説明

マシナブルセラミックス加工用小径ドリル

【課題】ドリルの先端部切れ刃を形状と材質で最適化して、摩耗の進行を抑制する事で先端部切れ刃の鋭利さを保ち、ワークの穴精度を高精度に維持する事ができ、折損事故も防止できる、直径2mm以下のマシナブルセラミックス加工用小径ドリルを提供する。
【解決手段】マシナブルセラミックスに直径2mm以下の穴あけ加工を行う小径ドリルであり、小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成され、回転軌跡の先端角の角度は、中心側切れ刃を120°〜140°、外周側切れ刃を70°〜100°、外周側切れ刃の投影長さを直径の5%〜30%の範囲とする。さらにねじれ角が25°〜35°、マージン部の円周長さは、小径ドリルの直径の15%〜30%の範囲とし、リーディングエッジに接続された先行マージン部と、ヒールに接続された後方マージン部の間は円筒部が削除されている形状とするのがよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マシナブルセラミックスの加工用小径ドリルに関し、マシナブルセラミックスの穿孔に最適な小径ドリル、特にドリルの先端部切れ刃の新規な形状を有する小径ドリルを提供するものである。
【背景技術】
【0002】
本発明の小径ドリルでの穴あけ加工として対象とするマシナブルセラミックスとは、セラミックス中に、雲母やジルコニア微結晶などを分散させ、へき開性もしくは耐クラック性を持たせたセラミックスである。この特性により、以前では困難であったセラミックスの機械加工が容易に可能となる。そのため加工が容易である点や、セラミックスが有する電気絶縁性、高熱伝導性または低熱伝導性、耐食性などの特徴を生かし、碍子、保護管、基板、化学装置用ノズル、プローブカードなどに使用されている。加工容易性を生かした製品では、量産品の原型模型をマシナブルセラミックスで試作する例も知られている。これらのマシナブルセラミックスは、必要に応じて穿孔、旋削、フライス削りなどの機械加工が必要である。本発明は、特に半導体装置の検査工程用プローブカードに用いられるマシナブルセラミックスなどを対象として、直径が2mm以下、望ましくは0.5mm以下の小径の穴あけ加工を行う小径ドリルに関する。
【0003】
以下、最も小径のドリルが必要とされる一例として、プローブカードの穴あけ加工を例にとって説明する。半導体の集積回路の製造工程において、ウェハ上に回路が完成した段階で、ウェハを個々のチップに切り離す前に、通電テストを行う。このとき、プローブカードと呼ばれる検査治具を用いて行う。プローブカードには、絶縁体としてマシナブルセラミックスが用いられ、多数の穿孔された小径の穴(具体的に例示すると、直径12インチ程度のマシナブルセラミックスの円板に、直径が0.1mm程度の小径の穴が、40000個程度穿孔される)に先端が針状のプローブが差し込まれる。
【0004】
現在使用されているプローブカードのマシナブルセラミックスを穴あけ加工する小径ドリルは、主に超硬素材が多く、ドリル形状としても特別な物は用いられておらず、昔から汎用形状のものが使用されている。また本発明では、ドリルの直径が2mm以下のものを小径と言う。
【0005】
ドリル先端部切れ刃の形状に特徴のある例を挙げると、特許文献1、及び特許文献2には、切れ刃外周側に面取り刃を設けたものが開示されている。これらのドリルは、高硬度材や鋳鉄の穴あけ加工において、加工穴周囲のこばカケを防止して長寿命化を図る事を目的としており、切れ刃にネガランドやホーニングを設けている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−103738号公報
【特許文献2】特開平7−80714号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1や2に記載のドリルは、ネガランドやホーニングによって刃先のチッピングや、こばカケを防止する事はできるが、切削抵抗が増大するという問題があった。特に本発明が対象とするマシナブルセラミックスは直径2mm以下の小径であり、切削抵抗が高くなると折損する可能性が高いため、前記の公知のドリルを適用する事は困難である。
【0008】
マシナブルセラミックスの主用途の一つであるプローブカードは、接触時に圧力を発生させるスプリング機構を持ったものなどが主流になっており、プローブの径や間隔は数十〜百マイクロメートル程度と高密度化しており、1つのマシナブルセラミックスのディスクにおいて数百個〜数万個程のプローブが差し込まれる。通電テストではプローブカードをテスト装置に接続し、測定をされるチップ上の端子にテストパターンに従って電圧をかけ、出力を測定して期待値と比較する事でチップの良否を判定する。その際、チップ上の端子にプローブを正確にあてる事が必要であり、マシナブルセラミックスに穿孔された穴の精度が非常に重要となる。例えば、最近のプローブカードに用いられるマシナブルセラミックスに要求される穴精度は、穴径精度がレンジで5μm以下、表面と裏面の穴の真直度はレンジで10μm以下、内面の最大面粗さRzは1μm以下であり、非常に高精度で管理されている。近い将来の目標は、穴径精度はレンジで2μm以下、表面と裏面の穴の真直度はレンジで5μm以下とされており、ドリルに要求される性能と精度は更に高くなる見込みである。
【0009】
現在、前記プローブカードに用いられるマシナブルセラミックスとしては、主にZrO2−ZrSiO4−SiNを主要成分としたものなどが用いられている。本発明者はこのマシナブルセラミックスを対象に超硬合金製の従来の一般的な小径ドリルを用いて上記マシナブルセラミックスに穴あけ加工を行い、ドリルの損傷状態を調査した。使用した超硬製の小径ドリルは、材質が超微粒子の超硬合金、ドリル直径が0.12mmである。従来の一般的な小径ドリルでマシナブルセラミックスを穿孔した後、小径ドリルの損傷状態の調査を行った結果、ドリルの先端部切れ刃にノコギリ刃の様なギザギザ状の摩耗が発生し、加工穴数の増加により穴精度が低下する事が分かった。
【0010】
この現象の原因をマシナブルセラミックスの組織とドリルの刃先との関係から考察したモデルを図16に示す。図16はマシナブルセラミックスの切削過程を示す説明図である。図16において、マシナブルセラミックス41はセラミックスの結晶粒42とセラミックスの結晶粒界43から構成されており、雲母やジルコニア微結晶などはセラミックスの結晶粒界43の中に分散されている。切削加工中において、先端部切れ刃の逃げ面44及び先端部切れ刃のすくい面45から構成される先端部切れ刃6がマシナブルセラミックス41に接触すると、先端部切れ刃6とマシナブルセラミックス41の接触点近傍で応力が集中するため、クラックが発生する。ここでセラミックスの結晶粒界43に分散されている雲母やジルコニア微結晶はへき開性があり、結晶の特定方向に対して割れやすい性質を持つ。そのため、先端部切れ刃6とマシナブルセラミックス41の接触点近傍における応力により、セラミックスの結晶粒界43を境にしてセラミックスの結晶粒42がはく離する。この事により、クラックはわずかな大きさにとどまるため、クラックの内部への大幅な進行は防止される。
【0011】
その結果、マシナブルセラミックスの切り屑47は一般の鋼材に見られる切削切り屑とは異なり、非常に細かい粒子となる。また、マシナブルセラミックス41の加工面は、それぞれ粒径が異なる細かい粒子がはく離した形状となるため、ギザギザ状の形状を持った面となる。そのため、その加工面に接触するドリルの先端部切れ刃の逃げ面44には図5に示すようにノコギリ刃の様なギザギザ状の摩耗が発生する。そのために、ドリルの摩耗進行は一般の鋼材をドリル加工する場合と比べ不安定になると共に、ドリル基材の摩耗が早く進みやすい。本発明の目的は、このような特殊な摩耗進行が発生する被削材に対して、安定して長寿命なドリルを提案することである。
【0012】
本発明が対象とするドリルはマシニングセンターにて高速で回転するため、被削材のマシナブルセラミックスと摩擦が生じる事でドリルの先端部切れ刃の摩耗が進行する。特にプローブカードに用いられるマシナブルセラミックスの熱伝導率は極めて低く、切削を行う際に発生する切削熱は、先端部に伝達して吸収されてしまう。これらの現象によって、小径ドリルの先端部から外周側にかけて著しく摩耗が進行し、特にドリルの外周コーナ部は切削速度が最も早く摩耗が進行しやすくなる。この外周コーナ部の摩耗が進行して外周コーナ部が丸くなってしまうと、図6に表すようにそれまで摩耗が進行しなかったマージンへの摩耗が著しく進行しはじめる。その結果、マージンにおける摩耗領域でのドリルの直径が小さくなってしまう。すると、マシナブルセラミックスに開けた穴径精度が、規格値から外れてしまう事になる。このように、ドリルの損傷状態の調査から、穴精度を高精度に維持するためには先端部の摩耗の進行を抑制する事が極めて重要である事がわかった。マージンの摩耗が進行すると、外周コーナ部のガイド性が低下するために、ドリルは不安定な切削となり、穴の真直度が悪くなるといった問題も生じていた。なお、本発明でいう穴精度とは以下の実施例にも示すように、ワークの表面での穴径精度、真直度としてワーク表面側及び裏面側の穴のX方向、それに直角なY方向のそれぞれの位置ずれの程度をいう。
【0013】
また、先端部切れ刃の鋭利さが失われる事で切削抵抗が増大し、ドリルがいきなり折損するといった問題も発生していた。現在主に使用されているプローブカードで例示すると、現在のプローブカードの主流は、直径12インチ程度のマシナブルセラミックスの円板が用いられており、これに40000穴程度の小径の穴あけ加工を行う。従来の一般的なドリルの寿命を考慮した場合、ドリル1本で200穴〜500穴の穴あけ加工を行い、新品のドリルに交換する。ところが、従来の一般的なドリルの問題点の一つは、前述のようにドリルの寿命に達する前に、いきなりマシナブルセラミックスの中で折損を起こす事であり、このような折損事故では数十万円もするマシナブルセラミックスの素材が無駄になるばかりではなく、加工工数の無駄が発生してしまうのである。
【0014】
したがって、本発明の目的をより具体的に示すと、ドリルの先端部切れ刃を形状と材質で最適化してドリルの摩耗の進行を抑制する事で、先端部切れ刃の鋭利さを保ちつつ、ワークの穴精度を高精度に維持し、折損事故も防止できるマシナブルセラミックス加工用小径ドリルを提供することである。
【課題を解決するための手段】
【0015】
本発明は、マシナブルセラミックスなどに小径の穴あけ加工を行うドリルとして、ドリル基材、耐摩耗に最適な先端部切れ刃の形状、および先端部切れ刃への硬質皮膜の材質を検討した結果として生まれたものである。すなわち本発明は、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが直径の5%〜30%の範囲である事を特徴とするマシナブルセラミックス加工用小径ドリルである。
【0016】
本発明の他の発明は、中心側切れ刃および外周側切れ刃の先端角の角度と外周側切れ刃のドリル径方向への投影長さの条件に加えて、ドリルの先端部切れ刃以外の工具軸直角断面で見たときの、マージン部の形状を最適化したものである。すなわち、本発明の他の発明は、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°、外周側切れ刃のドリル径方向への投影長さが直径の5%〜30%の範囲であり、前記小径ドリルのねじれ角が25°〜35°、前記小径ドリルのリーディングエッジに接続された先行マージン部と、ヒールに接続された後方マージン部を有し、先端部切れ刃以外の工具軸直角断面で見たときに、該マージン部の円周長さは、前記小径ドリルの直径の15%〜30%の範囲であり、前記先行マージン部と前記後方マージン部の間は円筒部が削除されている形状であることを特徴とするマシナブルセラミックス加工用小径ドリルである。本明細書でいうマージン部の円周長さとは、言い換えればマージン幅を示す。
【0017】
本発明のマシナブルセラミックス加工用小径ドリルは、ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃により形成されていることが望ましい。前記硬質皮膜は、例えば、ダイヤモンド、ダイヤモンドライクカーボン(以下DLC)、または金属元素としてアルミニウム、チタン、クロム、シリコンから選択される1種または2種以上の元素から成る窒化物、炭化物、炭窒化物、炭酸窒化物などが推奨される。具体的にいえば、ダイヤモンド、DLC、CrSiN系、TiSiN系、AlCrSiN系、TiAlN系の硬質皮膜が推奨される。
【0018】
本発明のマシナブルセラミックス加工用小径ドリルは、少なくともドリルの先端部切れ刃の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されている事が望ましい。
【発明の効果】
【0019】
本発明によれば、マシナブルセラミックスへの小径ドリルを用いた穴あけ加工において、外周コーナ部の摩耗進行を大幅に抑制する事が可能となる。
本発明によればマシナブルセラミックスを対象にした小径穴あけ加工でも、長時間に渡って安定した高い穴精度を維持できるドリルを提案する事ができる。
さらに、特にドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃とするか、少なくともドリルの先端部切れ刃の基材を立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成すれば、先端部切れ刃の形状による外周コーナ部の摩耗進行を大幅に抑制する効果に加え、先端部切れ刃の鋭利さが確保される。特に本発明のドリルを適用するマシナブルセラミックスの用途としては、半導体の集積回路の製造工程において用いられるプローブカードの穴あけ加工が最適である。
【図面の簡単な説明】
【0020】
【図1】本発明の一実施例であるマシナブルセラミックス加工用小径ドリルの軸心に対して垂直方向からみた正面図である。
【図2】図1のドリル部の拡大図である。
【図3】図1をドリルの回転方向に90°回転させた時の左側面図を示す。
【図4】図2の回転軌跡を表す図である。
【図5】従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図である。
【図6】従来の一般的な小径ドリルのマージン摩耗の摩耗形態を表す模式図である。
【図7】先端角の角度の違いによるチゼルエッジ長さの比較を表す図であり、(a)は先端角が大きくチゼルエッジ長さの短いものを示し、(b)は先端角が小さくチゼルエッジ長さの長いものを示す。
【図8】本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの先行マージン部と後方マージン部を有するドリル部の拡大図である。
【図9】本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの図8のA−A断面図を表す図である。
【図10】従来の一般的な小径ドリルの最大摩耗幅を示す説明図である。
【図11】従来の一般的な小径ドリルの最大マージン摩耗幅を示す説明図である。
【図12】本発明例の中心側最大摩耗幅および外周側最大摩耗幅を示す説明図である。
【図13】本発明例の最大マージン摩耗幅を示す説明図である。
【図14】実施例の被削材の穴あけを示す概略説明図である。
【図15】真直度の測定方法を示す説明図である。
【図16】マシナブルセラミックスの切削過程を示す説明図である。
【図17】先端部切れ刃の鋭利さが失われた時におけるマシナブルセラミックスの切削過程を示す説明図である。
【発明を実施するための形態】
【0021】
以下、本発明を実施するための形態を図1〜図9に基づいて説明する。図1は、本発明の一実施例であるマシナブルセラミックス加工用小径ドリルの正面図である。図2は図1のドリル部1の拡大図であり、ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されている。図3は図1をドリルの回転方向に90°回転させた時の左側面図を示す。図4は図2の回転軌跡を表す図である。図5は従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図である。図6は従来の一般的な小径ドリルのマージン摩耗の摩耗形態を表す模式図である。図7は先端角の角度の違いによるチゼルエッジ長さ20の比較を表す図であり、(a)は先端角が大きくチゼルエッジ19の短いものを示し、(b)は先端角が小さくチゼルエッジ19の長いものを示す。図8は本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの先行マージン部22と後方マージン部24を有するドリル部1の拡大図である。図9は図8のA−A断面図を表す図であり、断面部分を斜線で示す。
【0022】
本発明のマシナブルセラミックス加工用小径ドリルは、図1に示すように、直径Dを有するドリル部1と首部2が首下長さ3を構成し、シャンク部4と繋がっている。また、ドリル部1には切り屑排出のための溝7が設けられている。図2及び図4に示すように、ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されている。
【0023】
被削材となるマシナブルセラミックスは、セラミックス中に雲母やジルコニア微結晶などを分散させたセラミックスである。切削時に生ずる加工面は細かい粒子がはく離したようなギザギザ状の形状を持った面となる。図5は従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図であり、従来の一般的なドリルの先端部切れ刃の逃げ面44には図5に示すようにノコギリ刃の様なギザギザ状の逃げ面摩耗17が発生する。図6は従来の一般的な小径ドリルのマージン摩耗18の摩耗形態を表す模式図であり、従来の一般的なドリルのマージン13には図6に示すような形態のマージン摩耗18が発生する。さらにマシナブルセラミックスは熱伝導率が低いため切り屑に熱が殆ど逃げずにドリルの先端部5に熱が貯まってしまう。これによりドリルの先端部5では逃げ面摩耗17が進行しやすく、さらに切削速度が最も早い外周コーナ部10の摩耗が進行して、図6に表すようにマージン摩耗18が著しく進行し、ドリルの直径が小さくなり穴径精度が、規格値から外れてしまうといった問題を抱えている。さらに、図6に示すように先端部切れ刃6の逃げ面摩耗17が進行した場合、先端部切れ刃6の鋭利さは大きく失われる事となる。図17は先端部切れ刃の鋭利さが失われた時におけるマシナブルセラミックスの切削過程を示す説明図である。図17に示すように、先端部切れ刃6の鋭利さが失われた場合、鋭利さが失われた先端部切れ刃46とマシナブルセラミックス41の接触面積が増加する。その結果、切削時に鋭利さが失われた先端部切れ刃46とマシナブルセラミックス41の接触領域にかかる応力が分散してしまう。するとクラックの進行方向が複数となり、マシナブルセラミックスの切削過程は、鋭利である時の先端部切れ刃6の切削過程と比べて異なったものとなる。その結果、加工穴のX方向、それに垂直なY方向におけるそれぞれの位置ずれの程度の悪化や、切削抵抗の増加によりドリルが折損するという問題が発生する。このような状態は、特に先端部5の摩耗進行が進むにつれて発生しやすくなるため、摩耗進行を抑制する事が重要である。よって、マシナブルセラミックス加工用小径ドリルとしては、摩耗進行を抑制し、なおかつ切れ味と食い付き性を確保した本発明のような先端部5の形状にする事が望ましい。
【0024】
本発明のマシナブルセラミックス加工用小径ドリルは、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、図2及び図4に示すように前記小径ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角14が120°〜140°、前記外周側切れ刃の先端角15が70°〜100°であり、外周側切れ刃9のドリル径方向への投影長さ16が直径Dの5%〜30%の範囲である事を特徴としている。
【0025】
本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように中心側切れ刃の先端角14は120°〜140°で設ける。これによって、マシナブルセラミックスを穴あけ加工する際、先端部5が被削材に充分に食い付き、先端部5が被削材に対して真っ直ぐに切削する事ができるようになる。中心側切れ刃の先端角14が120°未満の場合、先端部5の剛性が低下すると共に、熱伝導率の低いマシナブルセラミックスを穴あけ加工する際に発生する切削熱の影響を受けやすくなる。そのため切削熱を先端部5から逃がす事ができずに摩耗が進行しやすくなってしまう。更に中心側切れ刃の先端角14が120°未満の場合、製造上の問題が生じる。図7は先端角の角度の違いによるチゼルエッジ長さの比較を表す図である。例えば、図7(a)、(b)に表すように図7(b)の先端角の小さいものは、図7(a)の先端角が大きいものと比較すると、先端部5のチゼルエッジ19が長くなってしまう。言い換えれば、先端角の角度の違いにより図7(b)に示すようにチゼルエッジ19が長くなってしまう。つまり平面に投影した時にドリルの先端部5の投影した切れ刃の長さ21が短くなり、被削材への食い付き性が下がる事で、加工穴の真直度が悪くなるといった問題が生じる。また、中心側切れ刃の先端角14が140°を超える場合、被削材に先端部5が食い付きにくくなるため、先端部5が不安定になり、加工穴の真直度が低下してしまう。また、中心側切れ刃の先端角14が125°〜135°の範囲がより好ましい。これらの事は以下に示す実施例から明らかになった。
【0026】
本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように外周側切れ刃の先端角15を70°〜100°で設ける。これにより、外周側切れ刃9とリーディングエッジ12とが成す角度が外周側切れ刃9を設けない場合に比べ大きくなり、外周コーナ部10の摩耗進行を抑制する事ができるため、長時間に渡って高精度な穴あけ加工が可能になる。
【0027】
従来の一般的なドリルの場合、先端部切れ刃6の先端角を小さくすると先端部切れ刃6とリーディングエッジ12とがなす角度が大きくなる事で外周コーナ部10の剛性が上がり、外周コーナ部10の耐摩耗性は向上するが、図7(b)に示すように平面に投影した時にドリルの先端部5の投影した切れ刃の長さ21が短くなり、被削材への食い付き性が下がる事で穴の真直度が悪くなる。一方では、先端部切れ刃6の先端角を大きくすると、先端部切れ刃6の切れ味は向上するが、先端部切れ刃6とリーディングエッジ12とが成す角度が小さくなるために外周コーナ部10の剛性が下がり、摩耗進行が早くなってしまう。そこで本発明では、切れ味と耐摩耗性を両立して向上させるために、ドリルの先端部切れ刃6に中心側切れ刃8と外周側切れ刃9を設け、前記外周側切れ刃の先端角15を70°〜100°の範囲で設ける。
【0028】
外周側切れ刃の先端角15が70°未満の場合、穴あけ加工する際に外周コーナ部10のガイド性は向上するが、中心側切れ刃8と外周側切れ刃9の成す角部11の角度が小さくなってしまい、カケやチッピングが発生する可能性が高くなると共に、この角部11の摩耗進行が容易になってしまうため、穴あけ加工精度を悪化させてしまう。外周側切れ刃の先端角15の適正範囲についても以下の実施例から明らかになったものである。また、外周側切れ刃の先端角15が100°を超える場合、外周コーナ部10の角度が小さくなってしまい、熱伝導率の低いマシナブルセラミックスを穴あけ加工する際に発生する切削熱を、外周コーナ部10から逃がす事ができずに摩耗が進行し、外周コーナ部10が丸くなってしまう。これによってマージン摩耗18が進行し、先端部5の直径が小さくなりやすくなる、その結果、加工した穴径が小さくなるほか、外周コーナ部10のガイド性が低下する事によって、ドリルが不安定になり、長時間に渡る高精度な穴あけ加工が困難になってしまう。好ましくは、外周側切れ刃の先端角15が80°〜90°の範囲が良く、この場合には外周コーナ部10のガイド性が安定しマージン摩耗18が抑制され、更に長時間に渡って高精度な穴あけ加工が可能となる。
【0029】
本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように外周側切れ刃9のドリル径方向への投影長さ16を直径の5%〜30%の範囲で設ける。これにより、外周コーナ部10の摩耗を抑制するとともに、穴精度を向上して加工できるようになる。外周側切れ刃9のドリル径方向への投影長さ16が直径の5%未満の場合、外周側切れ刃9の外周コーナ部10の摩耗抑制効果が低下し、外周コーナ部10の摩耗が進行してしまうため、長時間に渡って高精度な穴あけ加工が維持できないといった問題が発生する。また、外周側切れ刃9のドリル径方向への投影長さ16が直径の30%を超える場合、ドリルの先端部5の摩耗が進行しやすくなる。これにより先端部5の食い付き性が低下して穴あけ加工精度が悪くなってしまう。好ましくは、外周側切れ刃9のドリル径方向への投影長さ16が直径の15%〜20%の範囲が良く、この条件であれば、摩耗の進行が抑制され長時間に渡って高精度な穴あけ加工が可能となる。
【0030】
本発明のマシナブルセラミックス加工用小径ドリルは、先端部切れ刃6以外の工具軸直角断面で見たときに、ドリルはリーディングエッジ12に接続する先行マージン部22と、ヒールに接続された後方マージン部24を有し、前記先行マージン部22と前記後方マージン部24の間は円筒部が削除されている、円筒削除部23を有する形状である事が好ましい。
【0031】
図8に本発明のドリル部の拡大図を、図9に図8のA−A断面図を示し、断面部分を斜線で示す。また本発明例図8の回転軌跡は図4で表す事ができる。図9に示すように、先行マージン部22と後方マージン部24を設けることによって、外周コーナ部10のガイド性を高める事ができ、穴あけ加工精度を更に向上する事が可能となる。ここでもし、先行マージン部22と後方マージン部24の間の円筒部が削除されていない場合、すなわち円筒削除部23を有さない形状においては、マージン部が被削材に接触する面積が大きくなるため切削トルクが大きくなる。小径ドリルはドリル自体の剛性が低く、切削トルクの影響を受けやすいため、寿命が低下してしまう恐れがある。このことから先行マージン部22と後方マージン部24のそれぞれの円周長さを、前記小径ドリルの直径の15%〜30%の範囲に設ける。好ましくは、前記小径ドリルの直径の20%〜25%の範囲が良い。前記15%未満の場合は、切削トルクは軽減出来るが、外周コーナ部10のガイド性を高める効果が低くなる。30%を超える場合は、マージン部が被削材に接触する面積が大きくなるため穴あけ加工精度が高くなるが、切削トルクが急激に増加するため、ドリルが折損を起こす可能性が高くなる。
【0032】
本発明のマシナブルセラミックス加工用小径ドリルは、前記小径ドリルのねじれ角が25°〜35°の範囲であることが好ましい。このことにより、先端部切れ刃6の剛性低下を防ぎつつ、マシナブルセラミックス特有の非常に細かい切り屑に対する切り屑排出性を確保する事が可能になる。25°未満では先端部切れ刃6の剛性は上がるものの、切り屑排出性が低下するため、切削加工中に切り屑が詰まり折損を起こす可能性が高くなる。またドリルのねじれ角が35°よりも大きい場合、先端部切れ刃6の剛性低下が著しく、刃先の鋭利さを維持する事が困難となる。
【0033】
本発明のマシナブルセラミックス加工用小径ドリルは、ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃6により形成されている事が望ましい。例えば、前記硬質皮膜は、ダイヤモンド、DLC、または金属元素としてアルミニウム、チタン、クロム、シリコンから選択される1種または2種以上の元素から成る窒化物、炭化物、炭窒化物、炭酸窒化物などが推奨される。具体的にいえば、ダイヤモンド、DLC、CrSiN系、TiSiN系、AlCrSiN系、TiAlN系などの皮膜である。
【0034】
本発明のマシナブルセラミックス加工用小径ドリルは、少なくともドリルの先端部切れ刃6の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されていることが望ましい。これによりドリルの切削抵抗および先端部切れ刃6の摩耗を抑制し、長時間にわたる高精度な穴あけ加工が可能となる。
以下、本発明を下記の実施例により詳細に説明するが、それらにより本発明が限定されるものではない。
【実施例】
【0035】
以下の表中にある各実施例では、本発明例、従来例、比較例を区分として示し、試料番号は本発明、従来例、比較例ごとに、連続の通し番号で記載した。
(実施例1)
実施例1は、代表的な従来例である先端部に外周側切れ刃を有さない刃形状に対して、本発明の形状を有する外周側切れ刃を有する刃形状との切削結果を比較したものである。本発明例1及び従来例1ともに、直径0.12mm、首下長さ1.8mm、心厚35%、溝長0.6mm、シャンク径3mmに設けた状態に仕様を統一した。前記仕様以外は、マージン13を有した二枚刃のドリルで、外周側切れ刃を有する本発明例1については中心側切れ刃の先端角を140°、外周側切れ刃の先端角を80°、投影長さを直径Dの15%(0.018mm)、ねじれ角を30°とし、外周側切れ刃を有さない従来例1については先端部切れ刃の先端角を140°に設けた工具をそれぞれ作製し、切削試験を行った。また、本発明例1及び従来例1はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものである。
【0036】
被削材(ワークとも言う。)はZrO2−ZrSiO4−SiN系のマシナブルセラミックス(幅30mm、奥行き30mm、厚さ1.7mm)を用いた。
ガイド穴あけ用として、ボールエンドミルにより下穴を開け、その後前述したドリルにて穴深さ1.8mmまでステップ加工により深穴を穴あけ加工する方法で行った。ガイド穴形成時の切削条件は、切削速度6.2m/min、1回転送り0.005mm/rev、ステップ量0.011mm/回、加工穴深さ0.066mmとし、冷却方法はエアブローを用いて行った。ドリルの切削条件は、切削速度6.2m/min、1回転送り0.005mm/rev、ステップ量0.06mm/回、加工穴深さ1.8mmとし、冷却方法はエアブローを用いて行った。穴あけ加工数は、穴間隔0.27mmにて1列50穴の4列とし、200穴行った。
【0037】
評価方法として、ドリルの摩耗の測定は、走査型電子顕微鏡を用い、2500倍で測定した。測定箇所は、外周側切れ刃を有さないドリルの場合、図10に示すように、先端部切れ刃の逃げ面44における摩耗の最大幅を最大摩耗幅25とし、また図11に示すように、マージン13において工具軸方向で測定した時の摩耗の最大幅を最大マージン摩耗幅26とした。
外周側切れ刃を有するドリルの場合、図12に示すように、中心側切れ刃逃げ面及び外周側切れ刃逃げ面における摩耗の最大幅を中心側最大摩耗幅27、外周側最大摩耗幅28とし、また図13に示すように、マージン13において工具軸方向で測定した時の摩耗の最大幅を最大マージン摩耗幅26とした。
【0038】
加工穴の穴径精度及び真直度の測定にはCNC画像測定機を用いた。穴径精度の測定方法としては測定対象となる加工穴34を画像処理によって360ポイントに等分割し、その360ポイントでの近似円における穴径を測定する事により穴径精度を測定した。穴径精度の測定結果は1〜200穴目までの測定した穴径の最大穴径と最小穴径の差とした。
【0039】
真直度の測定方法は、図14および図15を用いて説明する。図14は実施例の被削材の穴あけを示す概略説明図である。図15は真直度の測定方法を示す説明図である。測定方法としては、図14より、1穴目29における、穴径精度の測定時に求めた近似円の中心を原点30とした。同様に50穴目32の近似円の中心を求め、1穴目29の原点30と50穴目の穴中心33を結んだ直線を基準軸31とした。
そして測定対象となる加工穴中心35の、各加工穴の理論的中心位置38(穴間隔0.27mmごとの位置)から、基準軸31に対して垂直方向のずれ量をX方向ずれ量36として測定し、前記加工穴中心35が理論的中心位置38に対して右側と左側のX方向ずれ量36の右側のX方向ずれ量最大値と左側のX方向ずれ量最大値との幅をX方向ずれ量最大幅39とした。また、理論的中心位置38(穴間隔0.27mmごとの位置)から、各加工穴中心の基準軸31方向のずれ量をY方向ずれ量37として測定し、加工穴中心35が理論的中心位置38に対して上側と下側のY方向ずれ量37の上側のY方向ずれ量最大値と下側のY方向ずれ量最大値との幅をY方向ずれ量最大幅40とした。真直度の測定結果として、1〜200穴目までのワーク表面側及び裏面側の各ずれ量を測定した時のX方向ずれ量最大幅39及びY方向ずれ量最大幅40を測定結果とした。
【0040】
実施例1では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は最大マージン摩耗幅26を測定し、最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。
各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表1に示す。
【0041】
【表1】

【0042】
表1より、本発明例1は最大マージン摩耗幅26が5μm以下の3.5μm、穴径精度が5μm以下の4.8μmで、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下となり良好であった。一方、外周側切れ刃9を有さない従来例1では、最大マージン摩耗幅26が5μmを越えて9.1μm、穴径精度が9.4μmと5μmを大きく超えており、真直度もX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は15μmと、どちらも良好となる真直度の範囲である10μmを超えていた。
上記結果から、マシナブルセラミックス加工用小径ドリルには外周側切れ刃9を有している事が好ましく、外周側切れ刃9を有さない場合には穴径精度の測定結果、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃9を有さないドリルでは先端部切れ刃6とリーディングエッジ12とが成す角度が、外周側切れ刃9を有しているドリルにおける外周側切れ刃9とリーディングエッジ12とが成す角度に比べ小さくなり、外周コーナ部の摩耗が進行しやすくなるためである。
【0043】
(実施例2)
本発明例2〜16及び比較例1〜6として、中心側切れ刃の先端角をそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、外周側切れ刃の先端角を80°で一定とし、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として実施例1と同仕様の工具を作製し、切削試験を行った。中心側切れ刃の先端角は、本発明例2〜6、本発明例7〜11及び本発明例12〜16においてはそれぞれ140°、135°、130°、125°、120°とし、比較例1、2、比較例3、4及び比較例5、6においてはそれぞれ150°、110°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例2〜6及び比較例1、2はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例7〜11及び比較例3、4はドリルの基材を超硬合金とし、表面処理として基材の表面から最下層がTiAlNで最上層がTiSiNの硬質皮膜を、ドリルの先端部切れ刃に施したものとした。本発明例12〜16及び比較例5、6はドリルの基材を超硬合金とし、表面処理として基材の表面から最下層がTiAlNで最上層がAlCrSiNの硬質皮膜を、ドリルの先端部切れ刃に施したものとした。表中の表記には最上層の成分で示した。
実施例2では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は中心側最大摩耗幅27を測定し、中心側最大摩耗幅27が10μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表2に示す。
【0044】
【表2】

【0045】
表2より、本発明例2〜16は中心側最大摩耗幅27が10μm以下、穴径精度の測定結果が5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が10μm以下で、良好であった。さらにDLCコーティングを施したものでは本発明例3〜5が中心側最大摩耗幅27は8μm以下、穴径精度の測定結果が3.5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。基材の表面から最下層がTiAlNで最上層がTiSiNの硬質皮膜を施したものでは、本発明例8〜10が中心側最大摩耗幅27が8μm以下、穴径精度の測定結果が4.5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。基材の表面から最下層がTiAlNで最上層がAlCrSiNの硬質皮膜を施したものでは、本発明例13〜15が中心側最大摩耗幅27が8μm以下、穴径精度の測定結果が5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。
【0046】
一方、比較例1は、200穴切削時点で中心側最大摩耗幅27が8.5μmと10μm以下ではあったが、穴径精度が5.3μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40が11μmであった。比較例2は200穴切削時点で中心側最大摩耗幅27が6.3μmと10μm以下ではあったが、穴径精度が5.1μmと5μmを超え、真直度もX方向ずれ量最大幅39は11μm、Y方向ずれ量最大幅40は12μmと良好となる真直度の範囲である10μmを超えていた。同様に比較例3は、200穴切削時点で中心側最大摩耗幅27が8.7μmと10μm以下ではあったが、穴径精度が5.4μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39が12μm、Y方向ずれ量最大幅40が13μmであった。比較例4は200穴切削時点で中心側最大摩耗幅27が6.5μmと10μm以下ではあったが、穴径精度が5.3μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40は12μmとなり、良好となる真直度の範囲である10μmを超えていた。比較例5は、200穴切削時点で中心側最大摩耗幅27が8.7μmと10μm以下ではあったが、穴径精度が5.5μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40が13μmであった。比較例6は200穴切削時点で中心側最大摩耗幅27が6.8μmと10μm以下ではあったが、穴径精度が5.4μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は13μmと良好となる真直度の範囲である10μmを超えていた。
【0047】
上記結果から、中心側切れ刃の先端角は120°〜140°の範囲にある事が好ましく、中心側切れ刃の先端角が上記範囲から外れている場合には、穴径精度が悪くなり、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは被削材への食い付きが不安定になり加工穴の真直度が悪くなった事を示す。
【0048】
(実施例3)
本発明例17〜24及び比較例7〜10として、外周側切れ刃の先端角をそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として一定とし、実施例1と同仕様の工具を作製し、切削試験を行った。外周側切れ刃の先端角は、本発明例17〜20及び本発明例21〜24において70°、80°、90°、100°とし、比較例5、6及び比較例7、8においてはそれぞれ60°、110°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例17〜20及び比較例7、8はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例21〜24及び比較例9、10はドリルの先端部切れ刃の基材をCBNとし、表面処理は無処理のものとした。
実施例3では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は最大マージン摩耗幅26を測定し、最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表3に示す。
【0049】
【表3】

【0050】
表3より、本発明例17〜24は最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下となり良好であった。さらにドリルの基材を超硬合金とし、DLCコーティングを施したものでは本発明例18及び本発明例19が最大マージン摩耗幅26は4μm以下、穴径精度が3.5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに8μm以下となり、特に良好であった。ドリルの先端部切れ刃の基材をCBNとし、表面処理が無処理のものでは本発明例22及び本発明例23が最大マージン摩耗幅26は3.5μm以下、穴径精度が3.5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに9μm以下となり、特に良好であった。
【0051】
一方、外周側切れ刃の先端角が60°の比較例7は最大マージン摩耗幅26が5.5μm、穴径精度が5.2μm、真直度はX方向ずれ量最大幅39は13μm、Y方向ずれ量最大幅40は12μmで、ともに良好となる真直度の範囲である10μmを超えていた。また外周側切れ刃の先端角が110°の比較例8は最大マージン摩耗幅26が5.3μmと5μmを越え、穴径精度が5.1μm、真直度はX方向ずれ量最大幅39が12μm、Y方向ずれ量最大幅40は11μmで、ともに良好となる真直度の範囲である10μmを超えていた。同様に比較例9は、最大マージン摩耗幅26が5.2μm、穴径精度が5.1μm、真直度はX方向ずれ量最大幅39は11μm、Y方向ずれ量最大幅40は12μmで、ともに良好となる真直度の範囲である10μmを超えていた。また比較例10は最大マージン摩耗幅26が5.1μmと5μmを越え、穴径精度が5.0μm、真直度はX方向ずれ量最大幅39が10μm、Y方向ずれ量最大幅40は11μmで、Y方向ずれ量最大幅40のみだが、良好となる真直度の範囲である10μmを超えていた。
【0052】
上記結果から、外周側切れ刃の先端角は70°〜100°の範囲にある事が好ましく、外周側切れ刃の先端角が上記範囲から外れている場合には、穴径精度の測定結果と、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃の先端角が小さいと中心側切れ刃8と外周側切れ刃9の成す角部の剛性が低くなり、また外周側切れ刃の先端角が大きいと外周コーナ部の剛性が低くなる。このことにより角部及び外周コーナ部の摩耗が進行しやすくなりガイド性の低下によりドリルが不安定となり加工穴の真直度が悪くなったことを示す。
【0053】
(実施例4)
本発明例25〜36及び比較例11〜14として、外周側切れ刃の投影長さをそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、ねじれ角30°として一定とし、実施例1と同仕様の工具を作製し、切削試験を行った。外周側切れ刃の投影長さは、本発明例25〜30及び本発明例31〜36において直径Dの5%(0.006mm)、直径Dの10%(0.012mm)、直径Dの15%(0.018mm)、直径Dの20%(0.024mm)、直径Dの25%(0.030mm)、直径Dの30%(0.036mm)とし、比較例11,12及び比較例13、14においてはそれぞれ直径Dの2%(0.0024mm)、直径Dの35%(0.042mm)とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例25〜30及び比較例11、12はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例31〜36及び比較例13、14はドリルの基材を超硬合金とし、表面処理を無処理のものとした。
実施例4では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は外周側最大摩耗幅28を測定し、外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表4に示す。
【0054】
【表4】

【0055】
表4より、本発明例25〜36は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに10μm以下であった。さらにDLCコーティングを施したものでは本発明例27及び28が、外周側最大摩耗幅28は12μm以下、穴径精度が3.5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに8μm以下と特に良好であった。無処理のものでは本発明例33及び34が、外周側最大摩耗幅28は13μm以下、穴径精度が4μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに9μm以下と特に良好であった。
【0056】
一方、外周側切れ刃の投影長さが直径Dの2%(0.0024mm)の比較例11は外周側最大摩耗幅28が17.2μmと15μmを大きく超え、穴径精度が8.2μm、真直度がX方向ずれ量最大幅39は14μm、Y方向ずれ量最大幅40は13μmとどちらも良好となる真直度の範囲である10μmを超えていた。また、外周側切れ刃の投影長さ16が直径Dの35%(0.042mm)の比較例12は外周側最大摩耗幅28が16.4μmと15μmを超え、穴径精度が5.3μm、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は11μmとどちらも良好となる真直度の範囲である10μmを超えていた。同様に比較例13は外周側最大摩耗幅28が17.9μmと15μmを大きく超え、穴径精度が8.6μm、真直度がX方向ずれ量最大幅39は14μm、Y方向ずれ量最大幅40は15μmとどちらも良好となる真直度の範囲である10μmを超えていた。また、比較例14は外周側最大摩耗幅28が17.1μmと15μmを超え、穴径精度が6.1μm、真直度がX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は13μmとどちらも良好となる真直度の範囲である10μmを超えていた。
【0057】
上記結果から、外周側切れ刃の投影長さは直径Dの5%〜30%の範囲にある事が好ましく、外周側切れ刃の投影長さが上記範囲から外れている場合には穴径精度の測定結果と、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃の投影長さが短いと、の外周コーナ部の摩耗抑制効果が低下し、外周コーナ部の摩耗が進行したことを示す。また外周側切れ刃の投影長さが長いと、先端部の食い付き性が低下して穴あけ加工精度が悪くなり、先端部の剛性が低くなり摩耗が早く進行したことを示す。
【0058】
(実施例5)
本発明例37〜39として、二枚刃のドリルで、中心側切れ刃の先端角を130°、ねじれ角30°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)に設け、本発明例37はマージン13のみとし、マージン部の円周長さ(マージン幅)をドリルの直径の20%とし、本発明例38及び39は、先行マージン部22と後方マージン部24を有し、先行マージン部と後方マージン部の間は円筒部が削除されている形状とした。また、本発明例37〜39の各マージン部の円周長さをドリルの直径の20%とした以外は、実施例1と同仕様の工具を作製し、切削試験を行った。切削条件及び被削材は実施例1と同様で行った。また、本発明例37、38はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとした。本発明例39はドリルの先端部切れ刃の基材をCBNとし、表面処理は無処理のものとした。
実施例5では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表5に示す。
【0059】
【表5】

【0060】
表5より、本発明例37〜39は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに10μm以下の範囲にあり、良好であった。本発明例37は外周側最大摩耗幅28が11.6μm、穴径精度が3.2μm、真直度がX方向ずれ量最大幅39は8μm、Y方向ずれ量最大幅40は7μmであった。本発明例38は外周側最大摩耗幅28が10.8μm、穴径精度が2.9μm、真直度がX方向ずれ量最大幅39は6μm、Y方向ずれ量最大幅40は7μmとなり、先行マージン部と後方マージン部を設けたドリルではガイド性が高められ食い付きが安定したことにより、さらに良好な穴径精度を示した。またドリルの先端部切れ刃の基材をCBNとし、表面処理が無処理の本発明例39は外周側最大摩耗幅28が9.7μm、穴径精度が2.7μm、真直度がX方向ずれ量最大幅39は6μm、Y方向ずれ量最大幅40は6μmとなり、基材が超硬合金でDLCコーティングを施した本発明例38と同様に良好な結果を示した。
上記結果から、先行マージン部と後方マージン部を設ける事によって、外周コーナ部のガイド性を高める事ができ、穴あけ加工精度を更に向上した事を示す。
【0061】
(実施例6)
本発明例40〜51として、二枚刃のドリルで、先行マージン部と後方マージン部の円周長さ(マージン幅)をそれぞれ変化させた以外は、先行マージン部22と後方マージン部24を有し、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として実施例1と同仕様の工具を作製し、切削試験を行った。先行マージン部と後方マージン部の円周長さ(マージン幅)は共に同一とし、本発明例40〜45及び本発明例46〜51において、ドリルの直径の12%、15%、20%、25%、30%、35%とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例40〜45はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例46〜51はドリルの先端部切れ刃の基材を多結晶ダイヤモンドとし、表面処理は無処理のものとした。
実施例6では200穴加工後の加工穴の穴径精度、真直度の評価として、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下を良好とした。各試料の仕様及び穴径精度、真直度の評価結果を表6に示す。
【0062】
【表6】

【0063】
表6より、ドリルの基材を超硬合金とし、DLCコーティングを施したものでは、本発明例41〜44が穴径精度は3μm以下で、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに8μm以下の範囲にあり、良好であった。さらに本発明例42、43は穴径精度が3μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は7μm以下と特に良好であった。本発明例40は穴径精度が3.3μm、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は8μmであった。本発明例45は穴径精度が3.0μm、真直度がX方向ずれ量最大幅39は8μm、Y方向ずれ量最大幅40は9μmであった。ドリルの先端部切れ刃の基材を多結晶ダイヤモンドとし、表面処理が無処理のものでは、本発明例47〜50が穴径精度は2μm以下で、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに7μm以下の範囲にあり、良好であった。さらに本発明例48、49は穴径精度が1.5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は7μm以下と特に良好であった。本発明例46は穴径精度が1.7μm、真直度がX方向ずれ量最大幅39は7μm、Y方向ずれ量最大幅40は8μmであった。本発明例51は穴径精度が1.7μm、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40が8μmであった。
上記結果から、マージン幅を15%〜30%の範囲では安定した加工精度が得られる事を示す。
【0064】
(実施例7)
本発明例52〜56として、ねじれ角をそれぞれ変化させた以外は、先行マージン部22と後方マージン部24を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、先行マージン部と後方マージン部の円周長さ(マージン幅)を共にドリルの直径の20%として実施例1と同仕様の工具を作製し、切削試験を行った。ねじれ角は本発明例52〜56において20°、25°、30°、35°、40°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例52〜56はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとした。
実施例7では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は中心側最大摩耗幅27を測定し、中心側最大摩耗幅27が10μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表7に示す。
【0065】
【表7】

【0066】
表7より、本発明例53〜55は穴径精度が3.5μm以下で、中心側最大摩耗幅27が8μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに7μm以下の範囲にあり、良好であった。本発明例52では穴径精度が3.7μmで、中心側最大摩耗幅27が6.4μm、真直度がX方向ずれ量最大幅39が8μm、Y方向ずれ量最大幅40が7μmであった。これはねじれ角が小さく、先端部切れ刃の切れ味と切り屑排出性が低下する事により、切削抵抗の増大を招き、食い付き性が不安定になり加工穴の真直度が悪くなった事を示す。また、本発明例56では穴径精度が3.6μmで、中心側最大摩耗幅27が8.3μm、真直度がX方向ずれ量最大幅39が7μm、Y方向ずれ量最大幅40が8μmであった。これはねじれ角が大きい場合は、中心側切れ刃の剛性が低下し、刃先の鋭利さを維持する事が困難となるため、中心側切れ刃の摩耗の進行が早い事が原因となり、加工穴の真直度が悪くなったと考えられる。
上記結果から、ねじれ角が25°〜35°の範囲では安定した加工精度が得られる事を示す。
【産業上の利用可能性】
【0067】
本発明マシナブルセラミックス加工用小径ドリルは、小径ドリルの先端部切れ刃が、中心側切れ刃と外周側切れ刃から構成されており、ドリルの先端部切れ刃を形状と材質で最適化して、摩耗の進行を抑制する事で先端部切れ刃の鋭利さを保ちつつ、ワークの穴精度を高精度に維持する事ができ、折損事故も防止できることが可能である。具体的な適用分野は、碍子、保護管、基板、化学装置用ノズルや特に半導体装置の検査工程用プローブカードなどに使用されているマシナブルセラミックスの穴あけ加工に適している。
【符号の説明】
【0068】
1 ドリル部
2 首部
3 首下長さ
4 シャンク部
5 先端部
6 先端部切れ刃
7 溝
8 中心側切れ刃
9 外周側切れ刃
10 外周コーナ部
11 角部
12 リーディングエッジ
13 マージン
14 中心側切れ刃の先端角
15 外周側切れ刃の先端角
16 投影長さ
17 逃げ面摩耗
18 マージン摩耗
19 チゼルエッジ
20 チゼルエッジ長さ
21 投影した切れ刃の長さ
22 先行マージン部
23 円筒削除部
24 後方マージン部
25 最大摩耗幅
26 最大マージン摩耗幅
27 中心側最大摩耗幅
28 外周側最大摩耗幅
29 1穴目
30 原点
31 基準軸
32 50穴目
33 50穴目の穴中心
34 測定対象となる加工穴
35 測定対象となる加工穴中心
36 X方向ずれ量
37 Y方向ずれ量
38 理論的中心位置
39 X方向ずれ量最大幅
40 Y方向ずれ量最大幅
41 マシナブルセラミックス
42 セラミックスの結晶粒
43 セラミックスの結晶粒界
44 先端部切れ刃の逃げ面
45 先端部切れ刃のすくい面
46 鋭利さが失われた先端部切れ刃
47 マシナブルセラミックスの切り屑
D 直径

【特許請求の範囲】
【請求項1】
マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、前記小径ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが前記小径ドリルの直径の5%〜30%の範囲であることを特徴とするマシナブルセラミックス加工用小径ドリル。
【請求項2】
マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、前記小径ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが前記小径ドリルの直径の5%〜30%の範囲であり、前記小径ドリルのねじれ角が25°〜35°、前記小径ドリルのリーディングエッジに接続された先行マージン部と、ヒールに接続された後方マージン部を有し、先端部切れ刃以外の工具軸直角断面で見たときに、該マージン部の円周長さは、前記小径ドリルの直径の15%〜30%の範囲であり、前記先行マージン部と前記後方マージン部の間は円筒部が削除されている形状であることを特徴とするマシナブルセラミックス加工用小径ドリル。
【請求項3】
ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃により形成されている事を特徴とする請求項1または請求項2に記載のマシナブルセラミックス加工用小径ドリル。
【請求項4】
少なくともドリルの先端部切れ刃の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されている事を特徴とする請求項1または請求項2に記載のマシナブルセラミックス加工用小径ドリル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−274409(P2010−274409A)
【公開日】平成22年12月9日(2010.12.9)
【国際特許分類】
【出願番号】特願2009−145804(P2009−145804)
【出願日】平成21年5月29日(2009.5.29)
【出願人】(000233066)日立ツール株式会社 (299)
【Fターム(参考)】