説明

ポリカーボネート樹脂組成物及びそれを用いた成形品

【課題】無機充填剤の添加により、機械的強度を損なうことなく、かつ従来の欠点であった流動性や成形品の外観が改良されて、金型付着物も低減し、カメラ部品やOA、電気電子部品をはじめとする各種産業用途に用いることができるポリカーボネート樹脂組成物を提供すること。
【解決手段】ポリカーボネート樹脂100重量部に対して、流動性改良剤を1〜30重量部、無機充填剤を3〜200重量部含む樹脂組成物であって、該ポリカーボネート樹脂が溶融エステル交換法で得られるポリカーボネート樹脂であって、温度250℃、角速度10rad/sの条件で測定した損失角δ及び複素粘性率η*(Pa・s)が、下記関係式(1)を満たすポリカーボネート樹脂組成物。
[数1]
2500≦Tanδ/η*-0.87≦6000 (1)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無機充填剤と流動性改良剤を配合してなるポリカーボネート樹脂組成物に関し、更に詳しくは、流動性、成形品の外観に優れ、かつ、金型付着物の低減されたポリカーボネート樹脂組成物及びそれを用いた成形品に関する。
【背景技術】
【0002】
ポリカーボネート樹脂は、耐熱性、耐衝撃性、透明性等に優れた樹脂として、多くの分野で幅広く用いられている。中でもガラス繊維や炭素繊維といった無機充填剤で強化したポリカーボネート樹脂組成物は、寸法安定性、機械的強度、耐熱性、及び電気的特性といった種々優れた性能を示すことから、カメラ、OA機器、電気電子部品といった産業分野で幅広く使用されている。無機充填剤で強化されたポリカーボネート樹脂組成物は、上記のような優れた機械的強度を有する一方で、流動性が低下する。又、無機充填剤が成形品表面に浮き出し、成形品の外観が損なわれるといった欠点を有しており、薄肉部品やハウジングやカバーといった外観の重視される部品に使用されるには制限があった。
【0003】
これを解決する為に、例えば、ポリカーボネート樹脂とガラス繊維からなる樹脂組成物に熱可塑性ポリウレタンを配合することによって(特許文献1)、トリフェニルフォスフェートを配合することによって(特許文献2)、又、特定構造のポリカプロラクトン樹脂を配合することによって(特許文献3)、流動性や成形品の外観を改良することが開示されている。確かに、こういった成分を添加することにより流動性や成形品の外観は改良されるが、機械的強度が低下し、更に流動性改良剤の耐熱性が高くないため、成形時に流動性改良剤が分解し、金型に付着する(モールドデポジット)といった問題が発生している。モールドデボジットは、短期的な試験では発生しなくても、生産において長時間成形を続けると発生してくる問題であり、近年特に部品の薄肉化から成形条件が厳しくなってきており、それに伴って大きな問題となっている。この問題に対応する為、機械的強度を損なうことなく、成形時の金型付着物が低減され、成形品の外観に優れた高流動無機充填剤強化ポリカーボネート樹脂が求められていた。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平6−41415号
【特許文献2】特開平7−3140号
【特許文献3】特開昭63−6051号
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、上記のような課題を解決でき、流動性や成形品の外観に優れ、かつ金型付着物の低減された無機充填剤で強化されたポリカーボネート樹脂組成物を提供するものである。
【課題を解決するための手段】
【0006】
本発明者らは、前記目的を達成すべく鋭意検討を重ねた結果、溶融エステル交換法で得られるポリカーボネート樹脂であって、特定の溶融粘弾性を有するポリカーボネート樹脂は、分子量が実質的に同等な他の特性を有するポリカーボネート樹脂に比べて、機械的強度が損なわれることなく、流動性改良剤を配合した時の金型付着物が低減され、さらに成形品の外観が優れていることを見出し、本発明を完成するに至ったものである。すなわち、本発明は、ポリカーボネート樹脂100重量部に対して、流動性改良剤を1〜30重量部、無機充填剤を3〜200重量部含む樹脂組成物であって、該ポリカーボネート樹脂が溶融エステル交換法で得られ、かつ温度250℃、角速度10rad/sの条件で測定した損失角δ及び複素粘性率η*(Pa・s)が、下記関係式(1)を満たすポリカーボネート樹脂であることを特徴とするポリカーボネート樹脂組成物をその要旨とする。
【0007】
[数1]
2500≦Tanδ/η*-0.87≦6000 (1)
【発明の効果】
【0008】
本発明のポリカーボネート樹脂組成物は、無機充填剤の添加により、機械的強度を損なうことなく、かつ従来の欠点であった流動性や成形品の外観が改良されて、金型付着物も低減し、カメラ部品やOA、電気電子部品をはじめとする各種産業用途に用いることができ、その意義は大きいものである。
【図面の簡単な説明】
【0009】
【図1】図1は本発明で使用するポリカーボネートの製造方法の1例を示したフローシート図である。
【発明を実施するための形態】
【0010】
以下、本発明について具体的に説明する。本発明で使用するポリカーボネート樹脂は、芳香族ジヒドロキシ化合物及び炭酸ジエステルを原料とし、溶融エステル交換法により製造されるものである。特に本発明においては、該ポリカーボネート樹脂が溶融エステル交換法で得られ、かつ温度250℃、角速度10rad/sの条件で測定した損失角δ及び複素粘性率η*(Pa・s)が、下記関係式(1)を満たすポリカーボネート樹脂であるのが好ましい。
【0011】
[数2]
2500≦Tanδ/η*-0.87≦6000 (1)
【0012】
芳香族ジヒドロキシ化合物
本発明方法の原料の一つである芳香族ジヒドロキシ化合物は、下記式(I)で示される化合物である。
【0013】
【化1】

【0014】
(式(I)中、Aは、単結合、置換されていてもよい炭素数1〜10の直鎖状、分岐状若しくは環状の2価の炭化水素基、又は、−O−、−S−、−CO−若しくは−SO2−で示される2価の基であり、X及びYは、ハロゲン原子又は炭素数1〜6の炭化水素基であり、p及びqは、0又は1の整数である。なお、XとY及びpとqは、それぞれ、同一でも相互に異なるものでもよい。)
【0015】
代表的な芳香族ジヒドロキシ化合物としては、例えば、ビス(4−ヒドロキシジフェニル)メタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、4,4−ビス(4−ヒドロキシフェニル)ヘプタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−ジヒドロキシビフェニル、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)エーテル、ビス(4−ヒドロキシフェニル)ケトン等が挙げられる。これらの芳香族ジヒドロキシ化合物は、単独で、又は2種以上を混合して用いることができる。これらのなかでも、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」とも言い、「BPA」と略記することもある。)が好ましい。
【0016】
炭酸ジエステル
原料の他の一つである炭酸ジエステルは、下記式(II)で示される化合物である。
【0017】
【化2】

【0018】
(式(II)中、A’は、置換されていてもよい炭素数1〜10の直鎖状、分岐状又は環状の1価の炭化水素基であり、2つのA’は、同一でも相互に異なるものでもよい。)
【0019】
代表的な炭酸ジエステルとしては、例えば、ジフェニルカーボネート、ジトリルカーボネート等に代表される置換ジフェニルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ−t−ブチルカーボネート等に代表されるジアルキルカーボネートが挙げられる。これらの炭酸ジエステルは、単独で、又は2種以上を混合して用いることができる。これらのなかでも、ジフェニルカーボネート(以下、「DPC」と略記することもある。)、置換ジフェニルカーボネートが好ましい。
【0020】
また、上記の炭酸ジエステルは、好ましくはその50モル%以下、さらに好ましくは30モル%以下の量を、ジカルボン酸又はジカルボン酸エステルで置換してもよい。代表的なジカルボン酸又はジカルボン酸エステルとしては、テレフタル酸、イソフタル酸、テレフタル酸ジフェニル、イソフタル酸ジフェニル等が挙げられる。このようなジカルボン酸又はジカルボン酸エステルで置換した場合には、ポリエステルカーボネート樹脂が得られる。
【0021】
これら炭酸ジエステル(上記の置換したジカルボン酸又はジカルボン酸のエステルを含む。以下同じ。)は、芳香族ジヒドロキシ化合物に対して、通常、過剰に用いられる。すなわち、芳香族ジヒドロキシ化合物に対して1.001〜1.3、好ましくは1.01〜1.2の範囲内のモル比で用いられる。モル比が1.001より小さくなると、製造されたポリカーボネート樹脂の末端OH基が増加して、熱安定性、耐加水分解性が悪化し、また、モル比が1.3より大きくなると、ポリカーボネート樹脂の末端OH基は減少するが、同一条件下ではエステル交換反応の速度が低下し、所望の分子量を持つポリカーボネート樹脂の製造が困難となる傾向がある。本発明においては、末端OH基含有量が50〜1000ppmの範囲に調整したポリカーボネート樹脂を使用するのが良い。
【0022】
原料混合槽への原料の供給方法としては、液体状態の方が計量精度を高く維持し易いため、芳香族ジヒドロキシ化合物及び炭酸ジエステルのうち、一方又は両方を、溶融させて液体状態で供給することが好ましい。液体状態で原料を供給する場合には、計量装置としては、オーバル流量計、マイクロモーション式流量計等を用いることができる。一方、固体状態で原料を供給する場合には、スクリュー式フィーダーのように容量を計量するものよりも、重量を計量するものを用いるのが好ましく、べルト式、ロスインウェイト式等の重量フィーダーを用いることができるが、ロスインウェイト方式が特に好ましい。
【0023】
エステル交換触媒:溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、触媒が使用される。本発明で使用するポリカーボネート樹脂の製造方法においては、触媒種に制限はないが、一般的にはアルカリ金属化合物、アルカリ土類金属化合物、塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物又はアミン系化合物等の塩基性化合物が使用される。これらは、1種類で使用してもよく、2種類以上を組み合わせて使用してもよい。
【0024】
触媒の使用量は、芳香族ジヒドロキシ化合物1モルに対して0.05〜5μモル、好ましくは0.08〜4μモル、さらに好ましくは0.1〜2μモルの範囲内で用いられる。触媒の使用量が上記の量より少なければ、所望の分子量のポリカーボネート樹脂を製造するのに必要な重合活性が得られず、この量より多い場合は、ポリマー色相が悪化し、またポリマーの分岐化も進み、成型時の流動性が低下する傾向がある。
【0025】
アルカリ金属化合物としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムの水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルコラート、フェノラート、有機カルボン酸塩等の有機アルカリ金属化合物等がある。これらのアルカリ金属化合物の中でも、セシウム化合物が好ましく、具体的に最も好ましいセシウム化合物を挙げれば炭酸セシウム、炭酸水素セシウム、水酸化セシウムである。
【0026】
また、アルカリ土類金属化合物としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムの水酸化物、炭酸塩等の無機アルカリ土類金属化合物、アルコラート、フェノラート、有機カルボン酸塩等の有機アルカリ土類金属化合物等がある。
【0027】
塩基性ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩又はストロンチウム塩等が挙げられる。
【0028】
塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ−n−プロピルホスフィン、トリ−i−プロピルホスフィン、トリ−n−ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン等の3価のリン化合物、又は、これらの化合物から誘導される4級ホスホニウム塩等が挙げられる。
【0029】
塩基性アンモニウム化合物としては、例えば、テトラメチルアンモニウムヒドロキサイド、テトラエチルアンモニウムヒドロキサイド、テトラプロピルアンモニウムヒドロキサイド、テトラブチルアンモニウムヒドロキサイド、トリメチルエチルアンモニウムヒドロキサイド、トリメチルベンジルアンモニウムヒドロキサイド、トリメチルフェニルアンモニウムヒドロキサイド、トリエチルメチルアンモニウムヒドロキサイド、トリエチルベンジルアンモニウムヒドロキサイド、トリエチルフェニルアンモニウムヒドロキサイド、トリブチルベンジルアンモニウムヒドロキサイド、トリブチルフェニルアンモニウムヒドロキサイド、テトラフェニルアンモニウムヒドロキサイド、ベンジルトリフェニルアンモニウムヒドロキサイド、メチルトリフェニルアンモニウムヒドロキサイド、ブチルトリフェニルアンモニウムヒドロキサイド等が挙げられる。
【0030】
アミン系化合物としては、例えば、4−アミノピリジン、2−アミノピリジン、N,N−ジメチル−4−アミノピリジン,4−ジエチルアミノピリジン、2−ヒドロキシピリジン、2−メトキシピリジン、4−メトキシピリジン、2−ジメチルアミノイミダゾール、2−メトキシイミダゾール、イミダゾール、2−メルカプトイミダゾール、2−メチルイミダゾール、アミノキノリン等が挙げられる。これらの触媒のうち、実用的にはアルカリ金属化合物が望ましい。
【0031】
本発明においては、上記エステル交換触媒は、溶媒に溶解した触媒溶液の形態で用いられる。溶媒としては、例えば、水、アセトン、アルコール、トルエン、フェノールの他、原料芳香族ジヒドロキシ化合物や原料炭酸ジエステルを溶解する溶媒が挙げられる。これらのなかでは、水が好ましく、特にアルカリ金属化合物を触媒とする場合には、水溶液とすることが好適である。
【0032】
本発明におけるポリカーボネート樹脂は、温度250℃、角速度10rad/sの条件で測定した損失角δ及び複素粘性率η*(Pa・s)が、下記関係式(1)を満たすことが好ましく、より好ましくは下記関係式(2)の範囲であり、さらに好ましくは下記関係式(3)の範囲であり、特に好ましくは下記関係式(4)の範囲である。本発明において、該Tanδ/η*-0.87の値は、ポリカーボネート樹脂の溶融粘弾性を示すパラメーターとして使用した。Tanδ/η*-0.87の値が2500より小さい場合、及び6000より大きい場合には、成形性や成形品の外観がこの範囲内のものに比べて低下する。
【0033】
[数3]
2500≦Tanδ/η*-0.87≦6000 (1)
2800≦Tanδ/η*-0.87≦5500 (2)
3000≦Tanδ/η*-0.87≦5000 (3)
3800≦Tanδ/η*-0.87≦4800 (4)
【0034】
損失角δは、動的溶融粘弾性の測定から求められる、応力に対するひずみの位相の遅れを表し、動的粘弾性挙動を表す指標のひとつとして一般的に知られている。δ(Tanδ)は、その値が大きい場合は粘弾性の粘性的な性質が強いことを示し、小さい場合は弾性的な性質が強いことを示している。この値を決定する要因は複雑であり、例えば、共重合を含む単量体の種類、共重合組成、共重合の構造、分岐点の数や分岐鎖の長さ等の分岐構造等を含む分子構造、分子量、分子量分布等が挙げられる。
【0035】
本発明者らの知見によれば、界面法により製造されたポリカーボネート樹脂は、ガラス系フィラーを添加した場合に、成形性(流動性)が極端に悪化したり、射出成形時にガラスが成形品表面に浮き出し成形品の外観を損なうといった問題があった。このような界面法により製造されたポリカーボネート樹脂は、δ(Tanδ)の値を、分子量等の指標である複素粘性率(η*(Pa・s))に対する、対数座標にプロットすると、Tanδ/η*-0.87=約8000の直線上にほぼ並ぶことがわかった。(ここで、η*の指数である−0.87は、上記直線の傾きを表し、Tanδ/η*-0.87は、上記直線をη*=1(Pa・s)に外挿したときのTanδの値を表す。すなわち、Tanδ/η*-0.87の値をパラメータに用いることで損失角の分子量(粘度)依存性を排除することが可能となる。)
【0036】
溶融エステル交換法により製造されたポリカーボネート樹脂は一般にこの直線上には乗らず、しかも、Tanδ/η*-0.87<2500の溶融エステル交換法ポリカーボネート樹脂は、射出成形時に流れ模様が出やすく成形品外観に劣ることがわかった。ところが、以下に詳述する方法で得られたポリカーボネート樹脂は、分子量が大きい範囲でも成形性が優れており、2500≦Tanδ/η*-0.87≦6000の範囲のポリカーボネート樹脂が特に種々の点で優れていることを見出した。
【0037】
本発明において、該溶融粘弾性パラメーターで規定されたポリカーボネート樹脂が特に優れた成形性に与えるのは、δ(Tanδ)の値が小さい場合、ポリカーボネート樹脂の法線応力が大きくなり、それによってポリカーボネート樹脂を成形品表面へ押しつける応力が高く、その結果、無機充填剤の浮き出しが少なくなるためと推定される。又、この他、該特定の規定のポリカーボネート樹脂は、薄肉部分での流動性が高くなり、成形性が改良される効果もある。一方、δ(Tanδ)の値が小さすぎる場合、理由は定かでは無いが成形品表面に流れ模様が発生してしまうので好ましくない。
【0038】
なお、本発明においては、ポリカーボネート樹脂に各種安定剤、紫外線吸収剤、離型剤、着色剤等を添加することもでき、ポリカーボネート樹脂の製造途中、又はペレット製造の前にこれらの添加剤を添加する場合もあり、一般にそれらの添加剤を含んだものを「ポリカーボネート樹脂」と称する場合があるが、本発明で規定する上記関係式の値は、これらの添加剤を全く含まないポリカーボネート樹脂について求められるものである。
【0039】
ポリカーボネート樹脂の末端OH基含有量は、50〜1000ppmであることが好ましく、70〜900ppmであることがさらに好ましく、90〜800ppmであることがとりわけ好ましい。
【0040】
また、ポリカーボネート樹脂は、分子量が低い場合は流動性には優れるが機械的強度に劣り、分子量が高い場合には機械的強度には優れるが流動性に劣る傾向がある。本発明では、粘度平均分子量が12,000〜30,000のポリカーボネート樹脂が好ましく、粘度平均分子量が14,000〜26,000のポリカーボネート樹脂が更に好ましく、粘度平均分子量が16,000〜24,000のポリカーボネート樹脂が最も好ましい。
【0041】
ポリカーボネート樹脂の製造方法:本発明において、ポリカーボネート樹脂の製造方法は、溶融エステル交換法であって、前記したような炭酸ジエステルと芳香族ジヒドロキシ化合物を原料とし、同じく前記したような触媒を使用して、実質的に溶剤を使用せず、高温条件下で反応を行い、重合ポリマーを溶融状態で得るような方法であれば特に限定されない。しかし、本発明においては、特に上記式(1)のような特定の物性を有するポリカーボネート樹脂を使用するのが好ましく、該ポリカーボネート樹脂を製造する方法としては、例えば、以下のような方法が挙げられる。
【0042】
すなわち、通常、原料混合槽等で両原料を、均一に撹拌した後、触媒を添加して重合を行い、ポリマーが生産される。例えば、上記の芳香族ジヒドロキシ化合物、炭酸ジエステルの両原料を、原料混合槽に連続的に供給し、得られた混合物とエステル交換触媒を重合槽に連続的に供給することが好ましい。その際、本発明の上記式(1)の物性のポリマーを安定して生産するためには、例えば、少なくとも以下の(A)及び(B)の両条件を満足する方法が採用される。
【0043】
(A)全製造時間を一つ以上に分画した単位製造時間ごとに、重合槽に供給される芳香族ジヒドロキシ化合物又は炭酸ジエステル1モルに対しての触媒量を一定に保つための目標触媒供給量である「設定触媒量」を、芳香族ジヒドロキシ化合物1モルに対して、0.05〜5μモルの範囲内から選択する。なお、「全製造時間」とは、重合槽においてポリマーを安定的に生産する原料供給時間に対応し、立ち上げ時や、グレード切り替え時、製造終了時等の非安定時のポリマー製造時間は含まない。
【0044】
(B)各単位製造時間の少なくとも95%の時間は、供給される実際のエステル交換触媒量(以下、単に「実際の触媒量」という。)が、芳香族ジヒドロキシ化合物1モルに対して、各設定触媒量±0.1μモル以内の値に維持されるようにする。上記(1)において、設定触媒量は、全製造時間を通して必ずしも一定値である必要はなく、全製造時間を一つ以上に分画して、その単位製造時間ごとに設定することが可能である。
【0045】
以下、この方法について詳しく説明すると、全製造時間が単一分画の単位製造時間である場合は、その少なくとも95%の時間は、芳香族ジヒドロキシ化合物1モルに対して、設定触媒量±0.1μモル以内の値に実際の触媒量を維持する。また、全製造時間が複数の単位製造時間に分画され、設定触媒量が変更される場合には、各単位製造時間の少なくとも95%の時間は、各設定触媒量±0.1μモル以内の値に、実際の触媒量を維持する。いずれの場合も、設定触媒量±0.08μモル以内に維持することが好ましく、設定触媒量±0.06μモル以内に維持することが特に好ましい。
【0046】
さらに、実際の触媒量が、制御された値に維持される時間の割合は、全製造時間又は各単位製造時間の少なくとも95%であれば良いが、100%に近いほどより好ましい。95%より少ない時間になると、所望の分子量、末端OH基含有量のポリマーが得られなくなり、特に設定触媒量より多い時間の割合が多い場合は、得られるポリマー色相が悪化したり、またポリマーの分岐化が進む等して、結果的に本発明で規定する関係式を満足するものが得られなくなり、該ポリマーを成型する時の流動性も低下する傾向がある。なお、重合温度、重合時間、減圧度等の重合反応時の製造条件を変えても、前記式(1)で規定するポリカーボネート樹脂を製造することが可能であるが、安定的な生産が困難になるので好ましくない。実際の触媒量を、設定触媒量±0.1μモルと極めて小さな変動範囲以内に維持して、供給を続けることにより初めて、煩雑な重合操作を必要とせずに、前記式(1)で規定する特定の関係式を満足し、狭い分子量分布、色調、流動性、耐熱性、機械物性等、諸物性に優れたポリマーを安定的に生産できるようになることがわかった。
【0047】
前記の実際の触媒量を、設定触媒量±0.1μモル以内の値に維持させるためには、重合槽に供給する触媒流量を、オーバル流量計、マイクロモーション式流量計等を用いて、計量、供給することが好ましい。
【0048】
触媒供給を自動制御するには、例えば、まずコンピュータに、継続的に実際の触媒流量の測定値を入力し、前述した設定触媒量と芳香族ジヒドロキシ化合物又は炭酸ジエステルの原料調製槽への供給量より算出された設定触媒流量とを比較させる。その際、実際の触媒流量の測定値が、該設定触媒流量と異なる場合、この結果を触媒計量・供給装置に伝え、バルブの開度等を調節して、実際の触媒流量と設定触媒流量が一致するように制御する。
【0049】
ここで、触媒供給の自動制御は、実際の触媒流量の測定間隔の適正化に十分配慮すれば、継続的な間歇測定に基づく制御でも、連続的な測定と同様に制御を行うことは可能であるが、安定した品質の製品を得るには、連続的な自動測定であることが好ましい。すなわち、連続的に触媒流量を自動測定できれば、重合槽への触媒供給量を迅速且つ連続的に制御することが可能となり、その結果、一定の設定触媒流量に維持され、ポリカーボネート樹脂の粘度平均分子量や末端OH基含有量等のふれが小さく、かつ分子量分布が狭くなり、さらに色調、流動性、耐熱性、機械物性等、諸物性の均一な製品が得られるので好ましい。
【0050】
ある設定触媒量の単位製造時間中に、実際の触媒量が、設定触媒量±0.1μモル以内の値に、どれ程の時間存在したかは、上記測定手段による測定結果から容易に判定することができる。連続的測定の場合、実際の原料モル比と測定時間の関係を示す曲線より、予め設定した触媒量±0.1μモル以内にある累積時間と、±0.1μモルよりはずれた累積時間とを求めることにより、該設定触媒量での単位製造時間の少なくとも95%の時間は、±0.1μモル以内の値に維持されていたかどうかが判定される。連続的測定ではない場合でも、継続的な測定であれば、これを統計処理する方法等により判定することができる。
【0051】
本発明ではポリカーボネート樹脂の重合反応(エステル交換反応)は、一般的には2以上の重合槽での反応、すなわち2段階以上、通常3〜7段の多段工程で連続的に実施されることが好ましい。具体的な反応条件としては、温度:150〜320℃、圧力:常圧〜2.0Pa、平均滞留時間:5〜150分の範囲とし、各重合槽においては、反応の進行とともに副生するフェノールの排出をより効果的なものとするために、上記反応条件内で、段階的により高温、より高真空に設定する。なお、得られるポリカーボネート樹脂の色相等の品質低下を防止するためには、できるだけ低温、できるだけ短い滞留時間の設定が好ましい。なお、多段工程で重合槽を複数用いる場合の実際の触媒量の自動制御は、触媒の供給量を連続的に自動制御することが好ましく、その場合は、第1重合槽の滞留時間の1/3以内に測定及び制御が完了させるのが良い。
【0052】
上記エステル交換反応において使用する装置は、竪型、管型又は塔型、横型のいずれの形式であってもよい。通常、タービン翼、パドル翼、アンカー翼、フルゾーン翼(神鋼パンテック(株)製)、サンメラー翼(三菱重工業(株)製)、マックスブレンド翼(住友重機械工業(株)製)、ヘリカルリボン翼、ねじり格子翼((株)日立製作所製)等を具備した1以上の竪型重合槽に引き続き、円盤型、かご型等の横型一軸タイプの重合槽やHVR、SCR、N−SCR(三菱重工業(株)製)、バイボラック(住友重機械工業(株)製)、メガネ翼、格子翼((株)日立製作所製)、又はメガネ翼とポリマーの送り機能を持たせた、例えばねじりやひねり等の入った翼及び/又は傾斜がついている翼等を組み合わせたもの等を具備した、横型二軸タイプの重合槽を用いることができる。
【0053】
上記方法で製造したポリカーボネート樹脂中には、通常、原料モノマー、触媒、エステル交換反応で副生する芳香族ヒドロキシ化合物、ポリカーボネートオリゴマー等の低分子量化合物が残存している。なかでも、原料モノマーと芳香族ヒドロキシ化合物は、残留量が多く、耐熱老化性、耐加水分解性等の物性に悪影響を与えるので、製品化に際して除去されることが好ましい。それらを除去する方法は、特に制限はなく、例えば、ベント式の押出機により連続的に脱揮してもよい。その際、樹脂中に残留している塩基性エステル交換触媒を、あらかじめ酸性化合物又はその前駆体の添加により、失活させておくことにより、脱揮中の副反応を抑え、効率よく原料モノマー及び芳香族ヒドロキシ化合物を除去することができる。
【0054】
添加する酸性化合物又はその前駆体には特に制限はなく、重縮合反応に使用する塩基性エステル交換触媒を中和する効果のあるものであれば、いずれも使用できる。具体的には、塩酸、硝酸、ホウ酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、ポリリン酸、アジピン酸、アスコルビン酸、アスパラギン酸、アゼライン酸、アデノシンリン酸、安息香酸、ギ酸、吉草酸、クエン酸、グリコール酸、グルタミン酸、グルタル酸、ケイ皮酸、コハク酸、酢酸、酒石酸、シュウ酸、p−トルエンスルフィン酸、p−トルエンスルホン酸、ナフタレンスルホン酸、ニコチン酸、ピクリン酸、ピコリン酸、フタル酸、テレフタル酸、プロピオン酸、ベンゼンスルフィン酸、ベンゼンスルホン酸、マロン酸、マレイン酸等のブレンステッド酸及びそのエステル類が挙げられる。これらは、単独で使用しても、また、2種以上を組み合わせて使用してもよい。これらの酸性化合物又はその前駆体のうち、スルホン酸化合物又はそのエステル化合物、例えば、p−トルエンスルホン酸、p−トルエンスルホン酸メチル、p−トルエンスルホン酸ブチル等が特に好ましい。
【0055】
これらの酸性化合物又はその前駆体の添加量は、重縮合反応に使用した塩基性エステル交換触媒の中和量に対して、0.1〜50倍モル、好ましくは0.5〜30倍モルの範囲で添加する。酸性化合物又はその前駆体を添加する時期としては、重縮合反応後であれば、いつでもよく、添加方法にも特別な制限はなく、酸性化合物又はその前駆体の性状や所望の条件に応じて、直接添加する方法、適当な溶媒に溶解して添加する方法、ペレットやフレーク状のマスターバッチを使用する方法等のいずれの方法でもよい。
【0056】
脱揮に用いられる押出機は、単軸でも二軸でもよい。また、二軸押出機としては、噛み合い型二軸押出機で、回転方向は同方向回転でも異方向回転でもよい。脱揮の目的には、酸性化合物添加部の後にベント部を有するものが好ましい。ベント数に制限は無いが、通常は2段から10段の多段ベントが用いられる。また、該押出機では、必要に応じて、安定剤、紫外線吸収剤、離型剤、着色剤等の添加剤を添加し、樹脂と混練することもできる。
【0057】
本発明で使用する無機充填剤としては、特に限定されるのもではないが、補強効果の観点から、繊維状又は板状の無機充填剤が好ましい。かかる充填剤の一例として、繊維状充填剤としては、ガラス繊維、炭素繊維、金属繊維や、チタン酸カリウムウイスカー、炭酸カルシウムウイスカー、ホウ酸アルミニウムウイスカー、酸化チタンウイスカー、酸化亜鉛ウイスカー、硫酸マグネシウムウイスカーといったウイスカーやワラストナイト等が挙げられ、板状無機充填剤としては、ガラスフレーク、タルク、マイカ、金属フレーク等が挙げられ、これらは単独、又は2種以上の組み合わせで用いることができる。これらの中でも、ガラス繊維、ガラスフレーク、炭素繊維、ワラストナイト、マイカ、タルク、ウイスカーから選ばれる1種、又は2種以上の組み合わせが好ましい。
【0058】
該無機充填剤の配合比率は、ポリカーボネート樹脂100重量部に対し3〜200重量部の範囲で選択されればよく、3重量部を下回ると寸法安定性や剛性の面で劣り、200重量部を上回ると流動性が不足して成形が困難になったり、金型や成形機のシリンダーの摩耗が激しくなり経済的に不利になる。
【0059】
本発明で用いられる流動性改良剤とは、ポリカーボネート樹脂の流動性を向上させる為に添加される成分であり、低分子、高分子を問わない。好ましくは、芳香族ポリエステルオリゴマー、芳香族ポリカーボネートオリゴマー、ポリカプロラクトン、低分子量アクリル系共重合体、脂肪族ゴム−ポリエステルブロック共重合体からなる群より選ばれる1種、又は2種以上の組み合わせであり、特に好ましくは、芳香族ポリカーボネートオリゴマー、ポリカプロラクトン、脂肪族ゴム−ポリエステルブロック共重合体からなる群より選ばれる1種、又は2種以上の組み合わせが挙げられる。
【0060】
ここで芳香族ポリエステルオリゴマーとは、芳香族ジカルボン酸またはそのエステル形成性誘導体と、グリコール類またはそのエステル形成性誘導体とを、公知の方法に従い、加圧ないし若干減圧の条件下加熱することによって製造される。芳香族ポリエステルオリゴマーの重合度は、圧力、加熱温度等を調節することによって所望値に決定される。該芳香族ジカルボン酸としては、テレフタル酸が最も好ましく、イソフタル酸、フタル酸等が挙げられる。また、芳香族ジカルボン酸またはそのエステル形成性誘導体としては、芳香族ジカルボン酸のジアルキルエステル、酸クロリド等が好ましい。またグリコール類またはそのエステル形成性誘導体としては、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、エチレンオキシド、プロピレンオキシド等が挙げられる。この際、グリコール成分の一部をグリセリン、ペンタエリスリトール、p−キシレングリコール、1,4−シクロヘキサンジオール、ビスフェノールA等で置き換えてもよい。
【0061】
本発明で用いられる芳香族ポリエステルオリゴマーは、末端の殆どが水酸基を有しているものであり、ごく少量のカルボキシル基を有していてもよい。芳香族ポリエステルオリゴマーの平均重合度は、通常2〜20、好ましくは2〜10、更に好ましくは3〜8のものである。平均重合度があまり高くなるとポリカーボネート樹脂との相溶性が悪くなり、成形品が白濁したり、層状剥離の原因となるなどの不都合を招くので好ましくない。従来、ポリカーボネート樹脂の耐薬品性を改良するために、ポリカーボネート樹脂にポリブチレンテレフタレートやポリエチレンテレフタレートを混合する方法が知られている。しかし、これらの方法で使用されるポリブチレンテレフタレートやポリエチレンテレフタレートは、いずれも高重合度のポリエステルであり、本発明の芳香族ポリエステルオリゴマーとは明確に区別されるものである。本発明の芳香族ポリエステルオリゴマーは、その重合度は通常2〜20の範囲であるが、極限粘度(η)で表した場合には0.22以下、好ましくは0.14以下のものが使用される。
【0062】
本発明の芳香族ポリカーボネートオリゴマーとは、下記式(III)で示される化合物で、通常、平均重合度は2〜15、好ましくは4〜10のものである。平均重合度があまり高くなると、成形品の表面外観の改良効果が小さくなり好ましくない。
【0063】
【化3】

【0064】
(式(III)中、R1,R2,R3,R4は、それぞれ水素原子、ハロゲン原子または炭素数1〜3のアルキル基であって、それぞれは同一であっても異なってもよく、Xは、炭素数1〜5の置換あるいは非置換のアルキリデン基、酸素原子、イオウ原子またはスルホニル基である。)
【0065】
本発明の芳香族ポリカーボネートオリゴマーは、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパンで代表的に例示する芳香族二価フェノール系化合物とホスゲンで代表されるカーボネート前駆体との反応や、芳香族二価フェノールとジフェニルカーボネート等とのエステル交換反応によって得られ、芳香族二価フェノール系化合物は単独で用いても混合して用いてもよい。芳香族ポリカーボネートオリゴマーの極限粘度(η)は、塩化メチレン中25℃で0.3以下である。芳香族ポリカーボネートオリゴマーの重合度の調整は、ホスゲンを用いる界面重合法では、フェノール及び/又はアルキル置換フェノールを重合系に添加して、末端封鎖すればよい。
【0066】
本発明のポリカプロラクトンとは、次の式(IV)で示されるε−カプロラクトンのポリマーを用いることが出来る。
【0067】
【化4】

【0068】
ポリカプロラクトンのメチレン鎖の水素原子の一部はハロゲン原子等で置換されていてもよいが、上記式(IV)で示されるポリカプロラクトンを使用することが望ましい。上記式(IV)のポリカプロラクトンの末端はエステル化などにより、末端処理してあってもよい。ポリカプロラクトンは5,000〜300,000の平均分子量で、融点は60℃、ガラス転移温度は約−60℃である。本発明で使用されるポリカプロラクトンの平均分子量は、10,000〜50,000のものが好ましい。
【0069】
本発明の低分子量アクリル系共重合体とは、メタアクリル酸又はアクリル酸の炭素数1〜6のアルコールとのエステルを少なくとも7%以上、好ましくは20〜40重量%含む共重合体であり、重量平均分子量が40,000以下、好ましくは25,000以下のものである。このようなアクリル酸エステルとしては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、1,3ブチレン−ジアクリレートなどを例示出来る。メタクリル酸エステルとしてはメチルメタクリレート、エチルメタクリレート、ブチルメタクリレート、イソブチルメタクリレート、1,3−ブチレン−ジメタクリレートなどがあり、中でもブチルメタクリレートが好ましい。これらのエステルと共重合する成分は、スチレン、アクリロニトリル、エチレン、プロピレン、ブタジエン、ブテン−1等のビニル単量体があり、好ましい単量体は、スチレン、アクリロニトリルである。
【0070】
本発明の脂肪族ゴム−ポリエステルブロック共重合体とは、脂肪族ジエン系ゴムに脂肪族ラクトンを開環重合させポリエステルブロックを形成させてなるブロック共重合体であって、脂肪族ジエン系ゴムの片末端又は両末端にポリエステルブロックを有するゴム−ポリエステルブロック共重合体である。脂肪族ジエン系ゴムの数平均分子量は1,000〜4,000であり、分子の両末端にカルボキシキル基、水酸基、ビニル基、アミノ基等の官能基を有するもので、官能基としては水酸基が好ましい。脂肪族ジエン系ゴムとしては、α,ω−1,2−ポリブタジエングリコール、水素添加α,ω−1,2−ポリブタジエングリコール、水酸基末端変性−1,4−ポリブタジエン、液状ポリクロロプレン、液状天然ゴムなどがあり、ポリブタジエン系化合物又は部分的もしくは完全に水素添加されたポリブタジエン系化合物が好ましい。ゴム−ポリエステルブロック共重合体としては、末端に水酸基を有する脂肪族ジエン系ゴムの末端水酸基に脂肪族ラクトンを触媒存在下に逐次開環重合させてポリエステルブロックを形成させたものが好ましく、脂肪族ラクトンとしてはε−カプロラクトンが好ましい。ブロック共重合体中のポリエステル鎖の末端基は通常水酸基となるが、エステル結合、エーテル結合、ウレタン結合を介して非反応基で末端基封鎖することが望ましい。特に好ましいのは無水酢酸によるアセチル化、シリル化剤によるシリルエーテル化により末端封鎖されたものである。
【0071】
本発明は、上記のポリカーボネートに、さらに、本発明の目的を損なわない範囲で、他の熱可塑性樹脂、難燃剤、耐衝撃性改良剤、帯電防止剤、スリップ剤、アンチブロッキング剤、滑剤、防曇剤、天然油、合成油、ワックス、有機系充填剤等の添加剤を添加した、所望の物性を有するポリカーボネート樹脂組成物をも対象とする。
【実施例】
【0072】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0073】
ポリカーボネート樹脂の製造
以下、ポリカーボネート樹脂の製造法を示す。なお、得られたポリカーボネート樹脂の分析は、下記の測定方法により行った。
【0074】
(1)粘度平均分子量(Mv):
ウベローデ粘度計を用いて、塩化メチレン中20℃の極限粘度[η]を測定し、以下の式より粘度平均分子量(Mv)を求めた。
【0075】
[数4]
[η]=1.23×10-4×(Mv)0.83 (6)
【0076】
(2)末端OH基含有量:
四塩化チタン/酢酸法(Makromol.Chem.88 215(1965)に記載の方法)により比色定量を行った。測定値は、ポリカーボネート重量に対する末端OH基の重量をppm単位で表示した。
【0077】
(3)分子量分布(Mw/Mn):
ゲルパーミエーションクロマトグラフィー(GPC)により測定した。測定装置には、HLC−8020(商品名、東ソー(株)製品)を、溶離液にはテトラヒドロフランを使用し、ポリスチレン換算で求め、Mw/Mnを算出した。
【0078】
(4)動的粘弾性:
動的粘弾性は以下の様に測定した。サンプルのポリカーボネート樹脂を120℃、5時間の乾燥を行い、250℃で直径25mm、厚み1.5mmの形状にプレス成形し、測定用サンプルを得た。サンプルは測定前に120℃、4時間の減圧乾燥を行い、測定に供した。粘弾性測定器RDA−700(商品名、レオメトリックス(株)製品)を使用し、直径25mmのパラレルプレート型の治具を装着し、本機器の適正条件を満足する窒素気流中、測定温度である250℃に設定した。測定温度はオーブン内の温度を測定することにより設定した。その後乾燥した測定用サンプルを機器にセットし、サンプル全体が十分に設定温度となる様に静置の後、角速度10rad/s、歪み10%の回転をすることで測定した。この測定により損失正接Tanδ及び複素粘性率η*(Pa・s)を求めた。
【0079】
製造例1:
図1に従って、本発明のポリカーボネート樹脂を製造する方法の一例である実施態様を説明する。図1は、本発明の製造方法の1例を示したフローシート図である。図中、1はDPC(ジフェニルカーボネート)貯槽、2は撹拌翼、3はBPA(ビスフェノールA)ホッパー、4a,bは原料混合槽、5はDPC流量制御弁、6はBPA流量制御弁、7はポンプ、8は触媒流量制御弁、9はプログラム制御装置、10はポンプ、11は触媒貯槽である。図中、12は副生物排出管、13a,b,cは竪型重合槽、14はマックスブレンド翼、15は横型重合槽、16は格子翼である。
【0080】
窒素ガス雰囲気下120℃で調製されたジフェニルカーボネート融液、及び、窒素ガス雰囲気下計量されたビスフェノールA粉末を、それぞれ、DPC貯槽(1)から205.0モル/h、及びBPAホッパー(3)から197.1モル/h(原料モル比1.040)の送量となるように、マイクロモーション式流量計及びロスインウェイト方式の重量フィーダーで計量し、窒素雰囲気下140℃に調整された原料混合槽(4a)に連続的に供給した。続いて混合された原料混合液を原料混合槽(4b)に、さらにポンプ(7)を介して容量100Lの第1竪型撹拌重合槽(13a)に連続的に供給した。一方、上記混合物の供給開始と同時に、触媒として2重量%の炭酸セシウム水溶液を、触媒導入管を介して、1.6mL/h(設定触媒量:ビスフェノールA1モルに対し、0.51μモル)の流量で連続供給を開始した。
【0081】
このとき、実際の触媒流量制御は、プログラム制御装置(9)で、BPA流量制御弁(6)で検知したBPA流量と設定触媒量より、設定触媒流量を計算して、この値と触媒流量制御弁(8)に設けられた測定装置で実測された触媒流量とが一致するように触媒流量制御弁(8)の開度をコントロールすることによって遂行された。マックスブレンド翼(14)を具備した第1竪型撹拌重合槽(13a)は、常圧、窒素雰囲気下、220℃に制御し、さらに平均滞留時間が60分になるように、槽底部のポリマー排出ラインに設けられたバルブ開度を制御しつつ、液面レベルを一定に保った。
【0082】
槽底より排出された重合液は、引き続き、第2、第3のマックスブレンド翼を具備した容量100Lの竪型撹拌重合槽(13b、13c)、及び第4の格子翼(16)を具備した容量150Lの横型重合槽(15)に逐次連続供給された。第2〜第4重合槽での反応条件は、それぞれ、下記のように、反応の進行とともに高温、高真空、低撹拌速度となるように条件設定した。
【0083】
【表1】

【0084】
反応の間は、第2〜第4重合槽の平均滞留時間が60分となるように、液面レベルの制御を行い、また、各重合槽においては、副生したフェノールを副生物排出管(12)より除去した。以上の条件下で、1500時間連続して運転した。なお、第4重合槽底部のポリマー排出口から抜き出されたポリカーボネート樹脂は、溶融状態のまま、3段ベント口を具備した2軸押出機に導入され、p−トルエンスルホン酸ブチルをポリカーボネート樹脂の重量に対し、4.0ppm(触媒の中和量に対し、4.4倍モル)添加し、水添、脱揮した後、ペレット化した。得られたポリカーボネート樹脂の粘度平均分子量(Mv)及び末端OH基含有量は、それぞれ、21,500及び500ppmであった。
【0085】
また、触媒流量制御弁(8)に設けられた測定装置で実測された触媒流量の連続測定データ(以下、「触媒流量制御弁の連続測定データ」と略称する。)より、芳香族ジヒドロキシ化合物1モルに対して、設定触媒量±0.06μモル以内及び±0.1μモル以内の時間を算出したところ、それぞれ全製造時間の96.7%及び99.1%であった。分子量分布(Mw/Mn)及びTanδ/η*-0.87の値は、それぞれ、2.3及び4,850であった。これをPC−1と表す。
【0086】
製造例2:
製造例1において、プログラム制御装置を設置せず、触媒流量を1.6mL/h(設定触媒量:ビスフェノールA1モルに対し、0.5μモル)に固定した以外は、実施例2と同様にして実施した。得られたポリカーボネート樹脂の粘度平均分子量(Mv)及び末端OH基含有量は、それぞれ、22,400及び500ppmであった。また、触媒流量制御弁の連続測定データより、芳香族ジヒドロキシ化合物1モルに対して、設定触媒量±0.06μモル以内及び±0.1μモル以内の時間を算出したところ、全製造時間の89.9%及び91.7%であった。分子量分布(Mw/Mn)及びTanδ/η*-0.87の値は、それぞれ、2.7及び2,240であった。これをPC−2と表す。
【0087】
比較製造例1:
ビスフェノールAを界面法により重縮合させ、フェノールで末端封止した。得られたポリカーボネート樹脂の粘度平均分子量(Mv)及び末端OH基含有量は、それぞれ、22,100及び30ppmであった。分子量分布(Mw/Mn)及びTanδ/η*-0.87の値は、それぞれ、2.3及び7,550であった。これをPC−3と表す。
【0088】
実施例1〜6、及び比較例1〜3:
表2及び表3に示す配合処方で、単軸押出機VS−40(田辺プラスチック(株)製)によりバレル温度280℃で混練、ペレット化した。得られたペレットを120℃、5時間乾燥した後、住友重機械工業製、サイキャップM−2、型締め力75Tを用いて、シリンダー温度:300℃,金型温度:100℃の条件で各種試験片の射出成形を行い、得られた成形サンプルを用いて以下の評価を行った。
【0089】
表2及び表3の配合処方のうちPCオリゴマーは、前記式(III)で示される構造で、平均重合度7のポリカーボネートオリゴマーであり、ポリカプロラクトンはダイセル化学(株)製の商品名PLACCEL H−1、数平均分子量=10,000のポリカプロラクトンである。また、ガラス繊維は、直径13μm、長さ3mmのチョップドストランド(旭ファイバーグラス社製、商品名:CS03MAFT737)を用いた。炭素繊維は、直径7μm、長さ6mmのチョップドストランド(三菱レイヨン(株)製、商品名:TR06U)を用いた。
【0090】
(5)曲げ強さ、曲げ弾性率:
ISO 178による曲げ試験法に従い、三点曲げ試験を行った。
【0091】
(6)流動性:
射出成形機(住友重機械工業社製、商品名:サイキャップM−2、型締め力75T)を用いて、シリンダー温度:300℃,金型温度:100℃,金型:20mm幅×2mm厚み,射出圧力:150MPaの条件で流動長を測定した。
【0092】
(7)成形品外観:
射出成形機(住友重機械工業社製、商品名:サイキャップM−2、型締め力75T)を用いて、シリンダー温度:300℃,金型温度:100℃の条件で、80mm×40mm×3.2mm厚みのプレートを成形し、外観を目視で評価した。尚、外観の評価基準は以下による。
【0093】
◎:無機充填剤の浮きが無く非常に良好
〇:無機充填剤の浮きが少なく良好
△:無機充填剤の浮きが目立つ
×:無機充填剤の浮きが非常に目立つ
【0094】
(8)金型付着物:
射出成形機(日本製鋼所社製、商品名:PS40、型締め力40T)を用いて、シリンダー温度:320℃,金型温度:100℃の条件で、15mm×27mm×3mm厚みの金型を用いて10,000ショット成形し、成形後の金型付着物の量を目視により判断した。尚、金型付着物の評価基準は以下による。
【0095】
◎:金型付着物が殆ど無く非常に良好
○:金型付着物が少なく良好
△:金型付着物が多い
×:金型付着物が非常に多く、不良
【0096】
【表2】

【0097】
【表3】

【符号の説明】
【0098】
1.DPC貯槽
2.撹拌翼
3.BPAホッパー
4a,b.原料混合槽
5.DPC流量制御弁
6.BPA流量制御弁
7.ポンプ
8.触媒流量制御弁
9.プログラム制御装置
10.ポンプ
11.触媒貯槽
12.副生物排出管
13a,b,c.竪型重合槽
14.マックスブレンド翼
15.横型重合槽
16.格子翼

【特許請求の範囲】
【請求項1】
ポリカーボネート樹脂100重量部に対して、流動性改良剤を1〜30重量部、無機充填剤を3〜200重量部含む樹脂組成物であって、該ポリカーボネート樹脂が溶融エステル交換法で得られるポリカーボネート樹脂であって、温度250℃、角速度10rad/sの条件で測定した損失角δ及び複素粘性率η*(Pa・s)が、下記関係式(1)を満たすことを特徴とするポリカーボネート樹脂組成物。
[数1]
2500≦Tanδ/η*-0.87≦6000 (1)
【請求項2】
ポリカーボネート樹脂の末端OH基含有量が50〜1000ppmの範囲内であることを特徴とする請求項1に記載のポリカーボネート樹脂組成物。
【請求項3】
ポリカーボネート樹脂の粘度平均分子量が12,000〜30,000の範囲内であることを特徴とする請求項1又は2に記載のポリカーボネート樹脂組成物。
【請求項4】
流動性改良剤が、芳香族ポリエステルオリゴマー、芳香族ポリカーボネートオリゴマー、ポリカプロラクトン、低分子量アクリル系共重合体、脂肪族ゴム−ポリエステルブロック共重合体、からなる群より選ばれる1種、又は2種以上の組み合わせからなることを特徴とする請求項1ないし3のいずれかに記載のポリカーボネート樹脂組成物。
【請求項5】
流動性改良剤が、芳香族ポリカーボネートオリゴマー、ポリカプロラクトン、脂肪族ゴム−ポリエステルブロック共重合体、からなる群より選ばれる1種、又は2種以上の組み合わせからなることを特徴とする請求項1ないし4のいずれかに記載のポリカーボネート樹脂組成物。
【請求項6】
無機充填剤が、ガラス繊維、ガラスフレーク、炭素繊維、ワラストナイト、マイカ、タルク、ウイスカーからなる群より選ばれる1種、又は2種以上の組み合わせからなることを特徴とする請求項1ないし5のいずれかに記載のポリカーボネート樹脂組成物。
【請求項7】
請求項1ないし6のいずれかに記載のポリカーボネート樹脂組成物を用いた成形品。

【図1】
image rotate


【公開番号】特開2011−63812(P2011−63812A)
【公開日】平成23年3月31日(2011.3.31)
【国際特許分類】
【出願番号】特願2010−261058(P2010−261058)
【出願日】平成22年11月24日(2010.11.24)
【分割の表示】特願2001−211905(P2001−211905)の分割
【原出願日】平成13年7月12日(2001.7.12)
【出願人】(594137579)三菱エンジニアリングプラスチックス株式会社 (609)
【Fターム(参考)】