説明

ブロック共重合体、その組成物及びそれよりなるフィルム

【課題】良好な低温収縮性を保持しつつ、自然収縮性の少ない熱収縮性(多層)フィルムを与えるブロック共重合体及びその共重合体組成物と、該ブロック共重合体を含有する熱収縮性(多層)フィルムを提供する。
【解決手段】動的粘弾性測定で得られる損失正接値の温度に対する関係が特定の条件を満たすことを特徴とするビニル芳香族炭化水素と共役ジエンのブロック共重合体、及びその共重合体組成物を必須成分とする組成物を用いることにより、良好な低温収縮性を保持しつつ、自然収縮性の少なく、臭気も少ない熱収縮性(多層)フィルムを得ることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は透明性、耐衝撃性が良好で、さらにシート、フィルムへの製膜性に優れたビニル芳香族炭化水素と共役ジエンのブロック共重合体及びそれを含む樹脂組成物に関する。特に熱収縮性フィルムとして用いた場合に良好な収縮性能と、その熱収縮性フィルムが収縮開始温度以下の温度で僅かに収縮する(以後「自然収縮」という)性質が従来より少なく、自然収縮が原因となって引き起こされる印刷のズレや歪み、或いは収縮時のしわの発生がより抑えられた熱収縮性フィルムの製造原料として有用なビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体、及びそれを主体とする重合体組成物、及びこれらのブロック共重合体及び/又は他の重合体組成物を主体とする熱収縮性(多層)フィルムに関する。
【0002】
なお、本発明において、厚さ0.2mm以下の膜状体をフィルムと呼び、厚さ0.2mmを超えるものをシートと呼ぶことにする。
【背景技術】
【0003】
リビングアニオン重合により、有機溶媒中でアルキルリチウムを開始剤としてビニル芳香族炭化水素と共役ジエンをブロック共重合させる場合において、ビニル芳香族炭化水素と共役ジエンの重量比あるいは添加方法を変えるなどの方法によって共重合体の構造を多様化でき、種々の物性を有するブロック共重合体が得られることが知られている。ブロック共重合体は、一般に優れた耐衝撃性と透明性を有する重合体で、該ブロック共重合体中の共役ジエンの含有量が多いと熱可塑性エラストマーとなるが、逆にビニル芳香族炭化水素の含有量が多くなると熱可塑性プラスチックとしての特性を示す。この優れた特性を生かす種々の製造方法が特公昭36−19286号公報、特公昭48−4106号公報等に公開されている。
【0004】
これらの方法により製造されるビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体は、高度な透明性を持ち、成形加工性も良好であることから特公昭63−49702号公報で開示されているように、この樹脂を原材料として、室温では原形を保持しながら、収縮開始温度以上では短時間に収縮する特性を持つ熱収縮フィルムを得ることができる。この熱収縮性フィルムは、樹脂の軟化点以上の温度で板状または筒状に押し出した樹脂を一軸、或いは二軸方向に延伸してフィルム状となしたのち、そのまま室温まで冷却する成形加工操作を施すことにより製造されている。延伸を含む一連の成形加工操作を経ることにより、フィルムを構成する個々の分子は特定方向に配向されたまま固定されて内部応力が残留することになるが、熱収縮フィルムは、前述の残留応力が再加熱により緩和されて起こる収縮現象を利用したフィルムである。
【0005】
また、これらの優れた特性に加え多種のビニル芳香族炭化水素重合体との相溶性に優れるため補強用としても用いられ、例えば、特公昭45−19388号公報、特公昭47−43618号公報、特公昭51−27701号公報等にこのことが開示されている。しかし、これらのブロック共重合体及び組成物は、比較的透明で、耐衝撃性が良好であり、その延伸フィルムは熱収縮性を示すため、各種の熱収縮性包装材や、商品名などを印刷して飲料ボトルのラベル材などに好適に採用されてきた。特にシュリンクラベル材に関しては、近年ペットボトル飲料の需要が増加してきた結果、ラベル装着工程のラインスピードも年々速められ、その装着や収縮にかかる時間の短縮が図られていることから、フィルムの加温に要する時間が短い、即ち低温から収縮するフィルムが望まれてきている。しかしながら、従来のシュリンクラベル用フィルムは熱収縮開始温度が高く、収縮仕上がり性を良くするためには比較的高温で収縮させる必要があった。
【0006】
また、従来の方法で単に低温から収縮するように分子構造や組成物処方を設計すると、その熱収縮フィルムが保管中に収縮(いわゆる自然収縮)してしまい、印刷ズレや装着不良の原因とされてきた。このように従来技術のフィルムにおいては低温収縮性と耐自然収縮性、及び収縮後の外観とがバランスされた材料が得られておらず、さらに、フィルム表面に肌荒れが生じて外観を損ねることもあった。特開昭59−221348号公報や特許第3026497号公報では、スチレン−ブタジエンブロック共重合体の自然収縮性改良及び低温収縮性改良の観点からスチレン−アクリル酸エステル系樹脂を配合し、多層フィルムとする検討が行われているが、近年の低温収縮性のニーズや臭気等の観点から満足できるものではなく、またフィルムの延伸時の条件幅が狭く、未だ不十分であった。
【0007】
本発明は、熱収縮性フィルム等の用途において、近年の低温収縮性、耐自然収縮性、臭気低減等のニーズを満たし、しかも外観に優れたフィルムを製膜することが可能な共重合体及びその組成物と、当該共重合体及びその組成物よりなる熱収縮性フィルム、熱収縮性多層フィルムの提供を目的とする。
【発明の開示】
【0008】
このような状況において、本発明者らは上記の課題を解決するにあたり、臭気が少なく、低温収縮性が良好であり、自然収縮が少なく、且つ外観の優れた延伸フィルムの製膜が可能な熱収縮性フィルムの原材料として好適なブロック共重合体及びそれよりなる組成物を詳細かつ鋭意検討した。その結果、動的粘弾性特性、特に、軟化していく状態を示す損失正接値の温度依存性が一定の条件を満たすブロック共重合体を配合することにより、上記の課題を解決できることを見い出し、本発明に到ったものである。
【0009】
本発明は、下記の特徴を有する要旨からなるものである。
1.有機溶剤中、有機リチウム化合物を重合開始剤とするアニオン重合において、ビニル芳香族炭化水素及び/または共役ジエンからなるモノマーを混合して、または別々に、そしてこれらのモノマーを連続的に反応系へモノマー供給速度が重合反応速度より実質的に遅くなるように添加してランダム共重合セグメントを重合する工程を含む製造方法によって得られる、動的粘弾性測定で得られる損失正接値の温度に対する関係が下記の条件を満足させることを特徴とするビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(A)。
(1)65〜100℃の温度範囲に一つの極大値をもち、
(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、
(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である。
2.ビニル芳香族炭化水素モノマーのモル添加速度(モル/分)/共役ジエンモノマーのモル添加速度(モル/分)が、3.0以上11.7以下に保持し、上記のモノマーが連続的に反応系に供給される得られる上記1に記載のブロック共重合体(A)。
3.動的粘弾性測定で得られる損失正接値の温度に対する関係において、65〜100℃の温度範囲の損失正接値の極大値が0.5〜4.0の範囲にあり、30℃における損失正接値が0.01以上、0.4未満の範囲にあることを特徴とする上記1に記載のブロック共重合体(A)。
4.分子構造が下記の一般式で示され、その重量平均分子量が100,000〜300,000で、かつ(a)〜(c)の条件を満たす上記1に記載のブロック共重合体(A)。
X−(Y−X)n ・・・・・ nは1以上の整数。
(a)Xは1種、または2種以上のビニル芳香族炭化水素からなる連鎖を有するブロック。
(b)Yは重量平均分子量40,000〜250,000のそれぞれ1種、または2種以上の共役ジエンとビニル芳香族炭化水素のランダム共重合体セグメントを少なくとも1個含むブロック。
(c)ブロック共重合体をオゾン分解処理することにより得られるビニル芳香族炭化水素からなる重合体混合物の分子量分布を測定したときに、最大ピークを示す重合体成分の重量平均分子量(Mw’)と処理前のブロック共重合体の重量平均分子量(Mw)との関係が0.1≦Mw’/Mw≦0.4。
5.上記1に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含むことを特徴とするブロック共重合体組成物。
6.上記1に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含む組成物で、その組成物の動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に少なくとも一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である条件を満足させることを特徴とするブロック共重合体組成物。
7.上記1に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含み、動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に少なくとも一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である条件を満足させることを特徴とするブロック共重合体組成物。
8.上記1〜7のいずれかに記載のブロック共重合体又はブロック共重合体組成物を用いたフィルムまたはシート。
9.上記1〜7のいずれかに記載のブロック共重合体またはブロック共重合体組成物を用いた熱収縮性フィルム。
10.上記8に記載のフィルムまたはシートを延伸して得られることを特徴とする熱収縮性フィルム。
11.上記1〜7のいずれかに記載のいずれかのブロック共重合体又はブロック共重合体組成物を用いた層を少なくとも1層有する多層フィルムまたは多層シート。
12.上記1〜7のいずれかに記載のいずれかのブロック共重合体またはブロック共重合体組成物を少なくとも1層に用いた熱収縮性多層フィルム。
13.上記11に記載の多層フィルムまたは多層シートを延伸して得られることを特徴とする熱収縮性多層フィルム。
【0010】
まず、最初に、ブロック共重合体(A)、または異なるブロック共重合体(A)を少なくとも2種以上含有する組成物から説明する。
【0011】
本発明のブロック共重合体(A)は、有機溶剤中、有機リチウム化合物を重合開始剤とするアニオン重合において、ビニル芳香族炭化水素及び/または共役ジエンからなるモノマーを混合して、または別々に、そしてこれらのモノマーを連続的に反応系へモノマー供給速度が重合反応速度より実質的に遅くなるように添加してランダム共重合セグメントを重合する工程を含む製造方法によって得られる、動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下であることを特徴とするビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(A)である。
【0012】
またそのブロック共重合体(A)の動的粘弾性測定で得られる損失正接値の温度に対する関係において、65〜100℃の温度範囲の損失正接値の極大値が、好ましくは0.5〜4.0の範囲にあり、30℃における損失正接値が0.01以上、0.4未満の範囲にあることである。
【0013】
ブロック共重合体(A)のゲルパーミエ−ションクロマトグラフィー(GPC)測定における重量平均分子量(Mw)は、好ましくは100,000≦Mw≦300,000の範囲、更に好ましくは120,000≦Mw≦250,000、最も好ましくは150,000≦Mw1≦220,000である。Mwが100,000未満であると得られた共重合体の強度が実用に耐えるものではない場合もあり、300,000を越えるとシートやフィルムに加工する際に多大な動力を要し、良好な製品を得ることが幾分困難となる。
【0014】
更にそのブロック共重合体(A)の分子構造が下記の一般式で示され、その重量平均分子量が100,000〜300,000で、かつ(a)〜(c)の条件を満たすことが好ましい。
X−(Y−X)n ・・・・・ nは1以上の整数。
(a)Xは1種、または2種以上のビニル芳香族炭化水素からなる連鎖を有するブロック。
(b)Yは重量平均分子量40,000〜250,000のそれぞれ1種、または2種以上の共役ジエンとビニル芳香族のランダム共重合体セグメントを少なくとも1個含むブロック。
(c)ブロック共重合体をオゾン分解処理することにより得られるビニル芳香族炭化水素からなる重合体混合物の分子量分布を測定したときに、最大ピークを示す重合体成分の重量平均分子量(Mw’)と処理前のブロック共重合体の重量平均分子量(Mw)との関係が0.1≦Mw’/Mw≦0.4。
【0015】
ここでブロックXは、ビニル芳香族炭化水素の1種又は2種以上を重合することによって得られるが、単一のビニル芳香族炭化水素からなる重合体ブロックでも複数のビニル芳香族炭化水素からなる共重合体ブロックであってもよい。さらに複数個あるブロックXの構造や組成、分子量は互いに同一であっても、異なっていてもよい。なお、このブロックの全体に占める重量割合に制限はないが、後にフィルムなどの成形体としての強度を発現させるためには2重量%以上であることが望ましい。
【0016】
ブロックYは、共役ジエンとビニル芳香族炭化水素より、それぞれ1種又は2種以上を重合することによって得られる。さらにブロックYについても、分子構造式X−(Y−X)nで示されるnが1以上で、それが複数個存在する場合にはブロックXと同様にそれらの構造や組成、分子量は互いに同一であっても、異なっていてもよい。
【0017】
共重合体ブロックYは、重量平均分子量40,000〜250,000のビニル芳香族と共役ジエンのランダム共重合体セグメントを少なくとも1個含む必要がある。40,000以下では良好な熱収縮性と自然収縮性のバランスが得られず、250,000以上ではフィルム製膜性が低下してしまい好ましくない。なお、ランダム共重合体セグメントの重量平均分子量は、重合工程において、各モノマーを添加し、完全に重合させる工程の前後で重合反応容器より共重合体溶液を少量抜き出して、両者をゲルパーミエーションクロマトグラフィー法による分子量測定(以下GPC測定と記載)し、重量平均分子量を比較することで求めることができる。
【0018】
また、本発明のブロック共重合体をオゾン分解して得られるビニル芳香族炭化水素重合体成分のGPC測定において、分子量分布曲線の最大のピークに対応する重量平均分子量(Mw’)と、ブロック共重合体全体の重量平均分子量(Mw)の間に0.1≦Mw’/Mw≦0.4の関係が成立する。すなわち、ビニル芳香族炭化水素重合体成分のうち最大成分の重量平均分子量とブロック共重合体全体の重量平均分子量との比が0.1以上0.4以下、好ましくは0.2以上0.35以下である。0.1未満ではフィルム製膜性、0.4を超えると熱収縮性がそれぞれ低下してしまい本発明の効果が得られにくい。
【0019】
本発明のX−(Y−X)nの分子構造において、両末端のビニル芳香族炭化水素からなるブロックXは分子間の物理的架橋点としての役割を果たし、樹脂成形体としての強度発現の点で好ましい。また中間のブロックYはビニル芳香族炭化水素と共役ジエンとからなるランダム共重合体セグメントを少なくとも1以上含むことを特徴としている。このセグメントの存在により熱収縮性と耐自然収縮性とバランスさせることができる。さらにフィルムの”伸び”性や柔軟性をさらに付与させる目的で、Yに共役ジエンからなる連鎖をさらに加えてもよい。
【0020】
なお、ブロックY中の共役ジエン重合体ブロックの重量平均分子量は、重合工程において、共役ジエンモノマーを添加し、完全に重合させる工程の前後で重合反応容器より共重合体溶液を少量抜き出して、両者をGPC測定し、重量平均分子量を比較することで求めることができる。
【0021】
本発明のブロック共重合体を少なくとも2種以上含む組成物は、異なるブロック共重合体(A)を少なくとも2種以上含むブロック共重合体組成物である。
【0022】
そして好ましくは、その組成物の動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である条件を満足させるブロック共重合体組成物である。
【発明を実施するための最良の形態】
【0023】
以下に本発明を更に補足し、かつ詳細に説明する。
本発明のビニル芳香族炭化水素と共役ジエンのブロック共重合体(A)の化学的構造はビニル芳香族炭化水素と共役ジエンとがランダムに結合しているのが良い。また、加工時の熱安定性が良好になることから、少なくとも片末端が、特に両末端がビニル芳香族連鎖であるブロック共重合体が好ましい。
【0024】
また本発明の動的粘弾性測定において得られる損失正接値は、被検材料に正弦的に繰り返す引張方向の応力、及び歪みを与えた時に、その応答として得られる損失弾性率の貯蔵弾性率に対する比の値として表され、それは被検材料中の分子の束縛状態を示しており、損失正接値が大きくなるほど分子の束縛が緩くなり熱収縮フィルムがその温度において収縮しやすくなることを示している。なお、この動的粘弾性により得られる値は、測定方法や条件により変化するが、本発明においては、厚さ0.1〜0.5mmのシートを、測定温度範囲:室温〜120℃、設定昇温速度:4℃/分、測定周波数:1Hzの条件で固体粘弾性測定したものである。
【0025】
本発明のビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(A)において使用されるビニル芳香族炭化水素としては、スチレン、o−メチルスチレン、p−メチルスチレン、p−tert−ブチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、α−メチルスチレン、ビニルナフタレン、ビニルアントラセンなどがあるが、特に好ましくはスチレンが挙げられる。
【0026】
また、共役ジエンとしては1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエンなどであるが、特に好ましくは1,3−ブタジエン、イソプレンが挙げられる。
【0027】
また本発明におけるブロック共重合体(A)のビニル芳香族炭化水素と共役ジエンの組成割合に特に制限はないが、共役ジエンの重量割合は、好ましくは5〜40%であり、さらに好ましくは7〜30%の範囲である。
【0028】
ブロック共重合体(A)の分子量にも特に制限はないが、例えばゲルパーミエーションクロマトグラフィー(ポリスチレン換算法)による重量平均分子量で、好ましくは100,000以上、300,000以下である。重量平均分子量が10,000未満であると得られた共重合体の強度が不足し、300,000を越えるとシートやフィルムに加工する際に多大な動力を要し、良好な製品が得られにくい傾向が見られる。
【0029】
本発明のブロック共重合体(A)は、有機溶媒中で有機リチウム化合物を重合開始剤とし、前記に説明したビニル芳香族炭化水素および共役ジエンの中から、それぞれ1種または2種以上を選びリビングアニオン重合させることにより製造できる。
【0030】
このリビングアニオン重合では、重合活性末端が存在する限り原料モノマーとしたビニル芳香族炭化水素、および共役ジエンの重合が継続し、該モノマーの残留を低く抑えることができる。また連鎖移動反応による重合途中での反応活性末端の失活や新規生成しにくいという重合反応上の特徴を持つ。そのため本発明における共重合体の分子量や分子構造は、モノマー、重合開始剤、ランダム化剤、活性末端の失活のために用いるプロトン供与性の物質(以下、「重合停止剤」という)の仕込量、およびその添加時期、添加回数を適宜変えることにより目的に応じて制御することが可能である。
【0031】
例えば、ビニル芳香族炭化水素の連鎖と共役ジエンの連鎖が分かれたブロック型の分子構造を導入する場合は、ビニル芳香族炭化水素と共役ジエンの原料仕込みをそれぞれ別に分け、片方の反応が終了してから次の仕込みを実施するようにする。
【0032】
また、ランダム構造の連鎖を作るには、ビニル芳香族炭化水素と共役ジエンの各モノマーの反応系への供給速度が、反応速度より常に遅くなるよう、即ち重合の反応末端が常に飢餓状態にあるように少量ずつ添加する方法がある。また、ビニル芳香族炭化水素モノマーと共役ジエンモノマーは、後記する実施例の記載から抽出されるように、ビニル芳香族炭化水素モノマーのモル添加速度(モル/分)/共役ジエンモノマーのモル添加速度(モル/分)が、3.0以上11.7以下に保持するように、連続的に反応系に供給することが好ましい。
【0033】
さらに、適当なランダム化剤の存在下でビニル芳香族炭化水素と共役ジエンとを同時に反応系中に添加すれば、テーパ型連鎖構造を持つ共重合体が生成する。
【0034】
本発明においてランダム化剤は極性を持つ分子であり、アミン類やエーテル類、チオエーテル類、およびホスホルアミド、アルキルベンゼンスルホン酸塩、その他にカリウムまたはナトリウムのアルコキシドなどが使用可能である。適当なアミン類としては第三級アミン、例えばトリメチルアミン、トリエチルアミン、テトラメチルエチレンジアミンの他、環状第三級アミンなども使用できる。エーテル類としてはジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、テトラヒドロフランなどが挙げられる。その他にトリフェニルフォスフィン、ヘキサメチルホスホルアミド、アルキルベンゼンスルホン酸カリウムまたはナトリウム、カリウム、ナトリウム等のブトキシドなどを挙げることができる。
【0035】
ランダム化剤は1種、または複数の種類を使用することができ、その添加濃度としては、原料とするモノマー100重量部あたり合計0.001〜10重量部とすることが適当である。
【0036】
有機溶媒としてはブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン、イソオクタンなどの脂肪族炭化水素、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、などの脂環式炭化水素、或いはベンゼン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素などが使用できる。
【0037】
重合開始剤である有機リチウム化合物は、分子中に1個以上のリチウム原子が結合した化合物であり、本発明では例えば、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウムなどの単官能性重合開始剤、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウムなどの多官能性重合開始剤が使用できる。
【0038】
リビングアニオン重合における重合停止剤として、本発明では水、アルコール、無機酸、有機酸、およびフェノール系化合物から選ばれる少なくとも1種以上が反応系中に添加されて重合が停止する。
重合停止剤として水はとくに賞用できる。
【0039】
重合停止剤としてのアルコールとしてはメタノール、エタノール、ブタノールなどが、無機酸としては塩酸、硫酸、硝酸、ホウ酸、リン酸、炭酸などが、有機酸としてオクチル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレフィン酸、リノール酸、リノレン酸、リシノール酸、ベヘン酸などのカルボン酸、その他スルホン酸、スルフィン酸などが、フェノール系化合物として2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジーtert−ペンチルフェニルアクリレート、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートなどが挙げられる。
【0040】
なお、重合活性末端の失活数は加えた重合停止剤の化学量論数に比例するので、重合停止剤は活性末端数より少ない化学量論数の量を数回に分けて添加することとして、重合中の活性末端の一部のみを失活させ、残った活性末端による重合をさらに継続させながら所定の重合率に達したところで残りの活性末端を失活させても良いし、また一度に全ての活性末端を失活させても良い。但し、重合の完了時にはその時点における活性末端数に対して充分な量の重合停止剤を添加して活性末端を全て失活させることが必要である。
【0041】
失活処理の終わった共重合体溶液は溶剤から分離するための方法としては、(1)メタノールなどの貧溶媒中に析出させる方法、(2)加熱ロールなどに共重合体溶液を供給し、溶剤のみを蒸発させて共重合体を分離する方法(ドラムドライヤー法)、(3)加熱したブロック共重合体(組成物)溶液を、そこに含まれる有機溶剤の該温度における平衡蒸気圧よりも低い圧力に保った缶中に連続的、あるいは間欠的に供給して脱揮する方法(フラッシュ蒸発法)、(4)ベント式押出機に通して脱揮させる方法、(5)温水中に撹拌しながら、共重合体溶液を吹き込んで溶剤を蒸発させる方法(スチームストリッピング法)などや、これらを組み合わせた方法が挙げられる。
【0042】
本発明において、ブロック共重合体(A)及び/又はブロック共重合体(A)を必須成分とする共重合体組成物は、動的粘弾性測定で得られる損失正接値の温度に対する関係において、65〜100℃の温度範囲に一つの極大値をもち、この範囲内の極大値が好ましくは0.5〜4.0、特に好ましくは0.7〜3.5であり、該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下、好ましくは35%以下であり、該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下、好ましくは8%以下であり、さらに30℃における損失正接値が好ましくは0.01〜0.4、特に好ましくは0.01〜0.2である。換言すれば、65〜100℃の温度範囲に損失正接値が鋭く、かつ高いピーク形状の極大値を有するブロック共重合体(A)及び/又はブロック共重合体(A)を必須成分とする共重合体組成物を用いることにより、低温収縮性を損なわずに耐自然収縮性が良好な熱収縮性(多層)フィルムが得られることを本発明者らは見出したものである。
【0043】
本発明において、ブロック共重合体(A)及び/又はブロック共重合体(A)を必須成分とする共重合体組成物が、動的粘弾性測定で得られる損失正接値の温度に対する関係において、65〜100℃の温度範囲に一つの極大値を持たないで、その極大値をとる温度が100℃を超えると、得られる熱収縮(多層)フィルムの低温収縮性が不十分になり、逆に、65〜100℃の温度範囲に一つの極大値を持たないで、その極大値をとる温度が65℃未満の場合、耐自然収縮性が不十分になる場合がある。また、該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%を超えたり、該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%を超えたり、30℃における損失正接値が0.4を超えたりすると、耐自然収縮性が損なわれる傾向が見られる。
【0044】
損失正接値が請求項1記載の(1)〜(3)の条件を満たすブロック共重合体(A)の製造方法についてさらに詳細に説明する。
【0045】
損失正接値の極大値をとる温度が65〜100℃にするには、ビニル芳香族炭化水素と共役ジエンとの重量比が、98/2〜72/28、好ましくは97/3〜75/25、特に好ましくは95/5〜80/20である共重合体セグメント部がブロック共重合体中に含まれることが望ましい。勿論、ビニル芳香族炭化水素としてスチレンの代わりにα−メチルスチレンを、共役ジエンとしてブタジエンの代わりにイソプレンを高い割合で使用したり、ブタジエンのミクロ構造の中でビニル結合の割合を多くすれば、損失正接値の極大値をとる温度を高目に設定することができる。しかしながら、ビニル結合が多くなると加工時に滞留するとゲルが発生しやすくなる傾向があり、また、原料コストの点で、ビニル芳香族炭化水素としてスチレン、共役ジエンとしてブタジエンが最も好ましく、ブタジエンのミクロ構造の中でビニル結合は20%、特に16%以下が好ましく、このような場合、損失正接値の極大値をとる温度は低目に制御しやすくなる。
【0046】
損失正接値の極大値をとる温度が65〜100℃に対応するビニル芳香族炭化水素と共役ジエンの共重合連鎖のセグメント部のビニル芳香族炭化水素と共役ジエンとの重量比が98/2を超えると、得られる熱収縮フィルムの低温収縮性が低下する傾向にある。逆に72/28未満になると、損失正接値の極大値が60℃未満になり、耐自然収縮性が低下する傾向があらわれる。
【0047】
損失正接値の前記条件の中の(2)及び(3)の条件を満足させるような鋭い形状のピークを得る為には、65〜100℃の温度範囲にある損失正接値の極大値に対応するビニル芳香族炭化水素と共役ジエンの共重合連鎖のセグメント部は、ビニル芳香族炭化水素と共役ジエンのランダム連鎖の割合を多くなるような条件で重合させることが好ましい。例えば、各モノマー重合の反応末端が常に実質的に飢餓状態にあるように少量ずつ添加する方法により共重合する方法が挙げられる。
【0048】
また、損失正接値の極大値をとる温度が65〜100℃に対応するビニル芳香族炭化水素と共役ジエンの共重合連鎖のセグメント部に隣接するセグメント部の影響も受けて、損失正接値の極大値のピーク形状は広がったり、極大値をとる温度が若干変化する傾向にある。そこで、損失正接値の極大値をとる温度が65〜100℃に対応するビニル芳香族炭化水素と共役ジエンの共重合連鎖のセグメント部100重量部に対して、隣接するビニル芳香族炭化水素及び/又は共役ジエンからなるセグメント部は0.1〜50重量部、好ましくは0.2〜30重量部、特に好ましくは1〜15重量部であるブロック共重合体が望ましい。また、加工時の熱安定性の改良効果の点で、ビニル芳香族炭化水素のみからなるセグメント部が片末端、特に両末端に存在するが好ましい。例えば、片末端、特に両末端がビニル芳香族炭化水素のみからなるセグメントを有するブロック共重合体の場合、熱収縮性(多層)フィルムの押出時や延伸時の端等をリターン材として混入しても、良好な延伸加工性、低温収縮性、耐自然収縮性及び透明性を有するシートまたはフィルムを得ることができる。
【0049】
本発明におけるブロック共重合体(A)は以上のことを考慮して、例えば、以下の方法で製造することができるが、以下の方法に限定されるものでない。
【0050】
有機溶媒中、有機リチウム化合物を開始剤として、ビニル芳香族炭化水素及び/又は共役ジエンからなるモノマー0〜50重量部を重合(第1工程)し、次にビニル芳香族炭化水素と共役ジエンの合計量100重量部をビニル芳香族炭化水素と共役ジエンとが98/2〜72/28の重量比で、これらを混合して又は別々に、そしてこれらのモノマーを連続的に反応系へ、モノマーの供給速度が反応速度より実質的に遅くなるように添加して重合(第2工程)し、次いでビニル芳香族炭化水素及び/又は共役ジエンからなるモノマー0.1〜50重量部を重合する工程(第3工程)を含むことを特徴とするブロック共重合体の製造方法である。
【0051】
ここで、第1工程は必ずしも必要ではないが、第2工程と第3工程の重合工程を含むことが特徴である。また、第1工程や第3工程は必ずしも単一の工程である必要はなく、2つ以上のセグメントを有するブロック共重合体を得る工程でもよい。例えば、第1工程で得られるセグメント部はビニル芳香族炭化水素連鎖のみであるが、3工程ではビニル芳香族炭化水素連鎖のセグメント部と共役ジエン連鎖のセグメント部を持つこともできる。
【0052】
なお、本発明における必須成分であるブロック共重合体(A)は、請求項に示している動的粘弾性測定により得られる測定値の諸条件を満足さえしていれば特に制約はない。
【0053】
本発明で得られるブロック共重合体(A)又はその共重合体組成物には、必要に応じてさらに各種の添加剤を配合することができる。
【0054】
ブロック共重合体組成物が各種の加熱処理を受ける場合や、その成形品などが酸化性雰囲気や紫外線などの照射下にて使用され物性が劣化することに対処するため、また使用目的に適した物性をさらに付与するため、たとえば安定剤、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防曇剤、耐候性向上剤、軟化剤、可塑剤、顔料などの添加剤を添加できる。
【0055】
安定剤としては、例えば2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレートや、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2,6−ジ−tert−ブチル−4−メチルフェノールなどのフェノール系酸化防止剤、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルフォスファイト、トリスノニルフェニルフォスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトール−ジ−フォスファイトなどのリン系酸化防止剤などが挙げられる。
【0056】
また、滑剤、加工助剤、ブロッキング防止剤、帯電防止剤、防曇剤としては、パルミチン酸、ステアリン酸、ベヘニン酸などの飽和脂肪酸、パルミチン酸オクチル、ステアリン酸オクチルなどの脂肪酸エステルやペンタエリスリトール脂肪酸エステル、さらにエルカ酸アマイド、オレイン酸アマイド、ステアリン酸アマイドなどの脂肪酸アマイドや、エチレンビスステアリン酸アマイド、またグリセリン−モノ−脂肪酸エステル、グリセリン−ジ−脂肪酸エステル、その他にソルビタン−モノ−パルミチン酸エステル、ソルビタン−モノ−ステアリン酸エステルなどのソルビタン脂肪酸エステル、ミリスチルアルコール、セチルアルコール、ステアリルアルコールなどに代表される高級アルコールなどが挙げられる。
【0057】
さらに耐候性向上剤としては2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾールなどのベンゾトリアゾール系や2,4−ジ−tert−ブチルフェニル−3’,5’−ジ−tert−ブチル−4’−ヒドロキシベンゾエートなどのサリシレート系、2−ヒドロキシ−4−n−オクトキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、また、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシレートなどのヒンダードアミン型耐候性向上剤が例として挙げられる。さらにホワイトオイルや、シリコーンオイルなども加えることができる。
【0058】
これらの添加剤はブロック共重合体(A)又はその組成物100重量部に対し5重量部以下の範囲で使用することが望ましい。
【0059】
本発明のブロック共重合体又は共重合体組成物は、射出成形、押出成形、圧縮成形、真空成形等の公知の方法により各種成形体に加工され実用に供されるが、シートやフィルム形状で実用に供されることが好ましく、熱収縮性フィルムや熱収縮性多層フィルムとして実用に供されることがさらに好ましい。
【0060】
本発明における単層シート及び/又は単層フィルムは、損失正接値の条件を満たすことを特徴とするブロック共重合体(A)及び/又は共重合体組成物から構成され、単層の熱収縮フィルムは、単層シート及び/又は単層フィルムを延伸したり、チューブラ法延伸等により得ることができる。
【0061】
熱収縮性フィルムや熱収縮性多層フィルムの製造方法は公知の手法が採用できる。例えば熱収縮性フィルムは、樹脂を押出機で溶融し、それをTダイ、環状ダイなどのダイを使用してフィルム形状として押出し、一軸、二軸あるいは多軸に延伸することによって得られる。また、熱収縮性多層フィルムは別々に溶融した樹脂をダイ内又はフィードブロックなどで多層化後フィルム形状として押出し、一軸、二軸あるいは多軸に延伸することによって得られる。
【0062】
本発明においては、延伸温度は60〜120℃が好ましい。60℃未満では延伸時にシートやフィルムが破断してしまい、また、120℃を越える場合は良好な収縮性が得られないため好ましくない。延伸倍率は、特に制限はないが、1.5〜8倍が好ましい。1.5倍では熱収縮性が不足してしまい、また、8倍を越える場合は延伸が難しいため好ましくない。これらのフィルムを熱収縮性ラベルや包装材料として使用する場合、熱収縮率は温度80℃において15%以上、好ましくは70℃において15%以上、特に好ましくは70℃において20%以上であることが、低温でかつ迅速に収縮する点で望まれている。フィルムの厚さは10〜300μmが好ましく、20〜100μmがさらに好ましい。
【0063】
また、本発明では、得られたフィルムの表面特性を良好にするために帯電防止剤や滑剤などを表面に塗布してもよい。
【0064】
本発明の熱収縮性フィルム、熱可塑性多層フィルムの用途としては、熱収縮性ラベル、熱収縮性キャップシール、瓶の保護フィルム、パックガード収縮包装、コンデンサ・乾電池等の電気絶縁被膜などが特に好適であるが、その他、包装フィルム、蓋材などにも適宜利用することができる。
【0065】
以下、本発明を実施例によりさらに詳細に説明する。但し、本発明は以下の実施例により限定されるものではない。
実施例に用いたブロック共重合体(組成物)等の製造方法を参考例として以下に述べる。
【0066】
参考例1
(1)反応容器中に重合溶媒としてシクロヘキサン490kgを仕込み、80℃に保った。なお以降の実施例、比較例の重合溶媒には全てシクロヘキサンを用いた。
(2)この中に重合触媒溶液としてn−ブチルリチウムの10重量%シクロヘキサン溶液1300mLを加えておき、次いで10.5kgのスチレンモノマーを一括で仕込み、これをアニオン重合させた。なお、以降の実施例、比較例の重合触媒溶液には全てn−ブチルリチウムの10重量%シクロヘキサン溶液を用いた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、総量170.1kgのスチレンモノマー、及び総量18.9kgのブタジエンを、それぞれ76.5kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)さらに10.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて、重量平均分子量(GPCポリスチレン換算、以下同じ)が18.6万で、ポリスチレンブロック部とスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0067】
参考例2
(1)反応容器中に重合溶媒490kgと7.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1100mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を50℃に保ちながら、6.3kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、総量173.7kgのスチレンモノマー、及び総量15.1kgのブタジエンを、それぞれ97.7kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)さらに7.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて分子量が21.4万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0068】
参考例3
(1)反応容器中に重合溶媒490kgと84.0kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を50℃に保ちながら、42kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンモノマーの重合率が99%を超えた後、ガスが完全に消費された後、反応系の内温を50℃に保ちながら、84.0kgのスチレンモノマーを添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が14.9万で、ポリスチレンブロック部とポリブタジエンのブロック部を持つ重合体を含む重合液を得た。
【0069】
参考例4
(1)反応容器中に重合溶媒357kgを仕込み、80℃に保った。
(2)この中に重合触媒溶液800mLを加えておき、次いで5.4kgのスチレンモノマーを一括で仕込み、これをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、総量130.9kgのスチレンモノマー、及び総量11.4kgのブタジエンを、それぞれ97.6kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)さらに5.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が20.5万で、ポリスチレンブロック部とスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0070】
参考例5
(1)反応容器中に重合溶媒490kgと6.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1620mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を50℃に保ちながら、31.5kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、総量152.7kgのスチレンモノマー、及び総量13.2kgのブタジエンを、それぞれ98.3kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)さらに6.3kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて分子量が14.6万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0071】
参考例6
(1)反応容器中に重合溶媒490kgと6.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1600mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を80℃に保ちながら、総量2.6kgのスチレンモノマー、及び総量22.7kgのブタジエンを、それぞれ8.0kg/h、72kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)スチレンモノマー、ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量158.4kgのスチレンモノマー、及び総量13.7kgのブタジエンを、それぞれ98.3kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)さらに6.3kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて分子量が15.2万で、ポリスチレンブロック部、及びスチレンとブタジエンの濃度比率が異なる2種の構造部を持つ重合体を含む重合液を得た。
【0072】
参考例7
(1)反応容器中に重合溶媒490kgと5.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1620mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を50℃に保ちながら、21.0kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量155.4kgのスチレンモノマー、及び総量23.1kgのブタジエンを、それぞれ57.6kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに5.3kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)この後、全ての重合活性末端を水により失活させ、分子量が15.5万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を得て、これを重合液Aとした。
(7)重合触媒溶液の量を1240mlとすることを除いて、重合液Aと同様の操作を実施し、分子構造は同じで分子量が21.8万である重合液Bを得た。
(8)先述の重合液Aの100重量部に対して、重合液Bを200重量部を混合した後、脱揮して目的の重合体を得た。
【0073】
参考例8
(1)反応容器中に重合溶媒525kgと56.5kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、16.9kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量78.3kgのスチレンモノマー、及び総量16.9kgのブタジエンを、それぞれ77.1kg/h、16.6kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに56.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて分子量が17.8万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0074】
参考例9
(1)反応容器中に重合溶媒385kgと57.8kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を45℃に保ちながら、49.5kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を60℃に保ちながら、57.8kgのスチレンモノマーを添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて分子量が11.8万で、ポリスチレンブロック部とポリブタジエンのブロック部を持つ重合体を含む重合液を得た。
【0075】
参考例10
(1)反応容器中に重合溶媒490kg、16.0kgのαーメチルスチレンと68.0kgのスチレンモノマーを仕込み、40℃に保った。
(2)この中に重合触媒溶液1500mLを加え、ビニル芳香族モノマーをアニオン重合させた。
(3)ビニル芳香族モノマーが完全に消費された後、反応系の内温を50℃に保ちながら、42kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を50℃に保ちながら、16.0kgのαーメチルスチレンと68.0kgのスチレンモノマーを添加し、重合させた。
(5)最後に全ての重合活性末端を水により失活させて分子量が14.3万で、ポリビニル芳香族ブロック部とポリブタジエンのブロック部を持つ重合体を含む重合液を得た。
【0076】
参考例11
(1)反応容器中に重合溶媒245kgとスチレンモノマー3.6kgを仕込み、30℃に保った。
(2)この中に重合触媒溶液600mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を40℃に保ちながら、8.3kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエン及びスチレンモノマーが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量50.1kgのスチレンモノマー、及び総量20.6kgのブタジエンを、それぞれ57.7kg/h、23.7kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに3.6kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が18.2万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0077】
参考例12
(1)反応容器中に重合溶媒490kgと7.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1100mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を50℃に保ちながら、6.3kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、総量160.5kgのスチレンモノマー、及び総量28.3kgのブタジエンを、それぞれ53.5kg/h、9.4kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)さらに7.4kgのスチレンモノマーを一括添加し、重合を完結させた。(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が21.4万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0078】
参考例13
(1)反応容器中に重合溶媒490kgと6.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1620mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、総量189.2kgのスチレンモノマー、及び総量8.2kgのブタジエンを、それぞれ52.0kg/h、2.3kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)さらに6.3kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が14.5万で、ポリスチレンブロック部とスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0079】
参考例14
(1)反応容器中に重合溶媒525kgと45.0kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を30℃に保ちながら、9.0kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、引き続き総量121.2kgのスチレンモノマー、及び総量16.1kgのブタジエンを、それぞれ181.9kg/h、24.2kg/hの一定添加速度で両者を同時に添加させ、添加終了後も20分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに33.8kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が17.5万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0080】
参考例15
(1)反応容器中に重合溶媒525kgと56.5kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を30℃に保ちながら、19.9kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、引き続き総量78.3kgのスチレンモノマー、及び総量13.9kgのブタジエンを、それぞれ117.5kg/h、20.9kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに56.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が17.8万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0081】
参考例16
(1)反応容器中に重合溶媒525kgと7.9kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1700mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を30℃に保った状態で、引き続き総量184.2kgのスチレンモノマー、及び総量25.1kgのブタジエンを同時に一括添加し、反応系の温度が70℃を超えないように水冷を強化しながら重合させた。
(4)ブタジエン及びスチレンモノマーの重合率がそれぞれ99%を超えた後、内温を50℃まで下げてから、さらに7.9kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が17.6万で、ポリスチレンブロック部とスチレンとブタジエンのテーパー構造部を持つ重合体を含む重合液を得た。
【0082】
参考例17
(1)反応容器中に重合溶媒490kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中にn−ブチルリチウムの10重量%シクロヘキサン溶液(以降重合触媒溶液と記述する。)1200mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマー重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、総量92.4kgのスチレンモノマー、及び総量11.3kgのブタジエンを、それぞれ61.3kg/h、7.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)ブタジエン重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、24.4kgのブタジエンを一括添加して引き続きこれを反応させた。
(5)さらに73.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0083】
参考例18
(1)反応容器中に重合溶媒490kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1830mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマー重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、総量113.4kgのスチレンモノマー、及び総量10.1kgのブタジエンを、それぞれ75.2kg/h、6.7kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)ブタジエン重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、25.6kgのブタジエンを一括添加して引き続きこれを反応させた。
(5)さらに52.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0084】
参考例19
(1)反応容器中に重合溶媒としてシクロヘキサン490kgを仕込み、80℃に保った。
(2)この中に重合触媒溶液820mL、ランダム化剤としてカリウム−tert−ブトキサイド35g、及びテトラヒドロフラン70gを加えておき、次いで9.5kgのスチレンモノマーを一括で仕込み、スチレンモノマーの重合率が99%を超えるまでアニオン重合させた。
(3)次に反応系の内温を80℃に保ちながら、37.8kgのスチレンモノマー、及び1.7kgのブタジエンを、それぞれ同時に仕込みスチレンモノマー、及びブタジエンの重合率が99%を超えるまで保持した。この操作を合計5回繰り返した。
(4)さらに3.2kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック部とスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0085】
参考例20
(1)反応容器中に重合溶媒368kgと6.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液910mLを加えておき、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマー重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、総量101.1kgのスチレンモノマー、及び総量14.2kgのブタジエンを、それぞれ67.1g/h、9.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)ブタジエン重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、12.6kgのブタジエンを一括添加して引き続きこれを反応させた。
(5)さらに23.7kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0086】
参考例21
(1)反応容器中に重合溶媒490kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1650mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマー重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、総量92.4kgのスチレンモノマー、及び総量11.3kgのブタジエンを、それぞれ61.3kg/h、7.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(4)ブタジエン重合率が99%を超えるまで重合させた後、反応系の内温を80℃に保ちながら、24.4kgのブタジエンを一括添加して引き続きこれを反応させた。
(5)さらに73.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0087】
参考例22
(1)反応容器中に重合溶媒490kgと6.3kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1620mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーの重合率が99%を超えた後、反応系の内温を50℃に保ちながら、34.6kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンモノマーの重合率が99%を超えた後、反応系の内温を80℃に保ちながら、総量156.0kgのスチレンモノマー、及び総量6.8kgのブタジエンを、それぞれ52.0kg/h、2.3kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)さらに6.3kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が14.6万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0088】
参考例23
(1)反応容器中に重合溶媒としてシクロヘキサン490kgを仕込み、80℃に保った。
(2)この中に重合触媒溶液としてn−ブチルリチウムの10重量%シクロヘキサン溶液1650mL及びランダム化剤としてカリウム−tert−ブトキサイド35g及びテトラヒドロフラン70gを加えておき、次いで10.5kgのスチレンモノマーを一括で仕込み、スチレンモノマーの重合率が99%を超えるまでアニオン重合させた。
(3)次に反応系の内温を80℃に保ちながら、34kgのスチレンモノマー、及び3.8kgのブタジエンを、それぞれ同時に仕込みスチレンモノマー及びブタジエンの重合率が99%を超えるまで保持した。この操作を合計5回繰り返した。
(4)さらに10.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて、重量平均分子量が15.9万で、ポリスチレンブロック部とスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0089】
参考例24
(1)反応容器中に重合溶媒525kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。なお以降の実施例、比較例の重合溶媒には全てシクロヘキサンを用いた。
(2)この中に重合触媒溶液1240mLを加え、スチレンモノマーをアニオン重合させた。なお、以降の実施例、比較例の重合触媒溶液には全てn−ブチルリチウムの10重量%シクロヘキサン溶液を用いた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、14.7kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量155.3kgのスチレンモノマー、及び総量23.2kgのブタジエンを、それぞれ56.9kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに8.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量(GPCポリスチレン換算による値、以下同じ)が20.4万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0090】
参考例25
(1)反応容器中に重合溶媒490kgとスチレンモノマー8.4kgを仕込み、30℃に保った。
(2)この中に重合触媒溶液1990mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を50℃に保ちながら、22.1kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量157.5kgのスチレンモノマー、及び総量13.7kgのブタジエンを、それぞれ97.7kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も5分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに8.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて分子量が12.7万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0091】
参考例26
(1)反応容器中に重合溶媒525kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1680mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、8.5kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量162.0kgのスチレンモノマー、及び総量22.7kgのブタジエンを、それぞれ60.7kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに8.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が15.1万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0092】
参考例27
(1)反応容器中に重合溶媒525kgと71.7kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液2120mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、25.3kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、内温を50℃に保ちながら、さらに107.5kgのスチレンモノマー及び6.3kgのブタジエンを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が11.9万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのテーパー構造部を持つ重合体を含む重合液を得た。
【0093】
参考例28
(1)反応容器中に重合溶媒525kgと8.4kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1830mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、8.5kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量162.0kgのスチレンモノマー、及び総量22.7kgのブタジエンを、それぞれ60.7kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに8.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が13.9万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0094】
参考例29
(1)反応容器中に重合溶媒525kgと71.7kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1420mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、31.6kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、内温を50℃に保ちながら、さらに107.5kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が18.2万で、ポリスチレンブロック部とポリブタジエンブロック部に分割された重合体を含む重合液を得た。
【0095】
参考例30
(1)反応容器中に重合溶媒525kgと31.5kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液1020mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、16.8kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、反応系の内温を80℃に保ちながら、引き続き総量134.4kgのスチレンモノマー、及び総量18.9kgのブタジエンを、それぞれ60.4kg/h、8.5kg/hの一定添加速度で両者を同時に添加させ、添加終了後も10分間そのままの状態を保った。
(5)内温を50℃まで下げた後、さらに8.4kgのスチレンモノマーを一括添加し、重合を完結させた。
(6)最後に全ての重合活性末端を水により失活させて重量平均分子量が25.2万で、ポリスチレンブロック部とポリブタジエンのブロック部、及びスチレンとブタジエンのランダム構造部を持つ重合体を含む重合液を得た。
【0096】
参考例31
(1)反応容器中に重合溶媒525kgと86.1kgのスチレンモノマーを仕込み、30℃に保った。
(2)この中に重合触媒溶液5100mLを加え、スチレンモノマーをアニオン重合させた。
(3)スチレンモノマーが完全に消費された後、反応系の内温を30℃に保ちながら、37.8kgのブタジエンを一括添加して引き続きこれを反応させた。
(4)ブタジエンガスが完全に消費された後、内温を50℃に保ちながら、さらに86.1kgのスチレンモノマーを一括添加し、重合を完結させた。
(5)最後に全ての重合活性末端を水により失活させて重量平均分子量が4.9万で、ポリスチレンブロック部とポリブタジエンブロック部に分割された重合体を含む重合液を得た。
【0097】
参考例32
(1)内容量250Lの攪拌機付オートクレーブに、純水120kg、分散安定剤として第三リン酸カルシウム120g、過硫酸カリウム0.12g、ドデシルベンゼンスルホン酸ナトリウムを0.06gを加え、100rpmで攪拌した。
(2)続いてスチレン70kg、メチルメタクリレート15kg、n−ブチルアクリレート15kg、開始剤としてt−ブチルパーオキシ−2−エチルヘキサノエート200g及び1,1−ビス(t−ヘキシルパーオキシ)3,3,5−トリメチルシクロヘキサン50g、連鎖移動剤としてα−メチルスチレンダイマーを50g混合した溶液を仕込み、オートクレーブを密閉し、90℃で6時間、120℃で2時間重合を行った。
(3)重合して得られたビーズを中和、洗浄、脱水、乾燥した後、押し出し機を用いペレット形状の共重合樹脂を得た。重量平均分子量は26万であった。
【0098】
参考例33
(1)容積200リットルのオートクレーブに純水115kg、オレイン酸カリウム500g、ピロリン酸ナトリウム75g、硫酸第一鉄1.5g、エチレンジアミンテトラ酢酸ナトリウム2.2g、ロンガリット22gを加えて撹拌下で均一に溶解した。
(2)次いでスチレン20.0kg、ブタジエン30.0kg、t−ドデシルメルカプタン148g、ジビニルベンゼン30g、ジイソプロピルベンゼンハイドロパーオキサイド96gを加え、撹拌しながら50℃で16時間反応を行って重合を完結し、ゴム重合体ラテックスを得た。
(3)得られたゴム状重合体ラテックスにナトリウムスルホサクシネート45gを添加して充分安定化した後、0.2%塩酸水溶液と2%苛性ソーダ水溶液を別々のノズルから、ラテックスのPHが8〜9を保ちつつ、添加速度や撹拌速度等の調整により、ラテックスを凝集肥大化させ、平均粒径0.35μmのゴム状弾性体ラテックスを得た。
(4)ゴム状弾性体ラテックスを固形分換算で30kg計量して容積200Lのオートクレーブに移し、純水80kgを加え、攪拌しながら窒素気流下で50℃に昇温した。
(5)ここに硫酸第一鉄1.25g、エチレンジアミンテトラ酢酸ナトリウム2.5g、ロンガリット100gを溶解した純水2kgを加え、スチレン16kg、メチルメタクリレート14kg、t−ドデシルメルカプタン60gからなる混合物と、ジイソプロピルベンゼンハイドロパーオキサイド120gをオレイン酸カリウム450gを含む純水8kgに分散した溶液とを、別々に6時間かけて連続添加した。
(6)添加終了後、温度を70℃に昇温して、さらにジイソプロピルベンゼンハイドロパーオキサイド30g添加した後2時間放置して重合を終了した。
(7)得られた乳化液に酸化防止剤を加え、純水で固形分を15%に希釈した後に60℃に昇温し、激しく撹拌しながら希硫酸を加えて塩析を行い、その後温度を90℃に昇温して凝固させた。
(8)最後に脱水、水洗、乾燥して粉末状のグラフト共重合体を得た。
【0099】
得られたグラフト共重合体を構成する単量体単位の組成より算出された屈折率は1.548であった。
溶液状態にある参考例の各重合体は、単独で、または所定の重量割合になるように混合した状態で重合溶媒を予備濃縮させた後、ベント式押出機にて脱揮処理してペレット状とし、そのままの組成で、あるいは他の参考例等の重合体と再度溶融混合して造粒の後、後述する試験に供した。
【0100】
また、本発明の一部の実施例、比較例の組成物、多層フィルムでは参考例等で示したブロック共重合体等以外に、重量平均分子量27万の汎用ポリスチレン、ハイインパクトポリスチレン(東洋スチレン(株)社製:E640N)、SBS樹脂(電気化学工業(株)社製:クリアレン730L)を使用した。クリアレン730Lに関する重量平均分子量、及び動的粘弾性についてのデータは表11に記載した。
【0101】
本願発明のブロック共重合体(組成物)と、これらの樹脂を組み合わせて組成物となす場合には、ペレット同士を溶融混練して再度ペレット状の樹脂組成物とする方法を用いた。
【0102】
参考例、実施例、比較例のブロック共重合体(組成物)は、目的に応じて後述する方法にて、分子量、屈折率、動的粘弾性挙動の温度依存性、熱収縮率、自然収縮率、Haze(曇り度)を測定した。
【0103】
[分子量の測定]
重量平均分子量は下記のGPC測定装置、及び条件で測定した。
装置名:SYSTEM−21 Shodex(昭和電工社製)
カラム:PL gel MIXED−Bを3本直列
温度:40℃
検出:示差屈折率
溶媒:テトラヒドロフラン
濃度:2重量%
検量線:標準ポリスチレン(PL社製)を用いて作製し、重量平均分子量はポリスチレン換算値で表した。
【0104】
なお、必要に応じて求めたブロック共重合体中に組み込まれている芳香族炭化水素ブロックの重量平均分子量は、ブロック共重合体をオゾン分解〔Y.TANAKA,et al.,RUBBER CHEMISTRY AND TECHNOLOGY,58,16(1985)〕して得たビニル芳香族炭化水素重合体成分をGPC測定し、上法に従って算出した値を言う。
【0105】
[動的粘弾性の測定]
参考例、実施例、比較例の各重合体(組成物)の損失正接値は、以下の手順に従い動的粘弾性法により測定した。
(1)各重合体ペレットを200〜250℃の条件で加熱プレスし、厚さ0.1〜0.5mmのシートを作製した。
(2)このシートから適当な大きさの試験片を切り出し、23℃、50%RH室内に24時間以上保管して養生処理を施した後、下記の装置を用いて該試験片である重合体に固有な貯蔵弾性率、及び損失弾性率を温度を変化させながら測定し、その損失正接値を計算させた。
装置:レオメトリクス社製 固体粘弾性測定装置 RSA2
設定温度範囲:室温〜130℃
設定昇温速度:4℃/分
測定周波数:1Hz
【0106】
[屈折率の測定]
参考例32で製造された重合体の屈折率は、以下の手順に従い測定した。
(1)東芝機械(株)社製射出成形機(IS−80CVN)を用いて、シリンダー温度220℃で120mm×120mm×2mm寸法の試験片を成形した。
(2)この試験片を用い、JIS K7105に準拠して下記の装置、条件で屈折率を測定した。
装置:アタゴ社製 デジタル屈折率計 RX−2000
温度:25℃
ここで、この共重合樹脂の25℃における屈折率は1.561であった。
【0107】
なお、参考例33のグラフト共重合体の屈折率を実測することは難しいため、本願では組成分析によりグラフト共重合体を構成する単量体単位の組成比を測定し、次式を用いて計算により屈折率を求めるものとする。
n=XA×nA+XB×nB+XC×nC+・・・
すなわち、グラフト共重合体を構成する単量体単位の組成が、Am単量体:XA、Bm単量体:XBおよびCm単量体:XC からなる場合(但し、重量比でXA+XB+XC=1)、nAはAm単量体からなるポリマーの屈折率、nBはBm単量体からなるポリマーの屈折率、nCはCm単量体からなるポリマーの屈折率を示すものとし、上式に代入して計算より求めるものである。なお、得られたグラフト共重合体を構成する単量体単位の組成より算出された屈折率は1.548であった。
【0108】
本発明のブロック共重合体(組成物)からなる熱収縮性フィルムの熱収縮性、自然収縮性を測定するための延伸フィルムは以下に示した手順に従い作製した。
(1)実施例、及び比較例のペレットを下記の装置Aを用いて、厚さ0.25mmの押し出しシートを作製し、そのシートから押し出し方向軸に沿って9cm四方のシート片を切り出した。(押し出し軸に沿った方向を「MD方向」、MD方向と直交する方向を「TD方向」という。)
(2)シート片を下記装置Bを用いて、表4〜22に示した所定の温度で加熱しながらTD方向に5倍に延伸し熱収縮フィルムを作製した。
装置A:田辺プラスチック機械(株)製 40mmφ単軸押出機VE40(40cm幅Tダイ付き)
装置B:東洋精機(株)製 二軸延伸装置
なお、熱収縮性多層フィルムについては、フィードブロックを付した多層シート押出機を用い、所定の層構成で、厚さ0.25mmの多層シートを得た後、単層の延伸フィルムと同様な手順により該多層シートを延伸して作製した。
【0109】
[製膜性の測定]
実施例、比較例の樹脂組成物のフィルム製膜性は延伸フィルム表面の状態(表面荒れ、縞模様の有無)を目視観察し、下記のように判定した。
表面荒れや縞模様がみられず、フィルム製膜性が良好である : ○
表面荒れもしくは縞模様が僅かにみられる : △
表面荒れもしくは縞模様が確認され、改良不十分である : ×
【0110】
[熱収縮率の測定]
得られた延伸フィルムの熱収縮率は以下の方法で測定した。
(1)延伸フィルムからMD方向が10mm、TD方向が120mmの試験片を切り出した。
(2)この試験片のTD方向に100.0mm間隔の標線を付けた。
(3)この試験片を70℃の温水中に30秒間漬けて取り出し、付着した水分を拭った後、標線間の距離Lをノギスを用いて0.1mmの単位まで測定した。
(4)次式により熱収縮率を算出した。なお、熱収縮率は15%以上となることを実用のための目安とした。
熱収縮率(%)={(100.0−L)/100.0}×100
【0111】
[自然収縮率の測定]
延伸フィルムの自然収縮率は以下の方法で測定した。
(1)熱収縮率を測定した延伸フィルムと同じ条件で作製した延伸フィルムからMD方向が約75mm、TD方向が約400mmの試験片を切り出した。
(2)この試験片のTD方向に300.0mm間隔の標線を付けた。
(3)延伸フィルムを30℃の環境試験機内で保管した。
(4)30日の保管後フィルムを取り出し、標線間の距離L(mm)をノギスを用いて0.1mm単位まで測定した。
(5)下記の式により自然収縮率を算出した。なお、従来材料に対し自然収縮率が1.5%を越えないことをその改善の目安とした。
自然収縮率(%)={(300.0−L)/300.0}×100
【0112】
[曇度の測定]
延伸フィルムの曇度は下記の装置を用い、ASTM D1003に準拠して測定した。
装置:日本電色工業(株)製 Hazeメーター NDH−1001DP型
【0113】
実施例
実施例1〜22、及び比較例1〜8として、前記の参考例1〜21に示したブロック共重合体を単味、または他の参考例との組成物として、表1〜10中に示した処方で以下に述べる方法により成形し、その物性を評価した。評価結果は表1〜表10に併せて記載した。
【0114】
表に示された結果から、本発明のブロック共重合体(組成物)及びそれよりなるフィルムに係わる実施例はいずれも低温収縮性、耐自然収縮性、延伸条件幅の広さ、外観において優れていたが、本発明の条件に合わない組成物、フィルムに係わる比較では低温収縮性、耐自然収縮性、フィルムの製膜性、フィルムの外観のうちいずれかに劣るものであった。
【0115】
表1〜表4に動的粘弾性測定における損失正接値が65〜100℃の範囲に一つの極大値をもち、該極大値をとる温度から10℃低い温度における損失正接値が極大値の40%以下であり、また該極大値をとる温度から30℃低い温度における損失正接値が極大値の10%以下であるビニル芳香族と共役ジエンとからなるブロック共重合体を用いた熱収縮性フィルム、及び熱収縮性多層フィルムの熱収縮率、及び自然収縮率を測定した実施例を載せ、併せて比較例を示した。
【0116】
表1〜表4の各測定値を比較することにより、該動的粘弾性挙動の条件を満たすブロック共重合体、及びその組成物からなる熱収縮性フィルム、熱収縮性多層フィルムは良好な熱収縮性と耐自然収縮性を満たしていることが分かる。
【0117】
【表1】

【0118】
【表2】

【0119】
【表3】

【0120】
【表4】

【0121】
表5〜表7に動的粘弾性測定における損失正接値が65〜100℃の範囲に少なくとも一つの極大値をもち、該極大値をとる温度から10℃低い温度における損失正接値が極大値の40%以下であり、また該極大値をとる温度から30℃低い温度における損失正接値が極大値の10%以下であるビニル芳香族と共役ジエンとからなるブロック共重合体、及びその特定の組成物を用いた熱収縮性フィルム、及び熱収縮性多層フィルムの熱収縮率、自然収縮率、及び曇度を測定した実施例を載せ、併せて比較例を示した。
【0122】
表5〜表7の数値を比較することにより、該動的粘弾性挙動の条件を満たすブロック共重合体、及びその特定の組成物からなる熱収縮性フィルム、熱収縮性多層フィルムは良好な熱収縮性と耐自然収縮性を有しながら、且つ透明性をも満たしていることが分かる。
【0123】
【表5】

【0124】
【表6】

【0125】
【表7】

【0126】
特定の分子構造、分子量に関する条件を満たすブロック共重合体(組成物)からなる熱収縮性(多層)フィルムを評価するに当たり、表8に原材料として用いたブロック共重合体のランダム共重合体セグメントの重量平均分子量、全体の重量平均分子量、及びそのオゾン分解後の最大ピークを示す重合体成分の重量平均分子量を参考例として示した。
【0127】
表9〜表10にブロック共重合体中のランダム共重合体セグメント、全体、オゾン分解後の最大ピークを示す重合体成分の重量平均分子量が特定の範囲内にあり、かつ動的粘弾性測定における損失正接値が65〜100℃の範囲に少なくとも一つの極大値をもち、該極大値をとる温度から10℃低い温度における損失正接値が極大値の40%以下であり、また該極大値をとる温度から30℃低い温度における損失正接値が極大値の10%以下であるビニル芳香族と共役ジエンとからなるブロック共重合体、及びその特定の組成物を用いた熱収縮性フィルム、及び熱収縮性多層フィルムの熱収縮率、自然収縮率、製膜性を測定した実施例を示した。
【0128】
表9〜表10の数値より、分子の重量平均分子量、該動的粘弾性挙動の条件を満たすブロック共重合体、及びその特定の組成物からなる熱収縮性フィルム、熱収縮性多層フィルムは良好な熱収縮性と耐自然収縮性を有しながら、且つ良好な製膜性をも満たしていることが分かる。
【0129】
【表8】

【0130】
【表9】

【0131】
【表10】

【0132】
【表11】

【産業上の利用可能性】
【0133】
本発明は、動的粘弾性測定で得られる損失正接値が温度に対し特定の関係をもつブロック共重合体又はこのブロック共重合体を必須成分とする共重合体組成物を主体とする熱収縮(多層)フィルムは、その本来の熱収縮性を損なうことなく、耐自然収縮性が著しく改善されるので、熱収縮性ラベル、熱収縮性キャップシール、瓶の保護フィルム、パックガード収縮包装、コンデンサ、乾電池等の電気絶縁被膜などに好適である。

【特許請求の範囲】
【請求項1】
有機溶剤中、有機リチウム化合物を重合開始剤とするアニオン重合において、ビニル芳香族炭化水素及び/または共役ジエンからなるモノマーを混合して、または別々に、そしてこれらのモノマーを連続的に反応系へモノマー供給速度が重合反応速度より実質的に遅くなるように添加してランダム共重合セグメントを重合する工程を含む製造方法によって得られる、動的粘弾性測定で得られる損失正接値の温度に対する関係が下記の条件を満足させることを特徴とするビニル芳香族炭化水素と共役ジエンとからなるブロック共重合体(A)。
(1)65〜100℃の温度範囲に一つの極大値をもち、
(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、
(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である。
【請求項2】
ビニル芳香族炭化水素モノマーのモル添加速度(モル/分)/共役ジエンモノマーのモル添加速度(モル/分)が、3.0以上11.7以下に保持し、上記のモノマーが連続的に反応系に供給される得られる請求項1に記載のブロック共重合体(A)。
【請求項3】
動的粘弾性測定で得られる損失正接値の温度に対する関係において、65〜100℃の温度範囲の損失正接値の極大値が0.5〜4.0の範囲にあり、30℃における損失正接値が0.01以上、0.4未満の範囲にあることを特徴とする請求項1に記載のブロック共重合体(A)。
【請求項4】
分子構造が下記の一般式で示され、その重量平均分子量が100,000〜300,000で、かつ(a)〜(c)の条件を満たす請求項1に記載のブロック共重合体(A)。
X−(Y−X)n ・・・・・ nは1以上の整数。
(a)Xは1種、または2種以上のビニル芳香族炭化水素からなる連鎖を有するブロック。
(b)Yは重量平均分子量40,000〜250,000のそれぞれ1種、または2種以上の共役ジエンとビニル芳香族炭化水素のランダム共重合体セグメントを少なくとも1個含むブロック。
(c)ブロック共重合体をオゾン分解処理することにより得られるビニル芳香族炭化水素からなる重合体混合物の分子量分布を測定したときに、最大ピークを示す重合体成分の重量平均分子量(Mw’)と処理前のブロック共重合体の重量平均分子量(Mw)との関係が0.1≦Mw’/Mw≦0.4。
【請求項5】
請求項1に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含むことを特徴とするブロック共重合体組成物。
【請求項6】
請求項1に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含む組成物で、その組成物の動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に少なくとも一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である条件を満足させることを特徴とするブロック共重合体組成物。
【請求項7】
請求項4に記載の条件を満たす異なるブロック共重合体(A)を少なくとも2種以上含み、動的粘弾性測定で得られる損失正接値の温度に対する関係が、(1)65〜100℃の温度範囲に少なくとも一つの極大値をもち、(2)該極大値をとる温度から10℃低い温度における損失正接の値が極大値の40%以下であり、(3)該極大値をとる温度から30℃低い温度における損失正接の値が極大値の10%以下である条件を満足させることを特徴とするブロック共重合体組成物。
【請求項8】
請求項1〜7のいずれかに記載のブロック共重合体又はブロック共重合体組成物を用いたフィルムまたはシート。
【請求項9】
請求項1〜7のいずれかに記載のブロック共重合体またはブロック共重合体組成物を用いた熱収縮性フィルム。
【請求項10】
請求項8に記載のフィルムまたはシートを延伸して得られることを特徴とする熱収縮性フィルム。
【請求項11】
請求項1〜7のいずれかに記載のブロック共重合体又はブロック共重合体組成物を用いた層を少なくとも1層有する多層フィルムまたは多層シート。
【請求項12】
請求項1〜7のいずれかに記載のブロック共重合体またはブロック共重合体組成物を少なくとも1層に用いた熱収縮性多層フィルム。
【請求項13】
請求項11に記載の多層フィルムまたは多層シートを延伸して得られることを特徴とする熱収縮性多層フィルム。

【公開番号】特開2006−124718(P2006−124718A)
【公開日】平成18年5月18日(2006.5.18)
【国際特許分類】
【出願番号】特願2005−351541(P2005−351541)
【出願日】平成17年12月6日(2005.12.6)
【分割の表示】特願2002−541972(P2002−541972)の分割
【原出願日】平成13年11月9日(2001.11.9)
【出願人】(000003296)電気化学工業株式会社 (1,539)
【Fターム(参考)】