリコンナノワイヤや電極等を形成可能な材料として、SOI基板を用いる。分析用基板20には、シリコンナノワイヤ3を有する検出部60、液溜51、を全て同一基板上に、同時に形成できる。分析用基板20には、液溜51、検出部60、吸収部54が上面を開口して設けられている。吸収部54には開口された空間から吸収体を充填される。そして、これら開口部分はカバー層40が張り合わされることで、上面を封じらされ、空間が形成される。また、分析用基板20には、外部接続端子55が設けられている。
【0073】
液溜51は、注入口50から注入された溶液を溜めるものであり、毛細管力が働く程度の大きさを有するのが好ましい。この場合、高さ方向が充分小さく設計されていればよい。液溜51が溶液でいっぱいになると、検出部60に向かって流れる。
【0074】
検出部60には、実施の形態1で説明したセンサ素子1が用いられる。ここで、センサ素子1の基板2は、分析基板20の一部であり、分析基板20と一体になっており、また、センサ素子のカバー層4は、カバー層40の一部であり、カバー層40と一体となっている。また、溝部5は直線状となっている。検出部60は被検出物質(標的分子)を直接的に検出することができる。被検出物質を直接検出できる構成であるため、例えば抗原抗体反応を別途行うような反応部を有さない構成とすることができる。
【0075】
吸収部54は、液体を吸収する物質である吸収体で充填されており、吸収体は、高分子吸収体、多孔性物質、親水性メッシュ、海綿体、綿、濾紙等、その他毛細管力を利用し液体を吸収する物質であれば、どのような物質でも構わない。吸収部54で液体を効率的に吸収することができるよう、吸収部54と検出部60との接続部またはそれ以外の部分で、大気開放されている(大気と接している状態)のがよい。
【0076】
外部接続端子55は、検出部60やその他電気制御される部材への電気的制御信号の入力や、検出部60からの検出信号の出力を行うための導電性端子である。例えば、金電極をもちると、検出電極などと併用でき工程が簡易化されるので好ましい。その他、白金、アルミニウムや、銅などの材料を含んだ導電性材料を用いて形成してもよい。
【0077】
図5に示すように、シリコンナノワイヤを有する検出部60と外部接続端子55が電気的に接続されている。また、液溜等にバルブが設けられこれを電気的に制御する場合にも、外部接続端子55と接続させる。外部接続端子55は、図示しない外部の制御回路や集積回路と接続される。この構成により、マイクロ分析チップ自体には電源やICなどの制御回路を設けなくてよく、そのためコストパフォーマンスに優れたチップを提供することができる。
【0078】
本実施形態では1つの注入口を有する場合を説明したが、注入口は適宜2つ以上にしてそれにあわせて液溜を形成してもよい。また、液溜からの溶液の流れはバルブ等で制御するようになってもよい。これらは、公知の方法で形成することができる。
【0079】
以上のように、本実施形態の分析チップでは、分析用基板20はSOI基板からなり、検出用シリコンナノワイヤ、それが配置される流路になる溝部、等を全て同一基板上に、同時に形成できる。よって、配置の制御性がナノレベルで可能となり、ボトムアップで形成した場合と比較して非常に精度の高いシリコンナノワイヤを用いたセンサを有する分析チップの形成が可能である。また、本実施形態の分析チップでは、シリコンナノワイヤ3を用いたラベルフリーの検出を行うことができる。
【0080】
〔実施の形態4〕
次に、本発明に係る分析素子を用いたマイクロ分析装置の一実施形態である、ハンディ型マイクロ分析装置について、図7を用いて説明する。
【0081】
図7は、本実施形態のマイクロ分析装置(分析装置)100の構成を示す図である。マイクロ分析装置100は、携帯可能なハンディ型マイクロ分析装置である。
【0082】
ハンディ機器2301の下部に、上記実施の形態3で説明した分析チップであるマイクロ分析チップ(分析チップ)2302の接続口であるチップ接続口2303が設けられている。マイクロ分析チップ2302の外部接続端子2306と電気的に接続できる外部入出力端子(図示せず)が、ハンディ機器2301内のチップ接続口2303の奥に設けられており、チップ接続口2303にマイクロ分析チップ2302を挿入することにより、ハンディ機器2301内の外部入出力端子とマイクロ分析チップ2302の外部接続端子2306とが電気的に接続される。また、ハンディ機器には、被検出物質の測定結果を表示することができる表示部2304、および、測定の開始、停止や、測定パラメータを特定するための様々なデータの入力などをすることのできる入力部2305が設けられる。その他、ハンディ機器には、図示しないが、データを処理することのできるCPUや入力情報および出力情報を処理するI/O論理回路などの情報処理システムが構築されている。
マイクロ分析チップをハンディ機器に接続し、各種データを入力し、測定開始ボタンを押すことにより、測定開始状態となり、試料(サンプル)を注入口2307から注入することで測定できる状態となる。
【0083】
測定者がサンプルを注入口2307に注入すると、マイクロ分析チップ2302内に設けられる流路内を毛細管現象により流路の末端部に設けられる吸収体2308に向かってサンプルが流入する。そして、シリコンナノワイヤにより構成される検出部2309において検出された被検出物質の量に応じた電気信号をマイクロ分析チップの外部接続端子2306から出力する。ハンディ機器における外部入出力端子より入力された電気信号を分析することにより、被検出物質の量または種類などを特定することができる。
【0084】
マイクロ分析チップにはサンプルの流路内への流入を停止させるバルブを設けることができる。そうすることにより、測定者がサンプルをあらかじめ注入口から注入しておくことができる。そして、マイクロ分析チップをハンディ機器に接続し、測定開始することにより、ハンディ機器より外部入出力端子およびマイクロ分析チップの外部接続端子2306を介してマイクロ分析チップのバルブに一定の電気信号を与える。それによりバルブを開状態にして、サンプルの流路内への流入を開始する。したがって、より簡易に測定をすることができる。
【0085】
ハンディ機器2301は、例えば、は携帯電話やPDAなどの携帯電子機器とすることができる。ここでは携帯電話を例に挙げて説明する。携帯電話で、マイクロ分析チップ2302の電気的な変化を分析可能な回路、及びデータ処理分析ソフトを起動させることでハンディ機器として動作させることができる。すなわち、専用回路とソフトにより携帯電話をハンディ機器として利用する。すなわち、専用ソフトにより仮想的に携帯電話をハンディ機器として利用する。マイクロ分析チップ2302の外部接続端子2306は、携帯電話の外部入出力端子に接続可能なように構成するとよい。
【0086】
マイクロ分析チップ2302を携帯電話に接続し、各種データを携帯電話のボタン等により入力し、測定開始ボタンとして設定されたボタンを押すことにより、測定開始状態となり、測定者がサンプルを注入口2307に注入し、結果として検出部において検出された被検出物質の量に応じた電気信号をマイクロ分析チップの外部接続端子2306から出力し、携帯電話においてマイクロ分析チップの外部接続端子2306と電気的に接続する外部入出力端子より入力された電気信号を処理することにより、被検出物質の量又は種類などを特定することができる。そして測定結果を携帯電話の表示画面に表示する。また、マイクロ分析チップ2302にバルブを設けている場合には、あらかじめマイクロ分析チップ2302に準備されておりバルブで流入を停止されていた試薬や試料(サンプル)などのバルブ流入を携帯電話の測定開始ボタンが押されることにより、順次開始し、結果として検出部において検出された被検出物質の量に応じた電気信号をマイクロ分析チップの外部接続端子2306から出力し、携帯電話においてマイクロ分析チップ2302の外部接続端子2306と電気的に接続する外部入出力端子より入力された電気信号を処理することにより、被検出物質の量又は種類などを特定することができる。そして測定結果を携帯電話の表示画面に表示する。
【0087】
ハンディ機器2301を携帯電話とすることにより、コストパフォーマンスに優れたマイクロ分析装置を提供することができる。またユーザーは測定が必要な時にどこでも測定が可能になる。携帯電話の保有率が上昇し、測定者(ユーザー)に充分携帯電話が普及するようになると多くのユーザーが便益を享受することができる。すなわち、携帯電話保有者のハンディ機器のコストは不要となる。ただし、代わりに携帯電話で動作させることのできる電気的な回路やデータ処理分析ソフトのコストが必要となるが、測定者側では、データ処理分析ソフトをネットワーク上でダウンロードすることが可能であり、携帯電話の高機能化により電気的回路をあらかじめ搭載することができる。ユーザーは低コストで携帯電話をハンディ機器として利用することが可能となる。以上より、携帯電話保有者は容易にハンディ機器2301を準備でき、ハンディ機器を準備できた後は、マイクロ分析チップ2302のコストのみで試料(サンプル)の分析が可能となる。
【0088】
〔実施の形態5〕
さらに、本発明に係る分析素子を用いたマイクロ分析装置の別の実施形態である、独立型マイクロ分析装置について、図8を用いて説明する。
【0089】
図8は、本実施形態のマイクロ分析装置(分析装置)200の構成を示す図である。このマイクロ分析装置200は独立して試料(サンプル)の採取、検出データの分析、および出力が可能な独立型マイクロ分析装置である。マイクロ分析装置200は図8に示すように、サンプル採取部2401、液体流路部2402、駆動分析処理部2403、入出力論理処理部2404および出入力部2405を有する。それぞれの部分が、順次積層されるか、または組み合わされることによりマイクロ分析装置200となる。
【0090】
サンプル採取部2401には、毛細管の貫通している針が設けられており、被検体や試料体に針を刺す又は導入することにより、血液や試料等を採取する。なお、サンプル採取部2401には、直接、針が設けられていてもよいし、針を固定する穴が設けられていてもよい。
【0091】
針は、低侵襲のマイクロプローブであれば、被検体に針を刺し血液等の体液を抽出する際に痛みが緩和されるため好ましい。また、針の代わりに非侵襲型の皮膚表面の汗口腔内の唾液、涙や尿等を採取する吸収体等であってもよい。
【0092】
次に液体流路部2402は、上記実施の形態3にて説明したマイクロ分析チップの流路構造が形成されている。サンプル採取部2401の毛細管は液体流路部2042の液溜2414と接続されており、針に設けられている毛細管の毛管現象によりサンプルが液溜2414に流入するように構成される。
【0093】
液体流路部2042は、複数の流路構造を形成することも可能である。また、検出部60を、実施の形態2で示したような差動型の構成とすることもできる。さらに、検出部60を複数形成することも可能である。図8では、吸収体を充填した吸収部54が左右の流路構造で分離しているが、左右の流路構造で1つの吸収部54を共用することもできる。それによりスペースの削減が可能となる。
【0094】
駆動分析処理部2403には、CPU24031、メモリ、およびバッテリー24032が設けられており、液体流路部2042の検出部や、後で説明するI/O論理回路などと接続され、各種測定に対応したバルブコントロールや、測定データの処理や、出入力部の制御等が可能となっている。測定開始されると、バルブ(図示なし)で流入を停止されていた試薬や試料(サンプル)などのバルブ流入を順次開始し、結果として検出部60において検出された被検出物質の量に応じた電気信号をCPU24031にて処理することにより、被検出物質の量または種類などを特定することができる。そして、次に説明するCPU24031と接続されたI/O論理回路24041にデータを出力し、出入力部2405にて測定結果を表示することができる。
【0095】
入出力論理処理部2404は、CPU24031に接続されたI/O論理回路24041を有している。I/O論理回路24041に接続する電気接続線は、出入力部2405の各ボタン24052又は表示部24051等と接続されており、CPU24031と協働し、I/Oデータを適切に処理することができる。すなわち、I/O論理回路24041はCPU24031と協働し、出入力部2405で入力された各種データおよび測定開始信号が入力されると、液体流路部2402で検出された試料の非検出物質に応じて出力される電気信号を処理し、被検出物質の量や種類を特定し、出入力部2405の表示部24051に当該情報を表示する。
【0096】
出入力部2405には、各種データ入力用ボタン24052及び表示部24051が設けられている。
【0097】
表示部24051には、液晶表示モジュールまたは有機EL表示モジュール等を用いることができる。表示部24051は、駆動ドライバー回路(図示なし)をI/O論理回路とCPUが協働し駆動することで表示動作を行なうことが可能である。表示は数値を表示する形式や、グラフを用いて経時変化と共に表示することもできる。また、陽性・陰性等といった形式で表示することもできる。
【0098】
さらに、出入力部2045には、図示しないが、外部との入出力を処理する端子、または、無線送受信機を設けることができる。そうすることにより、パソコンやPDA端末などと接続でき測定データの加工、分析及び保存などができ、さらに、ネットワーク接続もできるため、双方向の情報のやり取りを行うことも可能となる。このように、双方向の情報のやり取りを行なうことにより、測定者の測定結果により得られる健康に関する情報を病院や健康管理センターなどとネットワーク接続し、双方向の情報提供ができるようになるため、高度な医療に直結したアドバイスや診断・治療を測定者は享受でき、医療提供側では豊富な健康情報からの適格な診断・治療が可能となる。
【0099】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【産業上の利用可能性】
【0100】
本発明は、ナノ構造体を用いて各種標的を検出しこれら標的の定性や定量を行う、バイオセンサや化学センサ等の標的検出装置に利用可能である。
【図面の簡単な説明】
【0101】
【図1】本発明の一実施形態のセンサ素子におけるシリコンナノワイヤ付近を拡大した斜視図である。
【図2】(a)は、上記センサ素子の上面図、(b)は、(a)のセンサ素子のAA’断面図、(c)は、(a)のセンサ素子のBB’断面図である。
【図3】(a1)〜(d1)は、図2(a)のセンサ素子のAA’断面を製造工程順に説明する図であり、(a2)〜(d2)は、図2(a)のセンサ素子のBB’断面を製造工程順に説明する図である。
【図4】(a1)〜(f1)は、図2(a)のセンサ素子のAA’断面を製造工程順に説明する図であり、(a2)〜(f2)は、図2(a)のセンサ素子のBB’断面を製造工程順に説明する図である。
【図5】(a),(b)は、センサ素子を用いた分析チップの構成図である。
【図6】本発明の他の実施形態の差動型センサ素子を示す図である。
【図7】本発明の他の実施形態のハンディ型マイクロ分析装置の構成図である。
【図8】本発明の他の実施形態の独立型マイクロ分析装置の構成図である。
【符号の説明】
【0102】
1 センサ素子
2 基板
3 シリコンナノワイヤ(ナノ構造体)
4 カバー層
5 溝部
20 基板
40 カバー層
50 注入口
51 液溜
54 吸収部
55 外部接続端子
60 検出部
61 参照検出部
100,200 マイクロ分析装置(分析装置)
2302 マイクロ分析チップ(分析チップ)

【特許請求の範囲】
【請求項1】
溝部が設けられた面を有する基板と、
少なくとも一部を上記溝部において露出し、かつ、上記基板と一体に構成されたナノ構造体と、
上記記ナノ構造体と同質の材料で構成され、上記ナノ構造体と接続し、かつ、上記溝部の両側壁のそれぞれ一部を成すように上記基板に形成されたナノ構造体接続領域と、
を有していることを特徴とするセンサ素子。
【請求項2】
上記ナノ構造体および上記基板は、半導体からなることを特徴とする請求項1に記載のセンサ素子。
【請求項3】
上記ナノ構造体および上記基板は、シリコンからなることを特徴とする請求項1または2に記載のセンサ素子。
【請求項4】
上記ナノ構造体は、上記溝部の両側面に渡って配置されることを特徴とする請求項1から3の何れか1項に記載のセンサ素子。
【請求項5】
上記ナノ構造体は、上記溝部の延伸方向に対して垂直に配置されることを特徴とする請求項1から4の何れか1項に記載のセンサ素子。
【請求項6】
上記溝部に、上記ナノ構造体を複数形成したことを特徴とする請求項1から5の何れか1項に記載のセンサ素子。
【請求項7】
上記ナノ構造体は上記溝部の底面より絶縁体を介して配置されていることを特徴とする請求項1から6の何れか1項に記載のセンサ素子。
【請求項8】
上記ナノ構造体が設けられた上記溝部を二つ有することを特徴とする請求項1から7の何れか1項に記載のセンサ素子。
【請求項9】
上記請求項1〜8の何れか1項に記載のセンサ素子を有することを特徴とする分析チップ。
【請求項10】
請求項8に記載のセンサ素子を有し、上記二つの溝部のうち、一方の溝部の上記ナノ構造体にはリガンドを修飾して検出部として使用し、他方の溝部のナノ構造体にはリガンドを固定せずに参照検出部として使用する、ことを特徴とする差動型分析チップ。
【請求項11】
請求項9に記載の分析チップを有し、上記ナノ構造体にリガンドを固定し、上記ナノ構造体の電気的特性の変化を測定することで標的分子を検出することを特徴とする分析装置。
【請求項12】
請求項10に記載の差動型分析チップを有することを特徴とする分析装置。
【請求項13】
溝部が設けられた面を有する基板と、上記基板と一体に構成されたナノ構造体と、上記記ナノ構造体と同質の材料で構成され、上記ナノ構造体と接続し、かつ、上記溝部の両側壁のそれぞれ一部を成すように上記基板に形成されたナノ構造体接続領域とを有する、センサ素子の製造方法であって、
上記溝部、上記ナノ構造体、および上記ナノ構造体接続領域とを同時に、かつ、上記ナノ構造体の少なくとも一部が上記溝部において露出するように形成するステップを含むことを特徴とするセンサ素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2009−198467(P2009−198467A)
【公開日】平成21年9月3日(2009.9.3)
【国際特許分類】
【出願番号】特願2008−43606(P2008−43606)
【出願日】平成20年2月25日(2008.2.25)
【出願人】(000005049)シャープ株式会社 (33,933)
【Fターム(参考)】