説明

メタノール資化性細菌を用いたL−リジンの製造法

【課題】安価で大量に入手可能なメタノールを用いて効率良くL−リジンを製造する。
【解決手段】L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNA、および、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異型LysEタンパク質をコードするDNAを保持し、ジアミノピメリン酸デヒドロゲナーゼ、ジアミノピメリン酸デカルボキシラーゼ、ジヒドロジピコリン酸レダクターゼおよびアスパラギン酸セミアルデヒドデヒドロゲナーゼの細胞内活性が増強されるように改変されたメタノール資化性細菌を培地中で培養し、該培地中にL-リジンを生産蓄積させ、該培地からL-リジンを採取する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は微生物工業に関連したものであり、詳しくは、発酵法によるL−リジンの製造法、および同製造法に用いる微生物に関するものである。
【背景技術】
【0002】
L−リジン、L−グルタミン酸、L−スレオニン、L−ロイシン、L−イロソイシン、L−バリン及びL−フェニルアラニン等のL−アミノ酸は、ブレビバクテリウム属、コリネバクテリウム属、バチルス属、エシェリヒア属、ストレプトミセス属、シュードモナス属、アースロバクター属、セラチア属、ペニシリウム属、キャンディダ属等に属する微生物を用いた発酵法により工業生産されている。これらの微生物は、生産性を向上させるために、自然界から分離した菌株または該菌株の人工変異株が用いられている。また、組換えDNA技術によりL−アミノ酸の生合成酵素を増強することによって、L−アミノ酸の生産能を増加させる種々の技術が開示されている。
【0003】
例えば、エシェリヒア属細菌については、ジヒドロジピコリン酸合成酵素の活性を増強した株を用いたL-リジンの製造法などが開示されている(特許文献1又は2)。
またL-リジンによるフィードバック阻害が解除される変異を有するエシェリヒア属細菌由来のジヒドロジピコリン酸合成酵素をコードするDNA、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNA,ジヒドロジピコリン酸レダクターゼをコードするDNA、および、コリネ型細菌由来のジアミノピメリン酸デヒドロゲナーゼをコードするDNAを含むプラスミドにより形質転換した株を用いたL-リジンの製造法が特許文献3に開示されている。
さらに、L-リジンによるフィードバック阻害が解除される変異を有するエシェリヒア属細菌由来のジヒドロジピコリン酸合成酵素をコードするDNA、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNA,ジヒドロジピコリン酸レダクターゼをコードするDNA、および、コリネ型細菌由来のジアミノピメリン酸デヒドロゲナーゼをコードするDNAを有するエシェリヒア属細菌において、アスパラギン酸セミアルデヒドデヒドロゲナーゼまたはホスホエノールピルビン酸カルボキシラーゼおよび、これに加えてニコチンアミドアデニンジヌクレオチドトランスヒドロゲナーゼまたはアスパルターゼを増強したときに、その細菌によるL-リジンの生産が改善されることが示されている。(特許文献4)
コリネ型細菌については、細胞内のニコチンアミドジヌクレオチドトランスヒドロゲナーゼの活性増強によりL-リジン生産性が改善されることが特許文献5に示されている。
また、ホスホエノールピルビン酸カルボキシラーゼ単独の活性を増強した株を用いたL-リジンの製造法およびアスパラギン酸セミアルデヒドデヒドロゲナーゼ単独の活性を増強した株を用いたL-リジンの製造法がそれぞれ特許文献6および7に示されている。
また、フィードバック阻害が解除された変異を有する変異型アスパルトキナーゼ遺伝子に加え、ジヒドロジピコリン酸合成酵素遺伝子を導入することによってL-リジン生産性が向上するとの報告がある(非特許文献1)。
さらにコリネ型細菌において、L-リジン生合成遺伝子を複数個、具体的には変異型アスパルトキナーゼ、ジヒドロジピコリン酸レダクターゼ、ジヒドロジピコリン酸合成酵素、ジアミノピメリン酸デカルボキシラーゼおよびジアミノピメリン酸デヒドロゲナーゼを組み合わせて導入することで、生育を抑制せずにL-リジンの収率を大幅に改善する方法も示されている(特許文献8)。
一方、近年L-リジンを特異的に微生物の菌体の外部に排出する機能を持つタンパク質LysEおよびそれをコードする遺伝子lysEが見出され、これを増強することによってL-リジンの生産能を増加させる技術が開示されている(非特許文献2又は特許文献9)。
また、エシェリヒア・コリにおいてアミノ酸排出タンパク質の発現量を上昇させることにより、いくつかのL−アミノ酸の生産性を向上させることができることが知られている(特許文献10)。例えば、エシェリヒア・コリにおいては、ORF306遺伝子の発現を増強することによって、シスチン、システイン等の生産性が向上することが報告されている(特許文献11)。
【0004】
上記のような微生物育種や製造法の改良により、L−アミノ酸の生産性はかなり高まってはいるが、今後の需要のいっそうの拡大に応えるためには、さらに安価かつ効率的なL−アミノ酸の製造法の開発が求められている。
【0005】
ところで、従来、安価に大量に入手可能な発酵原料であるメタノールから発酵法によりL−アミノ酸を製造する方法としては、アクロモバクター属およびシュードモナス属(特許文献12)、プロタミノバクター属(特許文献13)、プロタミノバクター属及びメタノモナス属(特許文献14)、ミクロサイクラス属(特許文献15)、メチロバチルス属(特許文献16)、バチルス属(特許文献17)などに属する微生物を用いる方法が知られている。
本発明者らはこれまで、人工変異による育種および組換えDNA技術を使ってジヒドロジピコリン酸合成酵素およびアスパルトキナーゼを増強することで、メチロフィラス属細菌を用いたL−アミノ酸製造法の開発を行ってきた(特許文献18)。さらに、我々はこれまでにメタノール資化性細菌を用いたメタノールからの発酵法によるアミノ酸製造に、アミノ酸の排出過程が、大きな障壁であることを示し、これを解決する手段として、コリネバクテリウム属細菌より単離した、L-リジンの排出に関与する蛋白質LysE蛋白質から、メタノール資化性細菌でL-リジン排出活性を発揮するような改変体を取得した。我々は上記の人工変異による育種、組換えDNA技術およびこの改変したL-リジン排出担体を使うことで、L-リジンを効率よく生産させることができることを明らかにし、メチロフィラス属細菌を用いたL−アミノ酸製造法の開発を行ってきた(特許文献18または19)。
【0006】
しかし、これまでメタノール資化性細菌を用いたメタノールからの発酵法によるL-アミノ酸製造に、L-アミノ酸の排出遺伝子と複数個のL-リジン生合成遺伝子を組み合わせて発現増強することでL-リジン収率の大幅な改善に成功した例は知られていない。
【0007】
コリネ型細菌においてはddh、lysAをそれぞれ単独で増強することでLys蓄積量が向上することが知られている。またこのddhとlysAを組み合わせて増強することでLys生産速度およびLys蓄積量が向上することが示されている。
しかし、メチロフィラス属細菌においては、これらの遺伝子を単独で増強してもL-リジン蓄積量が全く増加しないか、やや低下するにすぎなかった。
【特許文献1】特開昭56−18596号公報
【特許文献2】米国特許第4346170号明細書
【特許文献3】国際公開95/16042号パンフレット
【特許文献4】国際公開01/53459号パンフレット
【特許文献5】国際公開WO/9511985号パンフレット
【特許文献6】特開昭60-87788号公報
【特許文献7】特公平6-102028号公報
【特許文献8】国際公開9640934号パンフレット
【特許文献9】国際公開97/23597号パンフレット
【特許文献10】特開平2000-189180号
【特許文献11】欧州特許885962号明細書
【特許文献12】特開昭45-25273号公報
【特許文献13】特公昭49-125590号公報
【特許文献14】特開昭50-25790号公報
【特許文献15】特開昭52-18886号公報
【特許文献16】特開平4-91793号公報
【特許文献17】特開平3-505284号公報
【特許文献18】国際公開00/61723号パンフレット
【特許文献19】特許公開2004−166594号公報
【非特許文献1】Applied and Environmental Microbiology 57 (6), 1746-1752(1991)
【非特許文献2】Molecular Microbiology 22:815-826(1996)
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、安価で大量に入手可能なメタノールを用いて、効率良く、L−リジンを製造する方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、L-リジンの排出因子をコードする遺伝子と同時に複数のL-リジン生合成遺伝子を組み合わせて増強することでL-リジン生成収率を大幅に改善することに成功した。すなわち、本発明者らは、メチロフィラス属細菌において、変異型lysEタンパク質をコードするDNAおよびL-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNAに加えて、ジアミノピメリン酸デカルボキシラーゼ遺伝子とジアミノピメリン酸デヒドロゲナーゼ遺伝子の発現を増強することで、これらの単独の発現増強では全く得られなかったL-リジン生成収率の向上という効果を見出した。さらに、メチロフィラス属細菌のL-リジン生産能は、これらの遺伝子に加えて、ジヒドロジピコリン酸レダクターゼ遺伝子及びアスパラギン酸セミアルデヒドデヒドロゲナーゼ遺伝子の発現を増強させることでさらに上昇し、アスパルトキナーゼ遺伝子を増強することで特に顕著になることを見出した。
また、メタノール資化性細菌においてはプラスミドのみ生合成遺伝子発現増強だけでなく、これと染色体上への複数コピーの遺伝子の組み込みをおこなうことで、極めて安定的な菌株を構築することができた。これにさらにプラスミドでの遺伝子発現増強を組み合わせることで、大きくL−リジン生成効率が向上したメタノール資化性細菌を取得するに至った。
以上に基づき、本発明を完成させるに至った。
【0010】
すなわち、本発明は以下のとおりである。
(1)L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNA、および、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異型LysEタンパク質をコードするDNAを保持し、ジアミノピメリン酸デヒドロゲナーゼ、ジアミノピメリン酸デカルボキシラーゼ、ジヒドロジピコリン酸レダクターゼおよびアスパラギン酸セミアルデヒドデヒドロゲナーゼの細胞内活性が増強されるように改変されたメタノール資化性細菌。
(2)L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNAをさらに保持することを特徴とする(1)のメタノール資化性細菌。
(3)前記各酵素もしくは変異型LysEタンパク質をコードするDNAが染色体DNA上に組み込まれたこと、および/または前記各酵素もしくは変異型LysEタンパク質をコードするDNAを含むプラスミドで形質転換されたことを特徴とする、(1)または(2)のメタノール資化性細菌。
(4)ジヒドロジピコリン酸合成酵素をコードするDNA、ジヒドロジピコリン酸レダクターゼをコードするDNA、アスパラギン酸セミアルデヒドデヒドロゲナーゼをコードするDNA、およびアスパルトキナーゼをコードするDNAがエシェリヒア属細菌由来であり、
ジアミノピメリン酸デカルボキシラーゼをコードするDNAがメチロフィラス属細菌由来
であり、かつ
ジアミノピメリン酸デヒドロゲナーゼをコードするDNAおよび変異型LysEをコードするDNAがブレビバクテリウム属細菌由来である、(3)のメタノール資化性細菌。
(5)メチロフィラス属細菌である、(1)〜(4)のいずれかのメタノール資化性細菌。
(6)メチロフィラス・メチロトロファスAJ110196株(FERM BP-10434)由来の微生物である、(1)〜(5)のいずれかのメタノール資化性細菌。
(7)(1)〜(6)のいずれかのメタノール資化性細菌を培地で培養し、該培地又は菌体内にL−リジンを生産蓄積させ、該培地又は菌体内からL−リジンを採取することを特徴とするL−リジンの製造法。
(8)前記培地がメタノールを主たる炭素源とすることを特徴とする(7)のL−リジンの製造法。
(9)メチロフィラス・メチロトロファスAJ110196株(FERM BP-10434)。
【発明の効果】
【0011】
本発明により、メタノール資化性細菌によるL−リジンの生産性を向上させることができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明を詳細に説明する。
【0013】
本発明のメタノール資化性細菌は、L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNA、および、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異型LysEをコードするDNAを保持し、ジアミノピメリン酸デヒドロゲナーゼ、ジアミノピメリン酸デカルボキシラーゼ、ジヒドロジピコリン酸レダクターゼおよびアスパラギン酸セミアルデヒドデヒドロゲナーゼの細胞内の活性が増強されるように改変されたメタノール資化性細菌である。
【0014】
本発明においてメタノール資化性細菌とは、メタノールを主たる炭素源として生育することができる細菌であって、メチロフィラス属細菌などを含む。具体的には、メチロフィラス・メチロトロファス(Methylophilus methylotrophus)等のメチロフィラス属細菌が挙げられる。メチロフィラス・メチロトロファスとしては、AS1株(NCIMB10515)等が挙げられる。メチロフィラス・メチロトロファスAS1株(NCIMB10515)は、ナショナル・コレクション・オブ・インダストゥリアル・アンド・マリン・バクテリア(National Collections of Industrial and Marine Bacteria、住所 NCIMB Lts., Torry Research Station 135, Abbey Road, Aberdeen AB9 8DG, United Kingdom)から入手可能である。
【0015】
<dapA*遺伝子>
L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNA(以下、dapA*遺伝子とも呼ぶ)の種類は特に制限されないが、例えば、エシェリヒア属細菌由来のジヒドロジピコリン酸合成酵素をコードするDNAであって、L-リジンによるフィードバック阻害が解除されるような変異を有するものが好ましい。
エシェリヒア属細菌由来の野生型ジヒドロジピコリン酸合成酵素をコードするDNAとしては、配列番号41のアミノ酸配列をコードするDNAが挙げられる。L-リジンによるフィードバック阻害が解除されるような変異としては、配列番号41に示すアミノ酸配列において118位のヒスチジン残基をチロシン残基に置換する変異(H118Y変異)が挙げられる。したがって、dapA*遺伝子としては、配列番号41のアミノ酸配列において118位のヒスチジン残基がチロシン残基に置換されたアミノ酸配列をコードするDNAが挙げられる。
また、dapA*遺伝子は、配列番号41のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、H118Y変異を有し、ジヒドロジピコリン酸合成酵素活性を有するタンパク質をコードするDNAであってもよい。
さらに、H118Y変異を有し、ジヒドロジピコリン酸合成酵素活性が損なわれない限りにおいて、配列番号41のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードするDNAであってもよい。
ここで、「数個」とは、アミノ酸残基のタンパク質の立体構造における位置や種類によっても異なるが、具体的には2〜20個、好ましくは2〜10個、より好ましくは2〜5個を意味する。上記アミノ酸置換は保存的置換が好ましく、保存的置換としては、alaからser又はthrへの置換、argからgln、his又はlysへの置換、asnからglu、gln、lys、his又はaspへの置換、aspからasn、glu又はglnへの置換、cysからser又はalaへの置換、glnからasn、glu、lys、his、asp又はargへの置換、gluからgly、asn、gln、lys又はaspへの置換、glyからproへの置換、hisからasn、lys、gln、arg又はtyrへの置換、ileからleu、met、val又はpheへの置換、leuからile、met、val又はpheへの置換、lysからasn、glu、gln、his又はargへの置換、metからile、leu、val又はpheへの置換、pheからtrp、tyr、met、ile又はleuへの置換、serからthr又はalaへの置換、thrからser又はalaへの置換、trpからphe又はtyrへの置換、tyrからhis、phe又はtrpへの置換、及び、valからmet、ile又はleuへの置換が挙げられる。また、上記のようなアミノ酸の置換、欠失、挿入、付加、または逆位等には、ジヒドロジピコリン酸合成酵素遺伝子を保持する微生物の個体差、種の違いに基づく場合などの天然に生じる変異(mutant又はvariant)によって生じるものも含まれる。
さらに、dapA*遺伝子は、H118Y変異を有し、ジヒドロジピコリン酸合成酵素活性を有するタンパク質をコードする限り、配列番号40の塩基配列又は該配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。ここで、「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。この条件を明確に数値化することは困難であるが、一例を示せば、通常のサザンハイブリダイゼーションの洗いの条件である60℃、1×SSC,0.1%SDS、好ましくは、0.1×SSC、0.1%SDSさらに好ましくは、68℃、0.1×SSC、0.1%SDSに相当する塩濃度、温度で、1回より好ましくは2〜3回洗浄する条件が挙げられる。
dapA*遺伝子は部位特異的変異導入法によって得ることもできるし、後述のように、プラスミドRSFD80から得ることもできる。
なお、コリネ型細菌の野生型ジヒドロジピコリン酸合成酵素はL-リジンによるフィードバック阻害を受けないことが知られており、本発明に用いるL-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNAは必ずしも変異型ジヒドロジピコリン酸合成酵素をコードするDNAでなくとも構わない。
【0016】
<LysE24遺伝子>
メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異型LysEをコードするDNAを以下、LysE24遺伝子とも呼ぶ。
「L−リジンの細胞外への排出を促進する」とは、このDNAをメタノール資化性細菌に導入し、得られたメタノール資化性細菌を培養したときに、このDNAを保持しないメタノール資化性細菌に比べて、培地中に排出されるL−リジンの量が増大することをいう。L−リジンの細胞外への排出の促進は、その結果として、このDNAを保持しないメタノール資化性細菌に比べて、このDNAを保持するメタノール資化性細菌を培養したときに培地中に蓄積するL−リジン濃度が高くなることによって観察される。
LysE24遺伝子の種類は特に制限されないが、例えば、ブレビバクテリウム属細菌由来のLysEタンパク質をコードするDNAであって、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異を有するものが好ましい。
このようなLysE24遺伝子としては、例えば、配列番号51のタンパク質をコードするDNAを挙げることができる。また、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進するものである限り、配列番号51のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有するタンパク質であってもよい。
また、L−リジンの細胞外への排出を促進する活性が損なわれない限り、配列番号51のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする、DNAであってもよい。
さらに、lysE24遺伝子は、L−リジンの細胞外への排出を促進する活性を有するタンパク質をコードする限り、配列番号50の塩基配列又は該塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
例えば、lysE24遺伝子は特許公開2004−166594号公報に記載のプラスミドpRSlysE24から得ることができる。pRSlysE24で形質転換されたE.coli JM109株はAJ13830と命名され、同株は2001年6月4日に、独立行政法人 産業技術総合研究所 特許生物寄託センターに受託番号FERM P-18369として寄託され、平成14年5月13日にブダペスト条約に基づく国際寄託に移管され、FERM BP-8040の受託番号のもとで寄託されている。
【0017】
<ddh遺伝子>
ジアミノピメリン酸デヒドロゲナーゼ活性の増強はジアミノピメリン酸デヒドロゲナーゼをコードする遺伝子(以下、ddh遺伝子とも呼ぶ)を用いて行うことができる。
ddh遺伝子の種類は特に制限されないが、例えば、ブレビバクテリウム属細菌由来のジアミノピメリン酸デヒドロゲナーゼ(配列番号53)をコードするDNAが挙げられる。
ddh遺伝子は、配列番号53のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、ジアミノピメリン酸デヒドロゲナーゼ活性を有するタンパク質をコードするDNAであってもよい。
また、ddh遺伝子は、ジアミノピメリン酸デヒドロゲナーゼ活性が損なわれない限り、配列番号53のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードするDNAであってもよい。
さらに、ddh遺伝子は、ジアミノピメリン酸デヒドロゲナーゼ活性を有するタンパク質をコードする限り、配列番号52の塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
ブレビバクテリウム ラクトファーメンタムのddh遺伝子はコリネバクテリウム・グルタミカム (Corynebacterium glutamicum) のddhの既知の塩基配列(Ishino, S. et al., Nucleic acid res., 15, 3917 (1987)) をもとに作成した2種のオリゴヌクレオチドプライマー(例えば国際公開第WO/9516042号記載の配列番号11および12) を用いたPCR法により、ブレビバクテリウム ラクトファーメンタムの染色体DNAを鋳型として増幅することによって得られる。
【0018】
<lysA遺伝子>
ジアミノピメリン酸デカルボキシラーゼ活性の増強はジアミノピメリン酸デカルボキシラーゼ遺伝子(以下、lysA遺伝子とも呼ぶ)を用いて行うことができる。lysA遺伝子の種類は特に制限されないが、例えば、メチロフィラス属細菌由来のジアミノピメリン酸デカルボキシラーゼ(配列番号49)をコードするDNAが挙げられる。
lysA遺伝子は、配列番号49のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、ジ
アミノピメリン酸デカルボキシラーゼ活性を有するタンパク質をコードするDNAであってもよい。
また、lysA遺伝子は、ジアミノピメリン酸デカルボキシラーゼ活性が損なわれない限り、配列番号49のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする、DNAであってもよい。
さらに、lysA遺伝子は、ジアミノピメリン酸デカルボキシラーゼ活性を有するタンパク質をコードする限り、配列番号48の塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
メチロフィラス・メチロトロファスのlysA遺伝子は既知の配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、メチロフィラス・メチロトロファスの染色体DNAを鋳型としてそれぞれ得ることができる。
【0019】
<dapB遺伝子>
ジヒドロジピコリン酸レダクターゼ活性の増強は、ジヒドロジピコリン酸レダクターゼをコードする遺伝子(以下、dapB遺伝子とも呼ぶ)を用いて行うことができる。dapB遺伝子の種類は特に制限されないが、例えば、エシェリヒア属細菌由来のジヒドロジピコリン酸レダクターゼ(配列番号43)をコードするDNAが挙げられる。
dapB遺伝子は、配列番号43のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、ジヒドロジピコリン酸レダクターゼ活性を有するタンパク質をコードするDNAであってもよい。
また、dapB遺伝子は、ジヒドロジピコリン酸レダクターゼ活性が損なわれない限り、配列番号43のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする、DNAであってもよい。
さらに、dapB遺伝子はジヒドロジピコリン酸レダクターゼ活性を有するタンパク質をコードする限り、配列番号42の塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
ジヒドロジピコリン酸レダクターゼ遺伝子(dapB)は既知の塩基配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、E.coli染色体DNAを鋳型として増幅することができる。
【0020】
<asd遺伝子>
アスパラギン酸セミアルデヒドデヒドロゲナーゼの活性増強は、アスパラギン酸セミアルデヒドデヒドロゲナーゼをコードする遺伝子(以下、asd遺伝子とも呼ぶ)を用いて行うことができる。asd遺伝子の種類は特に制限されないが、例えば、エシェリヒア属細菌由来のアスパラギン酸セミアルデヒドデヒドロゲナーゼ(配列番号45)をコードするDNAが挙げられる。
asd遺伝子は、配列番号45のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、アスパラギン酸セミアルデヒドデヒドロゲナーゼ活性を有するタンパク質をコードするDNAであってもよい。
また、asd遺伝子は、アスパラギン酸セミアルデヒドデヒドロゲナーゼ活性が損なわれない限り、配列番号45のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードする、DNAであってもよい。
さらに、asd遺伝子は、アスパラギン酸セミアルデヒドデヒドロゲナーゼ活性を有するタンパク質をコードする限り、配列番号44の塩基配列から調製され得るプローブとスト
リンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
アスアパラギン酸セミアルデヒドデヒドロゲナーゼ遺伝子(asd)は既知の塩基配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、E.coli染色体DNAを鋳型として増幅することができる。
【0021】
<lysC*遺伝子>
本発明のメタノール資化性細菌は、L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNAをさらに保持するものであってもよい。
L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNA(以下、lysC*遺伝子とも呼ぶ)の種類は特に制限されないが、例えば、エシェリヒア属細菌由来のアスパルトキナーゼをコードするDNAであって、L-リジンによるフィードバック阻害が解除されるような変異を有するものが好ましい。
エシェリヒア属細菌由来の野生型アスパルトキナーゼをコードするDNAとしては、配列番号47のアミノ酸配列をコードするDNAが挙げられる。L-リジンによるフィードバック阻害が解除されるような変異としては、配列番号47に示すアミノ酸配列において352位のスレオニン残基をイソロイシン残基に置換する変異(T352I変異)が挙げられる。したがって、lysC*遺伝子としては、配列番号47のアミノ酸配列において352位のスレオニン残基がイソロイシン残基に置換されたアミノ酸配列をコードするDNAが挙げられる。
lysC*遺伝子は、配列番号47のアミノ酸配列全体に対して、80%以上、好ましくは90%以上、より好ましくは95%、特に好ましくは98%以上の相同性を有し、かつ、T352I変異を有し、アスパルトキナーゼ活性を有するタンパク質をコードするDNAであってもよい。
また、lysC*遺伝子は、T352I変異を有し、アスパルトキナーゼ活性が損なわれない限り、配列番号47のアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入又は付加等を含む配列を有するタンパク質をコードするDNAであってもよい。
さらに、lysC*遺伝子は、T352I変異を有し、アスパルトキナーゼ活性を有するタンパク質をコードする限り、配列番号46の塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAでもよい。
「数個」及び「ストリンジェントな条件」の定義ならびに好ましいアミノ酸置換の種類は上述したとおりである。
lysC*遺伝子は部位特異的変異導入法によって得ることもできるし、後述のように、プラスミドRSFD80から得ることもできる。
なお、本発明に用いるL-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNAは必ずしも変異型アスパルトキナーゼをコードするDNAでなくとも構わない。すなわち、野生型タンパク質がL-リジンによるフィードバック阻害を受けないのであれば、野生型を用いてもよい。
【0022】
本明細書において、「各酵素の細胞内の活性が増強される」とは、野生株(例えば、M.methylotrophus AS1株)または親株(本発明において特定された組み合わせの酵素のすべての細胞内の活性が増強されていない株)に比べて、細胞内の酵素活性が上昇していることを意味し、野生株または親株が有していない酵素活性を有することも包含する。なお、上記の各々の酵素の活性の測定法は公知であり、細胞内の活性の増強は、当業者であれば容易に確認できる。
細胞内の活性を増強する手段としては、下記の手段及びそれらの組み合わせが挙げられるが、これに限定されない。
(1)各タンパク質をコードするDNAを含むプラスミドを用いた形質転換
(2)各タンパク質をコードするDNAの染色体上への組込み
(3)各タンパク質をコードする遺伝子のプロモーター配列の改変
【0023】
本発明のメタノール資化性細菌は、上記のような改変(lysE24、dapA*、lysA、ddh、dapB、asd、(lysC*)の各遺伝子の発現増強)により、L-リジン生産能を有している。ここで、「L-リジン生産能」とは、本発明のメタノール資化性細菌を培地で培養したときに、回収可能な量のL-リジンを培地中に蓄積できることを意味する。
【0024】
本発明のメタノール資化性細菌は、栄養要求性変異、アナログ耐性変異、及び代謝制御変異などの変異を有する変異株において上記のような改変がなされた細菌であってもよい。
例えば、L−ホモセリン、又はL−スレオニン及びL−メチオニンを要求する変異株(特公昭48-28078号、特公昭56-6499号)、イノシトールまたは酢酸を要求する変異株(特開昭55-9784号、特開昭56-8692号)、又はオキサリジン、リジンハイドロキサメート、S−(2−アミノエチル)−システイン、γ−メチルリジン、α−クロロカプロラクタム、DL−α−アミノ−ε−カプロラクタム、α−アミノ−ラウリルラクタム、アスパラギン酸−アナログ、スルファ剤、キノイド、又はN−ラウロイルロイシンに耐性を有する変異株などにおいて上記のような改変がなされた細菌であってもよい。
なお、上記のような改変(遺伝子増幅)を行った後に、栄養要求性変異、アナログ耐性変異、及び代謝制御変異などの変異を導入してもよい。
【0025】
次に、L-リジンによるフィードバック阻害を受けないジヒドロジピコリン酸合成酵素遺伝子(dapA*遺伝子)およびアスパルトキナーゼ遺伝子(lysC*遺伝子)の発現を増強する方法を、以下に例示する。
dapA*遺伝子およびlysC*遺伝子の発現を増強するには、これらのDNA断片を、メチロフィラス属細菌で機能するベクター、好ましくはマルチコピー型ベクターと連結して組み換えDNAを作製し、これをメチロフィラス属細菌の宿主に導入して形質転換すればよい。これらの遺伝子のコピー数が上昇する結果、ジヒドロジピコリン酸合成酵素及びアスパルトキナーゼの細胞内活性が増強される。以下、ジヒドロジピコリン酸合成酵素をDDPS、アスパルトキナーゼをAK、アスパルトキナーゼIIIをAKIIIと略すことがある。
【0026】
DDPSをコードする遺伝子及びAKをコードする遺伝子の供与微生物としては、メチロフィラス属に属する微生物中でDDPS活性及びAK活性を発現することができるDNAを保持する微生物であれば、いかなる微生物でも使用できる。微生物は、野生株及びそれから誘導した変異株のいずれでもよい。具体的にはE. coli(エシェリヒア・コリ(Escherichia coli))K-12株及びメチロフィラス・メチロトロファスAS1株(NCIMB10515)等が挙げられる。エシェリヒア属細菌由来のDDPSをコードする遺伝子(Richaud, F. et al. J. Bacteriol., 297(1986))及びAKIIIをコードする遺伝子(Cassan, M., Parsot, C., Cohen, G.N. and Patte, J.C., J. Biol. Chem., 261, 1052(1986))は、いずれも塩基配列が明らかにされているので、これらの遺伝子の塩基配列に基づいてプライマーを合成し、E. coli K-12等の微生物の染色体DNAを鋳型とするPCR法により、これらの遺伝子を取得することが可能である。以下、E. coli由来のdapA及びlysCを例として説明するが、本発明に用いる遺伝子は、これらに限定されるものではない。
【0027】
本発明に用いるDDPS及びAKは、L−リジンによるフィードバック阻害を受けないものである。E. coli由来の野生型DDPSはL−リジンによるフィードバック阻害を受けることが知られており、E. coli由来の野生型AKIIIはL−リジンによる抑制及びフィードバック阻害を受けることが知られている。したがって、メチロフィラス属細菌に導入するためには、それぞれL−リジンによるフィードバック阻害が解除されるような変異を導入することが好ましい。
ただし、例えば、コリネバクテリウム属細菌由来のDDPSはもともとL−リジンによるフ
ィードバック阻害を受けないため、本発明において用いるDDPS遺伝子及びAK遺伝子は必ずしも変異型である必要はない。
【0028】
L-リジンによるフィードバック阻害が解除されたDDPSをコードするdapA*及びAKをコードするlysC*はこれを含むプラスミドを鋳型とし、既知の塩基配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により得ることができる。
dapA*及びlysC*を含むプラスミドとして、広宿主域プラスミドRSFD80が知られている(WO95/16042号)。同プラスミドで形質転換されたE. coli JM109株は、AJ12396と命名され、同株は1993年10月28日に通産省工業技術院生命工学工業技術研究所(現 独立行政法人 産業技術総合研究所 特許生物寄託センター)に受託番号FERM P-13936として寄託され、1994年11月1日にブダペスト条約に基づく国際寄託に移管され、FERM BP-4859の受託番号のもとで寄託されている。RSFD80は、AJ12396株から、公知の方法によって取得することができる。
【0029】
RSFD80に含まれているdapA*は、配列番号40に示す野生型dapA遺伝子の塩基配列において塩基番号597のCがTに変化した配列を有し、それによって、コードされる変異型DDPSは、配列番号41に示すアミノ酸配列において118位のヒスチジン残基がチロシン残基に置換された配列を有する。また、RSFD80に含まれているlysC*は、配列番号46に示す野生型lysCの塩基配列において塩基番号1638のCがT変化した配列を有し、それによって、コードされる変異型AKIIIは、配列番号47に示すアミノ酸配列において352位のスレオニン残基がイソロイシン残基に置換された配列を有する。
【0030】
遺伝子のクローニングに使用されるプラスミドとしては、エシェリア属細菌等の微生物において複製可能なものであればよく、具体的には、pBR322、pTWV228、pMW119、pUC19等が挙げられる。
【0031】
また、メチロフィラス属細菌で機能するベクターとは、例えばメチロフィラス属細菌で自律複製出来るプラスミドである。具体的には、広宿主域ベクターであるRSF1010及びその誘導体、例えばpAYC32(Chistorerdov, A.Y., Tsygankov, Y.D. Plasmid, 1986, 16, 161-167)、あるいはpMFY42(gene, 44, 53(1990))、pRP301、pTB70(Nature, 287, 396,
(1980))等が挙げられる。また、RSF1010とは不和合性が異なる広宿主域ベクターであるpBBR1およびその誘導体たとえばpBHR1(Antoine, R. and Locht, C., Molecular Microbiology, 6, 1785-99. (1992).)等があげられる。
【0032】
dapA*、lysC*およびその他のタンパク質をコードするDNAをメチロフィラス属細菌で機能するベクターを連結して組み換えDNAを調製するには、これらの遺伝子を含むDNA断片の末端に合うような制限酵素でベクターを切断する。連結は、T4 DNAリガーゼ等のリガーゼを用いて行うのが普通である。これらの遺伝子は、それぞれ別個のベクターに搭載してもよく、同一のベクターに搭載してもよい。
DNAの切断、連結、その他、染色体DNAの調製、PCR、プラスミドDNAの調製、形質転換、プライマーとして用いるオリゴヌクレオチドの設定等の方法は、当業者によく知られている通常の方法を採用することができる。これらの方法は、Sambrook, J., Fritsch, E. F., and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press, (1989)等に記載されている。
【0033】
上記のように調製した組換えDNAをメチロフィラス属細菌に導入するには、十分な形質転換効率が得られる方法ならば、いかなる方法を用いてもよいが、例えば、エレクトロポレーション法(Canadian Journal of Microbiology, 43. 197(1997))が挙げられる。
【0034】
また、DDPS活性及びAK活性の増強は、dapA*及びlysC*をメチロフィラス属細菌の染色体
DNA上に多コピー存在させることによっても達成できる。メチロフィラス属細菌の染色体DNA上にdapA*及びlysC*を多コピーで導入するには、染色体DNA上に多コピー存在する配列を標的に利用して相同組換えにより行う。染色体DNA上に多コピー存在する配列としては、レペッティブDNA、転移因子の端部に存在するインバーティッド・リピートが利用できる。あるいは、特開平2-109985号公報に開示されているように、dapA*及び/又はlysC*をトランスポゾンに搭載してこれを転移させて染色体DNA上に多コピー導入することも可能である。いずれの方法によっても形質転換株内のdapA*及lysC*のコピー数が上昇する結果、DDPS活性及びAK活性が増幅される。なかでもトランスポゾンとしては、Mu phage 由来のmini-Muを用いることが好ましい。
【0035】
DDPS活性及びAK活性の増幅は、上記の遺伝子増幅による以外に、dapA*及lysC*のプロモーター等の発現調節配列を強力なものに置換することによっても達成される(特開平1-215280号公報参照)。たとえば、lacプロモーター、trpプロモーター、trcプロモーター、tacプロモーター、ラムダファージのPRプロモーター、PLプロモーター、tetプロモーター、amyEプロモーター、spacプロモーター等が強力なプロモーターとして知られている。これらのプロモーターへの置換により、dapA*及びlysC*の発現が強化されることによってDDPS活性及びAK活性が増幅される。発現調節配列の増強は、dapA*及lysC*のコピー数を高めることと組み合わせてもよい。
【0036】
以上、DDPS及びAKの細胞内活性を増加させるためのdapA*遺伝子及びlysC*遺伝子の発現増強について説明したが、lysE24遺伝子、dapB遺伝子、lysA遺伝子、ddh遺伝子及びasd遺伝子も同様にして発現増強することができる。
【0037】
本発明のメタノール資化性細菌は、上記6又は7種類の遺伝子の発現増強に加えて、他のL−リジン生合成に関与する酵素を増強してもよい。そのような酵素としては、ホスホエノールピルビン酸カルボキシラーゼ(特開昭60-87788号)、アスパラギン酸アミノトランスフェラーゼ(特公平6-102028号)、ジアミノピメリン酸エピメラーゼ遺伝子等のジアミノピメリン酸経路の酵素(特開2003-135066)、あるいはホモアコニット酸ヒドラターゼ遺伝子等のアミノアジピン酸経路の酵素等が挙げられる。
【0038】
また、本発明のメタノール資化性細菌は、さらに、L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素の活性が低下または欠損していてもよい。L−リジンの生合成経路から分岐してL−リジン以外の化合物を生成する反応を触媒する酵素としては、ホモセリンデヒドロゲナーゼがある(WO 95/23864参照)。酵素活性を低下するための改変は相同組換えを利用した遺伝子破壊などの手法によって行うことができる。
【0039】
<3>L−リジンの製造
上記にようにして得られるL−リジン生産能を有するメチロフィラス属細菌を培地に培養し、該培養物中にL−リジンを生産蓄積させ、該培養物からL−リジンを採取することにより、L−リジンを製造することができる。
【0040】
本発明で用いられる微生物は、通常メタノール資化性微生物の培養に用いられる方法で培養することができる。本発明で用いられる培地は、炭素源、窒素源、無機イオン及び必要に応じてその他の有機微量成分を含む培地であれば、天然培地、合成培地のいずれでも用いられる。
【0041】
メタノールを主たる炭素源として用いると、L−リジンを安価に製造することができる。メタノールは、主たる炭素源として用いる場合は、培地中に0.001〜30%添加する。窒素源としては硫酸アンモニウムなどを培地に添加して用いる。これらの他に、通常、リン酸
カリウム、リン酸ナトリウム、硫酸マグネシウム、硫酸第一鉄、硫酸マンガンなどの微量成分が少量添加される。
【0042】
培養は、振とう培養又は通気撹拌培養などの好気条件下、pH5〜9、温度20〜45℃に保持して行われ、通常24〜120時間で終了する。
培養物からのL−リジンの採取は、通常イオン交換樹脂法、沈殿法、その他の公知の方法を組み合わせることにより実施できる。
【0043】
[実施例]
以下、本発明を実施例によりさらに具体的に説明する。
試薬は、特記しない限り和光純薬、又はナカライテスク社製のものを用いた。各実施例で用いる培地の組成は以下に示すとおりである。いずれの培地もpHはNaOHまたはHClで調整した。
【0044】
(LB培地)
トリプトン・ペプトン(ディフコ社製) 10g/L
酵母エキス(ディフコ社製) 5g/L
NaCl 10g/L
pH7.0
[120℃、20分間蒸気滅菌を行った。]
【0045】
(LB寒天培地)
LB培地
バクトアガー 15g/L
[120℃、20分間蒸気滅菌を行った。]
【0046】
(SEII培地)
K2HPO4 1.9g/L
NaH2PO4 1.56g/L
MgSO4・7H2O 0.2g/L
(NH4)2SO4 5g/L
CuSO4・5H2O 5μg/L
MnSO4・5H2O 25μg/L
ZnSO4・7H2O 23μg/L
CaCl2・2H2O 72mg/L
FeCl3・6H2O 9.7mg/L
メタノール 0.5%(vol/vol)
pH7.0
[メタノール以外は121℃、15分間蒸気滅菌を行った。良くさめてからメタノールを添加した。]
【0047】
(SEII生産培地)
K2HPO4 1.9g/L
NaH2PO4 1.56g/L
MgSO4・7H2O 0.2g/L
(NH4) 2SO4 5g/L
CuSO4・5H2O 5μg/L
MnSO4・5H2O 25μg/L
ZnSO4・7H2O 23μg/L
CaCl2・2H2O 72mg/L
FeCl3・6H2O 9.7mg/L
ピルビン酸・Na 2.5 g/L
CaCO3(関東化学製) 30g/L
メタノール 2%(vol/vol)
pH7.0
[メタノール以外は121℃、15分間蒸気滅菌を行った。良くさめてからメタノールを添加した。]
【0048】
(SEII寒天培地)
K2HPO4 1.9g/L
NaH2PO4 1.56g/L
MgSO4・7H2O 0.2g/L
(NH4) 2SO4 5g/L
CuSO4・5H2O 5μg/L
MnSO4・5H2O 25μg/L
ZnSO4・7H2O 23μg/L
CaCl2・2H2O 72mg/L
FeCl3・6H2O 9.7mg/L
ピルビン酸・Na 1.0 g/L
メタノール 1%(vol/vol)
pH7.0
バクトアガー(ディフコ社製) 15g/L
[メタノール以外は121℃、15分間蒸気滅菌を行った。良くさめてからメタノールおよび必要に応じて20g/Lに調製したL-メチオニン溶液をフィルター滅菌して添加した。]
【実施例1】
【0049】
<mini-Muシステムの構築、pMIV-Km、pMIV-Km-EA、pAET7>
染色体上でlysE24および変異型dapA遺伝子のコピー数を増幅するために、エシェリヒア・コリにて見出されたバクテリオファージであるMu-phageの機能を利用した遺伝子組み込み系を利用した。
【0050】
<pMIV5の構築>(図1、2)
Mu-phageがエシェリヒア・コリの染色体上に組み込まれるためにはattL, attRという認識配列に挟み込まれた薬剤耐性遺伝子および転移に必要な転移酵素(ミュートランスポゼース=Mu転移酵素)が必要である。両者は必ずしも同一ベクターに搭載されている必要はないので、まず、認識配列attL, attRおよびカナマイシン耐性遺伝子を搭載したpMIV5プラスミドを構築し、これとは別にMu転移酵素を搭載するpAET7プラスミドを構築した。両プラスミドを同一菌内で保持させることで両者が機能し、その保持している菌株の染色体DNAにattL,attRにはさまれた領域が転移する。
pMIV5はまず、公知のベクターpMW119(東洋紡から購入可能)を制限酵素PvuIIにて消化後、アガロースゲル電気泳動にて分離し、約3.9kbpの断片を回収しこれをDNA Ligation Kit(タカラバイオ)にて連結し、pMW1プラスミドを構築した。次に、このpMW1プラスミドにE.coliの細胞内でmini-Mu-phageを転移させた。具体的にはEscherichia coliのK12株に公知のプラスミド(Journal of Bacteriology 158, 488-495(1984))であるpMD4041を導入したのち、カナマイシン耐性でかつアンピシリン感受性の株を選択することで、pMD4041プラスミドが脱落し、かわりにmini-Mu 4041が染色体上に転移した株を選択した。このmini-Mu4041のMu転移を抑制する因子であるcリプレッサーが温度感受性変異を持つため、この株
を42℃にて培養すると染色体上のmini-Muのcリプレッサーが不活性化され、そのためmini-Mu4041の転移が大きく活性化され、結果として染色体上にmini-Muの転移が効率的に起こるため致死となる。この染色体上にmini-Mu4041が溶原化された株にpMW1を30℃にて形質転換した。このpMW1プラスミド保持する株を30℃にて1mlの細胞数が2x108になるまでLB培地で培養したものを42℃にて1時間処理した。この処理によってpMW1プラスミド上にmini-Mu4041が転移したプラスミドを取得する目的で、この菌体からプラスミドDNAを調製して、Escherichia coli株に形質転換した。カナマイシン耐性でかつアンピシリン耐性となる形質転換株50株よりそれぞれプラスミドを調製して、制限酵素処理により構造を調べたところ目的のプラスミドをひとつ得た。このプラスミドをpMu11と命名した。このpMu11プラスミドはpMW1プラスミド上のpar領域上にmini-Mu4041が転移していた。さらに具体的にはpMW119は公知のプラスミドpBR322とpSC101の断片からなるが、この境界位置をゼロ位置としたときの259の位置に挿入されていた。このプラスミドを制限酵素HindIIIにて消化し、アガロースゲル電気泳動にて分離し、約6.9kbpの断片を回収しこれをDNA Ligation Kit(タカラバイオ)にて連結し、pM12プラスミドを構築した(図1)。このpM12プラスミドをHindIII-AvaIII(EcoT22I)にて消化し、これをベクターとし、これにPCR増幅したE.coliのthrオペロンのターミネーター領域を連結、挿入した。PCR増幅の鋳型にはE.coliの染色体DNAを用い、プライマーはp-ter-thrL-f(配列番号1:5- aaaaagcttaacacagaaaaaagcc-3)およびp-ter-thrL-r(配列番号2:5- aaactgcagtggtcgaaaaaaaaagccc-3)を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。得られたプラスミドを制限酵素EcoRI-HindIIIにて消化し、これをベクターとし、PCR増幅したマルチクローニングサイト領域およびPCR増幅したバクテリオファージfd由来のロー因子非依存的転写終結因子断片を挿入した。マルチクローニングサイト領域のPCR増幅の鋳型にはpUC57プラスミド(Fermentus AB社、LITHUANIAより購入可能)を用い、プライマーはpUC57-MCS-f(配列番号3:5- aaagaattcgagctcggtacctc-3)およびpUC57-MCS-r(配列番号4:5- aaaaagcttgcatgcaggcctct-3)を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-30秒のサイクルを25サイクルで行った。この増幅断片をあらかじめプライマーにデザインしておいたEcoRI-BamHIにて消化した。バクテリオファージfd由来のロー因子非依存的転写終結因子断片のPCR増幅の鋳型にはバクテリオファージfdのケ゛ノムDNAを用い、プライマーはter-fd-f(配列番号5:5- aaaggatccgcatgccgttga-3)およびter-fd-r(配列番号6:5- aaagaattccgatacaattaaaggctccttttggagccttttttttggagattttcaacgtgaaaaaattattattcgcaattccaagctaat-3)を用い、PCR条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-30秒のサイクルを25サイクルで行った。この増幅断片をあらかじめプライマーにデザインしておいたEcoRI-HindIIIにて消化した。この3断片をDNA Ligation kit(タカラバイオ)にて連結し、pMIV5プラスミドを構築した(図2)。さらにこのプラスミドをEcoRVにて消化し、ここに市販のプラスミドであるpUC4KよりHincIIにて切り出したカナマイシン耐性遺伝子断片を挿入してpMIV5-Kmプラスミドを構築した。
【0051】
<pMIV-Km-lysE24dapA>
上記のように構築したmini-Muを利用した遺伝子組み込み用プラスミドpMIV5-Kmに目的の遺伝子を挿入し、これを用いて染色体上に目的のDNA断片を転移させた。具体的にはpMIV5-KmプラスミドをSmaIにて消化し、これを脱リン酸化処理した。一方、lysE24+dapA*断片は同遺伝子を含む公知プラスミドpRSlysEdapA(特開2003-61687号広報参照)を鋳型とし、pRS-1s(配列番号8:5- cacagagacatattgcccgttg-3)およびdapA-r(配列番号7:5- cattctagatccctaaactttacagcaaaccggcat-3)をプライマーとしたPCR増幅によって得た。PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-120秒のサイクルを25サイクルで行った。PCR増幅断片をTaKaRa BKL kit(タカラバイオ)両者を連結してpMIV-Km-lysE24dapAプラスミドを構築した。
【0052】
<pAET7の構築>(図4)
既知のプラスミドpUC1918(Gene,(1993) 134, 89-91)を制限酵素EcoRIにて消化し、平滑末端処理を行った。これをベクターとし、既知のプラスミドpMu4041(Journal of Bacteriology, (1984), 158, 488-495)をScaI-Eco47IIIにて消化することで得たミュートランスポゼースをコードするDNA断片を平滑末端処理したものと連結した。このプラスミドをpUC-MH7と命名した。このpUC-MH7プラスミドをBamHIにて消化し、切り出したミュートランスポゼースをコードするDNA断片を既知のプラスミドpAYC32(Journal of General Microbiology 137, 169-178 (1991))のBamHIサイトに挿入し、pAET7プラスミドを得た。
【実施例2】
【0053】
<lysE24および変異型dapA遺伝子のメチロフィラス・メチロトロファス株の染色体上への組み込み、VAE#1取得>
まず、M.methylotrophusAS株にpAET7をエレクトロポレーション法によって導入、50mg/lのストレプトマイシンを含むSEIIプレートに塗布した。次に、得られた形質転換株に、pMIV-Km-lysE24dapAプラスミドをエレクトロポレーション法によって導入して20mg/lのカナマイシンおよび50mg/Lのストレプトマイシンを含むSEIIプレートにてコロニーを形成する株を取得した。mini-Muカセットの内部にはカナマイシン耐性遺伝子が挿入されており、また、pMIV-Km-lysE24dapAプラスミドはM.methylotrophus中で複製することができないので、このカナマイシン耐性となった株は、染色体上にmini-Muカセットが挿入された株である。そこで、これらの株より無作為に200株を選択し、50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEIIプレートに塗り広げ、37℃にて1晩培養したのち、培地表面約0.3平方センチメートルの菌体をかきとって50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII生産培地(5ml)に植菌し、37℃にて34時間振盪培養した。培養終了後、菌体を遠心分離により除去し、培養上清に含まれるL−リジン濃度をバイオテックアナライザーAS-210(サクラ精機製)を用いて定量し、L-リジンを最も多く含む株を選択した。この株をVAE#1と命名した。
【実施例3】
【0054】
<更なる高コピー組み込み株の取得(VAE#8)>
VAE#1株は1コピーまたは2コピーのmini-Muカセットが染色体上に挿入された株であると思われた。そこで、さらにL-リジンの生産性を向上させるためmini-Muカセットの染色体上での増幅を行った。Muトランスポゼースを搭載するpAET7プラスミド上にはMuトランスポゼースの活性を抑制するMuCタンパク質をコードする遺伝子が搭載されているが、このMuCたんぱく質は温度感受性の性質を持っているため、42℃にて培養することでMuトランスポゼースの活性を促進することができ、その結果、染色体上でのmini-Muカセットの増幅を行うことができる。具体的にはVAE#1株をSEII液体培地に適当な濃度になるように懸濁し、これを42℃にて1時間保温した後、適当に希釈した菌液を50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEIIプレートに塗布し、シングルコロニーを形成させた。このシングルコロニーを無作為に200個を選択し、50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEIIプレートに塗り広げ、37℃にて1晩培養したのち、培地表面約0.3平方センチメートルの菌体をかきとって50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII生産培地(5ml)に植菌し、37℃にて34時間振盪培養した。培養終了後、菌体を遠心分離により除去し、培養上清に含まれるL−リジン濃度をバイオテックアナライザーAS-210(サクラ精機製)で定量し、L-リジンを最も多く含む株を選択した。この株をVAE#2と命名した。この操作を8回繰り返すことでVAE#8株を得た。VAE#8株のLys蓄積の相対値をVAE#1を100としたときの値で表1に示した。
【0055】
【表1】

【実施例4】
【0056】
<VAE#8転移位置の決定>
次に、VAE#8株の染色体上でmini-Muカセットが転移している位置を決定した。VAE#8株の染色体DNAを調製し、これを制限酵素SalIにて完全分解した。これをpHSG398ベクターに連結し、12.5mg/Lのクロラムフェニコール及び25mg/Lのカナマイシンを含むLB寒天培地にて選択し、得られたコロニーよりプラスミドDNAを調製した。このプラスミドにはmini-Muカセット上のカナマイシン耐性遺伝子及びその転移した位置の周辺の染色体DNAがクローニングされている。これを、mini-Muカセットの右端に存在するattR内部に外向きにデザインしたシークエンシングプライマー(attR-r1 5- catctgtttcatttgaagcgcgaaagcta-3:配列番号9)を用いて塩基配列を決定することで、染色体上に転移したmini-Muカセットの転移位置を決定することができる。この方法で決定した転移位置の情報に基づいてVAE#8と全く同一の株を構築することも可能である。
【実施例5】
【0057】
<VAE#8へのMet要求性の付与(#403)>
次に、VAE#8株へのL-メチオニン要求性の付与を行った。アミノ酸生産菌へのアミノ酸要求性の付与は培養を行う際の菌体生成量を制御するのに有効な手段である。既知の方法(WO 00/61723)にてVAE#8株をNTG変異処理し、これをシングルコロニーを形成する菌密度まで適当に希釈して、0.5g/LのL-メチオニンを含むSEII寒天培地に塗布した。これをL-メチオニンを含まないSEII寒天培地にレプリカ(複製)し、このプレートで生育することができない株、すなわちL-メチオニン要求株を取得した。この株を#403と命名した。この#403株のL-メチオニン生合成に関与すると思われる複数の遺伝子を他の微生物との相同性に基づく当業者によく知られた方法でクローニングし、塩基配列を決定した結果、5,10メチレンテトラヒドロ葉酸還元酵素をコードするmetF遺伝子の一部が欠失していることがわかった。具体的にはmetF遺伝子の開始コドンから92bp下流側から344bp下流側までが欠失していた。我々が見出した既知の方法(特開2004-229662、直鎖DNAを用いた相同組み換え法)にてVAE#8のmetF遺伝子を破壊したところL-メチオニン要求性を付与することが可能であった。詳細は実施例19にて後述する。この人為的にmetFを破壊した株は上述のNTG変異処理によって取得したL-メチオニン要求株である#403と同じ性質を示した。遺伝子破壊に用いる破壊用DNA断片は既知の文献(Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R., Gene, 77, 51-9. (1989).)に示されているOver-lap-PCR法を用いて調製した。この#403株および対照としてVAE#8株を0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したところLys蓄積が向上した。#403株のLys蓄積の相対値をVAE#8株を100としたときの値で結果を表2に示す。
【0058】
【表2】

【実施例6】
【0059】
<pMIV-FRTGmFRT、pMIV-FRTGmFRT-EAプラスミドの構築>(図3)
#403株にさらにmini-Muカセットを組み込むためにカナマイシンとは異なる薬剤耐性遺伝子をもつ挿入カセットを構築した。具体的にはpMIV5プラスミドをEcoRVにて消化し、これをベクターとした。次に、既知のプラスミドpKD4(PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (2000) 97, 6640-6645) をHindIII-NdeIにて消化し平滑化した、カナマイシン耐性遺伝子領域を持つ断片を挿入した。このプラスミドをpMIV-FRTKmFRTと命名した。このプラスミドを制限酵素BglIIにて消化して平滑末端化し、ここにPCR増幅したゲンタマイシン耐性遺伝子断片を挿入した。PCRの鋳型には既知のプラスミドpML122を用い(Gene, 89, 37-46. (1990))、PCRプライマーはpGm-f(5- cgccagccaggacagaaatgc-3:配列番号10)およびpGm-r(5- gtccagcggtttttcttgggct-3:配列番号11)を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。このプラスミドをpMIV-FRTGmFRTと命名した。このプラスミドのattLおよびattRに挟まれた領域に目的の遺伝子を挿入することで、目的の遺伝子をM.methylotrophusの染色体上で遺伝子増幅するためのmini-Muカセットを構築した(図3)。具体的にはpMIV-FRTGmFRTプラスミドを制限酵素SmaIにて消化し、これを脱リン酸化処理した。一方、lysE24+dapA*断片は同遺伝子を含む公知プラスミドpRSlysEdapA(特開2003-61687号広報参照)を鋳型とし、pRS-1sおよびdapA-rをプライマーとしたPCR増幅によって得た。PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-120秒のサイクルを25サイクルで行った。PCR増幅断片をTaKaRa BKL kit(タカラバイオ)にてリン酸化した後にこれをベクターと連結してpMIV-FRTGmFRT-EAプラスミドを構築した。なお、pKD4およびpCP20プラスミドはE.coli Genetic Stock CenterにてそれぞれCGSC
strain #7632、#7629として登録されており入手可能である。
【実施例7】
【0060】
<pMIV-Gm-EAを用いた更なる高コピー組み込み株の取得(#403-11-Gm)>
まず、#403株にpAET7をエレクトロポレーション法によって導入し、50mg/lのストレプトマイシンを含むSEIIプレートに塗布した。次に、得られたpAET7形質転換株に、pMIV-FRTGmFRT-EAプラスミドをエレクトロポレーション法によって導入して20mg/lのゲンタマイシンおよび50mg/Lのストレプトマイシンを含むSEIIプレートにてコロニーを形成する株を取得した。mini-Muカセットの内部にはゲンタマイシン耐性遺伝子が挿入されており、また、pMIV-FRTGmFRT-EAプラスミドはM.methylotrophus中で複製することができないので、このゲンタマイシン耐性となった株は、染色体上にmini-Muカセットが挿入された株である。そこで、これらの株より無作為に200株を選択し、50mg/Lのストレプトマイシンおよび20mg/Lのゲンタマイシンを含むSEIIプレートに塗り広げ、37℃にて1晩培養したのち、培地表面約0.3平方センチメートルの菌体をかきとって50mg/Lのストレプトマイシンおよび20mg/Lのゲンタマイシンを含むSEII生産培地(5ml)に植菌し、37℃にて48時間振盪培養した。培養終了後、菌体を遠心分離により除去し、培養上清に含まれるL−リジン濃度をバイオテックアナライザーAS-210(サクラ精機製)で定量し、L-リジンを最も多く含む株を選択した。この株を#403−11Gmと命名した。
【実施例8】
【0061】
<#403-11-Gmの転移位置の決定>
次に、#403−11Gm株の染色体上でmini-Muカセットが転移している位置を決定した。#403−11株の染色体DNAを調製し、これを制限酵素SalIにて完全分解した。これをpHSG398ベクターに連結し、12.5mg/Lのクロラムフェニコール及び25mg/Lのゲンタマイシンを含むLB寒天培地にて選択し、得られたコロニーよりプラスミドDNAを調製した。こ
のプラスミドにはmini-Muカセット上のカナマイシン耐性遺伝子及びその転移した位置の周辺の染色体DNAがクローニングされている。これを、mini-Muカセットの右端に存在するattR内部に外向きにデザインしたシークエンシングプライマー(attR-r1 5- catctgtttcatttgaagcgcgaaagcta-3:配列番号12)を用いて塩基配列を決定することで、染色体上に転移したmini-Muカセットの転移位置を決定した。この方法で決定した転移位置の情報に基づいて#403−11Gmと全く同一の株を構築することも可能である。
【実施例9】
【0062】
<#403-11-Gmからの薬剤耐性マーカー除去(pFLP31)、#403-11取得>
<pAYCTER3の構築>
pUC19のマルチクローニングサイトの配列を含有するようにデザインした配列番号13(5'-aattcgagct cggtacccgg ggatcctcta gagtcgacct gcaggcatgc aagctta-3')と配列番号14(5'-gatctaagct tgcatgcctg caggtcgact ctagaggatc cccgggtacc gagctcg-3')に記載の合成DNAを、当業者に良く知られた方法でアニーリングさせてポリリンカーを作成した。このポリリンカーは制限酵素EcoRIとBglIIで切断後と同じ末端形状となる様にデザインしてある。更に、配列番号15(5'- ctatgatcat ttgcctggcg gcagtagcgc-3')と配列番号16(5'-cttagatctcaaaaagagtttgtagaaacgc-3')に記載のプライマーを合成し、常法に従って(斉藤、三浦の方法[Biochim. Biophys. Acta, 72, 619(1963)])調製したEscherichia coli K-12株の染色体DNAからrrnBのターミネーター配列をコードする領域をPCR法にて増幅した。配列番号13のプライマーには制限酵素BglIIの認識配列を、配列番号14のプライマーには制限酵素BclIの認識配列をそれぞれデザインしてある。PCR反応にはPyrobest DNA polymerase(宝バイオ社製)を用い、反応条件は業者の推奨するプロトコルに従った。このPCR断片を制限酵素BglIIとBclIで消化させた後、このPCR断片と先程のポリリンカーとをライゲーションさせて約400bpのDNA断片を作成した。ライゲーション反応にはDNA Ligation Kit Ver.2.1(宝バイオ社製)を用い、反応条件は業者の推奨するプロトコルに従った。次に、公知のプラスミドであるpAYC32(J. Gen. Microbiol., 137, 169-178 (1991))の制限酵素EcoRIとBamHIで切り出される約9.2kbpの断片を回収し、先程のDNA断片を挿入する事により、M.methylotrophus NCIMB10515中で機能する発現用プラスミドpAYCTER3を構築した。なお、このpAYCTER3は、pAYC32中にコードされているstrA遺伝子の5'側上流配列を欠損し、代わりにpUC19のマルチクローニングサイトとrrnBターミネーターを持つ構造になっている。
【0063】
<pFLP31の構築>
実施例7にて構築した#403−11Gm株のゲンタマイシン耐性遺伝子はあらかじめ2個のFRT配列に挟まれる形でデザインしてあるため、ここにFLPリコンビナーゼを作用させることでこの薬剤耐性遺伝子を染色体上から除去することが可能である。上記の方法で構築したpAYCTER3をBamHI-SmaIにて消化し、ここに公知のプラスミドpCP20(PROCEEDINGS OF
THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, (2000) 97, 6640-6645)よりFLPリコンビナーゼが含まれるSmaI-BamHIにて切り出した3.3kbpの断片を挿入した。得られたプラスミドをpFLP31と命名した。なお、pCP20プラスミドはE.coli Genetic Stock CenterにてCGSC strain #7629として登録されており入手可能である。
【0064】
<薬剤耐性マーカーの除去>
#403−11Gmより当業者によく知られた方法でpAET7を脱落させストレプトマイシン感受性の株を取得した。この株に上記pFLP31プラスミドをエレクトロポレーション法により導入し、50mg/Lのストレプトマイシン及び0.5g/LのL-メチオニンを含むSEII寒天培地に塗布した。得られた株を適度な濃度になるように50mg/Lのストレプトマイシン及び0.5g/LのL-メチオニンを含むSEII培地に懸濁し、これを42℃にて1時間処理した後、シングルコロニーを形成するように希釈した後に50mg/Lのストレプトマイシン及び0.5g/LのL-メチ
オニンを含むSEII寒天培地に塗布した。得られたコロニーからゲンタマイシン感受性を示す株を選択した。さらに、この株よりpAET7を脱落させてストレプトマイシン感受性となった株を#403−11と命名した。この#403−11株および対照として#403株を20mg/Lのカナマイシンを含み、0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したところLys蓄積が向上した。#403−11株のLys蓄積の相対値を#403株のLys蓄積を100としたときの値で表3に示す。
【0065】
【表3】

【実施例10】
【0066】
<DDPS活性上昇の確認>
このようにして得られた#403−11株は染色体上に8コピーのlysE24dapAカセットが転移している。そこで、dapAにコードされるジヒドロジピコリン酸合成酵素の活性上昇を#403−11株にて確認した。ジヒドロジピコリン酸合成酵素の活性測定は既知の方法(Journal of Biological Chemistry, 240, 4710-4716 (1965))を一部変更して行った。具体的には、反応溶液には50mMのimidazole-HCl(pH 7.4)、2mMのL-aspartate-β-semialdehyde, 2mMのsodium pyruvateおよび細胞抽出系を含むように調製し、最終溶液量を1mlとした。結果を表4に示す。
【0067】
【表4】

【実施例11】
【0068】
<pBGEAプラスミドの構築、#403-11/pBGEAの構築>
(1)L-リジン生合成系酵素遺伝子(dapA*)およびL-リジン排出活性を持つ遺伝子(lysE24)を搭載するpBGEAプラスミドの構築
メチロフィラス属細菌にdapA*およびLysE24遺伝子を導入するために、公知のプラスミドpBHR1(Antoine, R. and Locht, C., Molecular Microbiology, 6, 1785-99. (1992))を用いて、dapA*およびLysE24発現用プラスミドpBGEAを構築した。まずpBHR1を制限酵素DraIで消化し、フェノール・クロロホルム溶液を加えて、混合し反応を停止させた。反応液を遠心分離した後、上層を回収し、エタノール沈殿にてDNAを回収した。回収したDNA断片をDNA Blunting kit(宝酒造社製)にて末端を平滑化した。
一方、dapA*およびLysE24遺伝子は、同遺伝子を含む公知プラスミドpRSlysEdapA(特開2003-61687号広報参照)より取得した。尚、pRSlysEdapAプラスミドで形質転換されたE.coli JM109株はAJ13832と命名され、同株は2001年6月4日に、独立行政法人 産業技術総合研究所 特許生物寄託センターに受託番号FERM P-18371として寄託され、平成14年5月13日にブタペスト条約に基づく国際寄託に移管され、FERM BP-8042の受託番号のもとで寄託されている。
まず、pRSlysEdapAを制限酵素EcoRIおよびBglIIで消化し、フェノール・クロロホルム溶液を加えて、混合し反応を停止させた。反応液を遠心分離した後、上層を回収し、エタノ
ール沈殿にてDNAを回収した後、0.8%アガロースゲル電気泳動にて目的DNA断片を分離し、約2.0KbpのDNA断片をEASY TRAP ver.2(DNA回収キット、宝酒造社製)を用いて回収した。得られたDNA断片をBKL kit(宝酒造社製)にて末端を平滑化、リン酸化した。
上記のように調整したpBHRI消化物とdapA*およびLysE24遺伝子領域断片を、DNA Ligation Kit Ver.2(宝酒造社製)を用いて連結させた。この連結反応溶液でエシャリヒア・コリ(E.coli JM109 competent cells、宝酒造社製)を形質転換し、20mg/Lのカナマイシンを含むLB寒天培地に塗布し、37℃で一晩保温した。寒天培地上に出現したコロニーを20mg/Lのカナマイシンを含むLB液体培地に接種し、37℃で8時間振とう培養した。アルカリ-SDS法にて各培養液からプラスミドDNAを抽出し、制限酵素での消化および塩基配列の決定により、構造を確認して、クロラムフェニコール耐性遺伝子の転写方向とdapA*およびlysE24遺伝子の転写方向が同じ向きになっているものをpBHR-EAとした。
上記のようにして得られたpBHR-EAにゲンタマイシン薬剤耐性マーカーを導入したプラスミドpBGEAを構築した。まずpBHR-EAを制限酵素NcoIで消化し、フェノール・クロロホルム溶液を加えて、混合し反応を停止させた。反応液を遠心分離した後、上層を回収し、エタノール沈殿にてDNAを回収した。回収したDNA断片をDNA Blunting kit(宝酒造社製)にて末端を平滑化した。
一方、ゲンタマイシン耐性遺伝子領域は、公知プラスミドpML122(Monika Labes, Alfred Puhler, and Reinhard Simon, Gene, 89,(1990),37-46)を鋳型DNAとして、プライマーpGm-f(配列番号17:5- CGCCAGCCAGGACAGAAATGC-3)およびpGm-r(配列番号18:5- GTCCAGCGGTTTTTCTTGGGCT-3)を用いてPCR(変性94℃-10秒、アニーリング60℃-30秒、伸長反応72℃-90秒)により増幅した。PCR反応にはPyrobest DNA polymerase(宝酒造社製)を用いた。得られたゲンタマイシン耐性遺伝子断片をBKL kit(宝酒造社製)にて末端を平滑化、リン酸化した。
上記のように調整したpBHR-EA消化物とゲンタマイシン耐性遺伝子領域断片を、DNA Ligation Kit Ver.2(宝酒造社製)を用いて連結させた。この連結反応溶液でエシェリヒア・コリ(E.coli JM109 competent cells、宝酒造社製)を形質転換し、20mg/Lのゲンタマイシンを含むLB寒天培地に塗布し、37℃で一晩保温した。寒天培地上に出現したコロニーを20mg/Lのゲンタマイシンを含むLB液体培地に接種し、37℃で8時間振とう培養した。アルカリ-SDS法にて各培養液からプラスミドDNAを抽出し、制限酵素での消化および塩基配列の決定により、構造を確認して、pBGEAを得た。実施例9で作成した染色体上にlysE24およびdapA*の遺伝子が組み込まれた株である#403−11株にこのpBGEAをさらに導入してlysE24およびdapA*遺伝子の強化を行った。この株を#403−11/pBGEA株とした。この#403−11/pBGEA株および対照として#403−11株を20mg/Lのカナマイシン、50mg/Lのゲンタマイシンを含み(対照株の培地はゲンタマイシンを含まない)、0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したところLys蓄積が向上した。#403−11/pBGEA株のLys蓄積の相対値を#403−11株のLys蓄積を100としたときの値で表5に示す。プラスミドの導入により#403−11株のLys生産量は向上した。
【0069】
【表5】

【実施例12】
【0070】
<pRSlysA、pRSddh、pRSdapB、pRSasd、pRSaskプラスミドの構築および各プラスミドの#403-11/pBGEA株への導入及び評価>
次に、各Lys生合成系遺伝子を搭載した発現用プラスミドの構築および#403-11/pBGEA株
への導入及びLys生産性へ与える影響を調べた。
<1>pRSlysAプラスミドの構築
メチロフィラス・メチロトロファスのジアミノピメリン酸デカルボキシラーゼ遺伝子(lysA)は既知の配列(国際公開WO/2000061723の配列番号13)をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、メチロフィラス・メチロトロファスの染色体DNAを鋳型としてそれぞれ得た。プライマーはplysA-f(配列番号19:5'-AAACCCGGGGATCCTGAGCGCCAATACCCTCAAACGCCT-3')およびplysA-r(配列番号20:5'-TTTCCCGGGCTTGGCGGCTTCGGTTTTTTTATTAGGGGTTGCC-3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。増幅されたM.methylotrophusのlysA遺伝子断片をプライマーにあらかじめデザインしておいたSse8387I-XbaIに消化し、これを既知のプラスミドpRStac(特開2003-61687)をSse8387I-XbaIにて消化したものと連結した。このプラスミドをpRSlysAと命名した。
【0071】
<2>pRSddh
ブレビバクテリウム ラクトファーメンタムのジアミノピメリン酸デヒドロゲナーゼ遺伝子(ddh)をコリネバクテリウム・グルタミカム (Corynebacterium glutamicum) のddhの既知の塩基配列(Ishino, S. et al., Nucleic acid res., 15, 3917 (1987)) をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、ブレビバクテリウム ラクトファーメンタム2256株(ATCC13869株)の染色体DNAを鋳型として増幅することによって得た。プライマーはpddh-f(配列番号21:5'-ACCCCTGCAGGGCCACCACAATTTTGGAGGATTACAAGAAC-3')およびpddh-r(配列番号22:5'-TCCTCTAGACTCGAGCTAAATTAGACGTCGCGT-3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。増幅されたddh遺伝子断片をプライマーにあらかじめデザインしておいたSse8387I-XbaIに消化し、これを既知のプラスミドpRStac(特開2003-61687)をSse8387I-XbaIにて消化したものと連結した。このプラスミドをpRSddhと命名した。
【0072】
<3>pRSdapB
E.coliのジヒドロジピコリン酸レダクターゼ遺伝子(dapB)を既知の塩基配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、E.coli染色体DNAを鋳型として増幅した。プライマーはpdapB-f(配列番号23:5'-GCGCCTGCAGGCGCTGGTTACTCTGAAAACGGTCT-3')およびpdapB-r(配列番号24:5'-GCATCTAGAGACAATTTAAAAACATAACACCAAAAATAAAAGGGCC-3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。増幅されたdapB遺伝子断片をプライマーにあらかじめデザインしておいたSse8387I-XbaIに消化し、これを既知のプラスミドpRStac(特開2003-61687)をSse8387I-XbaIにて消化したものと連結した。このプラスミドをpRSdapBと命名した。
【0073】
<4>pRSasd
E.coliのアスアパラギン酸セミアルデヒドデヒドロゲナーゼ遺伝子(asd) を既知の塩基配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、E.coli染色体DNAを鋳型として増幅した。プライマーはpasd-f(配列番号25:5'- GCCCCTGCAGGCCGGCACATTTATACAGCACACATCTTTG -3')およびpasd-r(配列番号26:5'- TAATCTAGAAAGATTACGCCAGTTGACGAAGCATC -3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。増幅されたddh遺伝子断片をプライマーにあらかじめデザインしておいたSse8387I-XbaIに消化し、これを既知のプラスミドpRStac(特開2003-61687)をSse8387I-XbaIにて消化したものと連結した。このプラスミドをpRSasdと命名した。
【0074】
<5>pRSask
メチロフィラス・メチロトロファスのアスパルトキナーゼ遺伝子(ask)は既知の配列(国際公開WO/2000061723の配列番号5)をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、メチロフィラス・メチロトロファスの染色体DNAを鋳型としてそれぞれ得た。プライマーはpask-f(配列番号27:5'- AGGGAATTCTAAACCGGATATGGCGATGGCAGGTGGTACT -3')およびpask-r(配列番号28:5'- TAACTGCAGGAAGTTTTAATAGTACCAACACAGCGCATG -3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-90秒のサイクルを25サイクルで行った。増幅されたM.methylotrophusのask遺伝子断片をプライマーにあらかじめデザインしておいたEcoRI-PstIに消化したのち平滑末端化し、これを既知のプラスミドpRStac(特開2003-61687)をSse8387Iにて消化したのち平滑末端化したものと連結した。このプラスミドをpRSaskと命名した。
【0075】
<6>各プラスミドの導入・評価
上記のように作成した5種類のプラスミドを実施例11で作成した#403−11/pBGEA株にそれぞれ導入した株を作成し、0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したが、いずれの株でもLys生産性の向上は見られなかった。ddhを導入した株ではLys生産性が低下した。
【実施例13】
【0076】
<ddh+lysA組み合わせ強化、pDAプラスミドの構築および評価>
M.methylotrophusにおけるLys生産向上に効果のあるlysE24およびdapA*遺伝子発現を染色体上への遺伝子の組み込み及びプラスミド導入にて十分強化した株である#403−11株を用いて、Lys生産の次の律速点を調べるために実施例12に示したように各遺伝子を単独で増強して効果を調べたが、効果の見られた遺伝子は見出されなかった。そこで、我々は遺伝子を2つずつ搭載した組み合わせ強化用のプラスミドを種々構築し、これを#403−11株に導入して評価したところ、lysAおよびddhを組み合わせて強化するとL-リジン生産性が向上することを見出した。
これはddhにコードされるジアミノピメリン酸デヒドロゲナーゼはジアミノピメリン酸の生成方向と分解方向の両方向の反応を可逆的に触媒する酵素であり、ddh単独での強化はジアミノピメリン酸の生成ではなく分解を促進したためではないかと考えられた。一方、このジアミノピメリン酸デヒドロゲナーゼに続くジアミノピメリン酸デカルボキシラーゼは脱炭酸反応でありL-リジンの生成方向にしか反応が進行しない不可逆的酵素である。このジアミノピメリン酸デヒドロゲナーゼおよびジアミノピメリン酸デカルボキシラーゼを同時に強化することでジアミノピメリン酸デヒドロゲナーゼによるジアミノピメリン酸の分解を防ぎ、逆にジアミノピメリン酸の合成を促進されたためであると考えられた。
具体的にはpRSddhプラスミドをSapIにて消化し、平滑末端処理して脱リン酸化したものをベクターとし、これにPCR増幅したtacプロモータ領域を含むlysA遺伝子領域DNA断片を挿入した。PCR増幅の鋳型にはpRSlysAプラスミドを用い、プライマーはptac-f(配列番号29:5'- AAAAGATCTCCCGTTCTGGATAATGTTTTTTGCGCCGAC -3')およびplysA-r(配列番号20:5'-TTTCCCGGGCTTGGCGGCTTCGGTTTTTTTATTAGGGGTTGCC-3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-60秒のサイクルを25サイクルで行った。このPCR増幅断片をXbaIにて消化後、平滑末端処理したものを上記ベクターと連結した。得られたプラスミドはddhとlysA遺伝子の転写の向きが同じであり、このプラスミドをpDAと命名した。このpDAプラスミドを#403−11/pBGEA株に導入した株(#403−11/pBGEA/pDA)および対照として#403−11/pBGEA株を20mg/Lのカナマイシン、50mg/Lのゲンタマイシンおよび、50mg/Lのストレプトマイシンを含み(対照株の培地はストレプトマイシンを含まない)、0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したところLys蓄積が向上した。#403−11/pBGEA/pDA株のLys蓄積の相対値を#403−11/pBGEA株のLys蓄積を100としたときの値で表6に示す。
【0077】
【表6】

【実施例14】
【0078】
<更なる組み合わせ強化、pBDAS(lysA+ddh+dapB+asd)>
生合成経路上の2つの連続する反応を触媒する酵素遺伝子であるddhおよびlysAを組み合わせて強化するとL-リジン生産性が向上した。我々はddh+lysAにさらに種々の酵素遺伝子を追加して組み合わせ強化を検討した結果、ddhおよびlysAにさらにdapB、asdを組み合わせることでL-リジン蓄積が向上することを見出した。
具体的にはpRSdapBプラスミドをEcoRIにて消化し、これを平滑末端処理、脱リン酸化処理したものをベクターとした。これをpDAプラスミドをHpaI-SapIにて消化し、それぞれ遺伝子の上流にtacプロモーターを含むlysAおよびddhを含む2.5kbpのDNA断片を切り出し、平滑末端処理したものと連結してpBDAプラスミドを構築した。このプラスミドはdapBの上流にddh,lysA遺伝子がdapBと同じ向きになるように挿入されていた。さらにこのpBDAプラスミドをSapIにて消化し、平滑末端処理、脱リン酸化処理したものをベクターとし、これにPCR増幅したtacプロモータ領域を含むasd遺伝子領域DNA断片を挿入した。PCR増幅の鋳型にはpRSasdプラスミドを用い、プライマーはptac-fおよびpasd-rを用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-90秒のサイクルを25サイクルで行った。このPCR増幅断片を平滑末端処理、リン酸化処理したものを上記ベクターと連結した。こうして得られたプラスミドをpBDASと命名した。このpBDASプラスミドを#403−11/pBGEA株に導入した株(#403−11/pBGEA/pBDAS)および対照として#403−11/pBGEA株を20mg/Lのカナマイシン、50mg/Lのゲンタマイシンおよび、50mg/Lのストレプトマイシンを含み(対照株の培地はストレプトマイシンを含まない)0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII生産培地にて培養したところLys蓄積が向上した。#403−11/pBGEA/pBDAS株のLys蓄積の相対値を#403−11/pBGEA株のLys蓄積を100としたときの値で表7に示す。
【0079】
【表7】

【実施例15】
【0080】
<pRSCBDAS(lysA+ddh+dapB+asd+lysC)および#403-11/pBGAEA/株への各プラスミドの導入及び評価>
pBDASプラスミドに次の生合成遺伝子を導入するためには適当な制限酵素サイトが見出せず、次の遺伝子を搭載することが困難であったため、まずpMW119ベクター上に目的の遺伝子をクローニングし、それをまとめて切り出す形でこの問題を解決した。まず、pMW119ベクターをXbaIにて消化し、これにpRSdapBよりXbaIにて切り出したPtac+dapBを含むDNA断片を連結した。次に、このプラスミドをBamHIにて消化し、平滑末端処理、脱リン酸化処理したものをベクターとし、これにpDAプラスミドをHapI-SapIにて切り出したPtac+ddh+Ptac+lysAを含むDNA断片を連結した。このプラスミドをSmaIにて消化し、脱リン酸化し
たものをベクターとし、実施例14と同様にして調製したPtac+asdを含むDNA断片を連結した。このようにして構築したプラスミドをpMWBDASと命名した。このプラスミド上ではddh,lysA,asdが同じ向きでdapBのみが逆向きを向いている。また遺伝子の搭載順序はpMW119上のlacプロモーター方向から、dapB, ddh, lysA, asdの順である。このプラスミドをSalI-SacIにて消化するとdapB, ddh, lysA, asdをそれぞれがtacプロモーターを含む形で切り出すことができる。この断片を上記pRSaskプラスミドをSapIにて消化し、平滑末端処理したものと連結することで、pCBDASを構築した。このpCBDASプラスミドを#403−11/pBGEA株に導入した株(#403−11/pBGEA/pCBDAS)を20mg/Lのカナマイシン、50mg/Lのゲンタマイシンおよび、50mg/Lのストレプトマイシンを含み(対照株の培地はストレプトマイシンを含まない)、0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含み、硫酸アンモニウムの最終濃度が6g/Lとなるように硫酸アンモニウムを追加添加したSEII生産培地にて培養したところLys蓄積が向上した。#403−11/pBGEA/pBDAS株のLys蓄積の相対値を#403−11/pBGEA株のLys蓄積を100としたときの値で表8に示す。
【0081】
【表8】

【実施例16】
【0082】
<薬剤耐性マーカー除去可能型生産菌の再構築(V12Sα)のための転移ユニット構築およびV12Sαの構築。>
次に、細胞内に完全に薬剤耐性遺伝子マーカーを含まず、染色体上にてLys生合成遺伝子を組み込んだ株を取得するための方法を示す。実施例6で示した、pMIV-FRTKmFRTをSmaIにて消化し、ここにPCR増幅したlysE+dapA*断片を挿入した。lySE24+dapA*断片は実施例6に示した方法で取得した。得られたプラスミドpMIV-FRTKmFRT-EAと命名した。これは実施例6で示したpMIV-FRTGmFRT-EAとは薬剤耐性遺伝子が異なる。
まず、M.methylotrophusの野生株であるAS1(NCIMB10515)株に実施例1に記載のpAET7プラスミドを導入し、形質転換株を50mg/Lのストレプトマイシンを含むSEII寒天培地で選択した。この株に実施例2で示した方法にてpMIV-FRTKmFRT-EAプラスミドをエレクトロポレーション法によって導入し、染色体上にlysE24+dapA*遺伝子を含むmini-Muカセット(EAユニット)が転移した株を50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII寒天培地にて選択した。これらの株より無作為に200株を選択し、50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEIIプレートに塗り広げ、37℃にて1晩培養したのち、培地表面約0.3平方センチメートルの菌体をかきとって50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII生産培地(5ml)に植菌し、37℃にて34時間振盪培養した。培養終了後、菌体を遠心分離により除去し、培養上清に含まれるL−リジン濃度をバイオテックアナライザーAS-210(サクラ精機製)を用いて定量し、L-リジンを最も多く含む株を選択した。この株をV1と命名した。実施例3に示したのと全く同じ方法で転移を12回繰り返して行い、V12株を取得した。V12株のLys蓄積の相対値をV1株を100としたときの相対値で表9に示した。
【0083】
【表9】

【0084】
次に、実施例4に示した方法と完全に同一の方法でV12株染色体上のmini-Muカセットの転移位置を決定した。この情報に基づいてV12株と全く同一の株を構築することも可能である。
【0085】
次に、V12株に実施例9で示したpFLP31プラスミドを導入し、同じく実施例9に記載の方法にて染色体上のmini-Muカセットからカナマイシン耐性遺伝子領域を除去した。この操作によって得られたカナマイシン感受性株をV12Sαと命名した。このV12SαはAJ110196と命名され、同株は2005年10月12日に独立行政法人 産業技術総合研究所 特許生物寄託センターにブダペスト条約に基づく国際寄託として、FERM BP-10434の受託番号のもとで寄託されている。
【実施例17】
【0086】
<lysE24+dapA*+lysA+ddh+dapB+asd+lysC転移ユニットの構築>
実施例15で示したようにlysE24+dapA*の強化に加えて各種Lys生合成系遺伝子を強化することでLys生産性が大きく向上することがわかっているので、次に染色体上にこれらの遺伝子を組み込むためのプラスミド構築を行った。まず、pMIV-FRTKmFRTをEcoRIにて消化し、平滑末端化、脱リン酸化処理し、ここにPCR増幅したlysE24+dapA*断片を挿入しpMIV-FRTKmFRT-EA#1を構築した。このプラスミドをSmaIにて消化し、脱リン酸化処理したものをベクターとし、PCR増幅したPtac+dapB断片を挿入した。PCR増幅の鋳型にはpRSdapBプラスミドを用い、プライマーはptac-fおよびpdapB-rを用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-90秒のサイクルを25サイクルで行った。このPCR増幅断片を平滑末端処理、リン酸化処理を行ったものを上記ベクターと連結し、pMIV-FRTKmFRT-EAB#1を取得した。このときdapAとdapB遺伝子の転写方向が同じ向きであった。次に、このプラスミドをHindIIIにて消化し、平滑断片化、脱リン酸化し、ここに実施例14に記載の方法で切り出したlysAおよびddhを含むDNA断片を連結し、pMIV-FRTKmFRT-EABDA#12を取得した。ddh遺伝子の転写の向きはdapA,dapBと逆向きであった。このプラスミドをSalIにて消化し、平滑断片化、脱リン酸化し、ここに実施例14に記載の方法で調製したtacプロモーター領域を含むasd遺伝子領域DNA断片を挿入した。このとき、asd断片を平滑断片にて挿入しているため、asd断片が2個挿入されたプラスミドが得られ、これをpMIV-FRTKmFRT-EABDAS#10を構築した。asd遺伝子は2個ともdapA,dapBと逆向きであった。最終的に得られたpMIV-FRTKmFRT-EABDAS#10上での各遺伝子の配置はlysE, dapA, dapB, asd, asd, lysA, ddhの順序になった。以上のようにして染色体上に6種類の遺伝子カセットを転移させるために用いるプラスミドを構築した。
【実施例18】
【0087】
<Vmac3株の構築、Vmac3S株の構築>
実施例16にて取得したV12SαにpAET7を導入し、これにpMIV-FRTKmFRT-EABDAS#10プラスミドを導入し、実施例16と同様の方法にてV12Sα株の染色体上にlysE, dapA, dapB, asd, lysA, ddh遺伝子を挿入した株を取得した。無作為に抽出した200株を50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII生産培地にて培養し、L-リジンの蓄積が最も高かった株を選択し、この株をVmac1と命名した。このVmac1株からストレ
プトマイシン感受性株を選択することで、pAET7が脱落した株を取得した。この株に実施例9で示したpFLP31プラスミドを導入し、同じく実施例9に記載の方法にて染色体上のmini-Muカセットからカナマイシン耐性遺伝子領域を除去した。この操作によって得られたカナマイシン感受性株をVmac1S株と命名した。このVmac1S株よりストレプトマイシン感受性株を選択することでpFLP31プラスミドが脱落した株を取得し、ここに再びpAET7プラスミドを導入し、この株に再びpMIV-FRTKmFRT-EABDAS#10プラスミドを導入し、同様にして最も蓄積の高かった株を選択しVmac2株と命名した。同様にしてVmac2S株、Vmac3株、Vmac3S株を取得した。Vmac3S株のLys蓄積の相対値をV12株のLys蓄積を100としたときの相対値で表10に示した。
【0088】
【表10】

【実施例19】
【0089】
<metF欠損によるL-Met要求性付与、V3E2F構築>
Vmac3S株にpBGEAプラスミドを導入したところさらにL-リジン蓄積が上昇し、Vmac3S株においてlysE24+dapA*がさらなる高収率化に効果があることがわかったので、再び染色体上にlysE24+dapA*のmini-Muカセットを組み込んだ。具体的にはVmac3S株にpAET7を導入し、これにpMIV-FRTKmFRT-EAプラスミドを導入して、50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII寒天培地上で選択することで、Vmac3S株の染色体上にlysE24+dapA*が組み込まれた株を取得した。無作為に抽出した200株を50mg/Lのストレプトマイシンおよび20mg/Lのカナマイシンを含むSEII生産培地にて培養し、L-リジンの蓄積が最も高かった株を選択し、この株をVmac3EAと命名した。実施例3に示したのと全く同じ方法で転移を3回繰り返して行い、もっともL-リジン蓄積の高かった株をV3E2株と命名した。この株から既述の方法にて薬剤耐性マーカーを除去し、カナマイシン感受性とした株をV3E2Sと命名した。
次に、VAE#8株にてL-リジン蓄積の向上に効果のあったL-メチオニン要求性の付与を行った。具体的にはPCRにてお互いにオーバーラップ(重複)する領域を持つようにデザインした3種類のPCR増幅したDNA断片を混合して、これを鋳型としたPCRを再度行うことで目的遺伝子のほぼ中央部分にカナマイシン耐性遺伝子が挿入されたような遺伝子破壊用DNA断片を調製した。断片1(N末端側断片)はM.methylotrophusAS1株の染色体DNAを鋳型とし、PCRプライマーはmetF-fn1(配列番号30:5'-TGGACTGACGGTGGCTACTC-3')およびmetF-rn(配列番号32:5'-CCAGCCTACACAATCGCTCAAGACGTGTAATGCACTTCCGGATGAAACTCAGGGTAAG-3')を用いた。PCR条件は変性94℃-30秒、アニーリング60℃-30秒、伸長反応72℃-30秒のサイクルを25サイクルで行った。断片2(C末端側断片)は同様にM.methylotrophusAS1株の染色体DNAを鋳型とし、PCRプライマーはmetF-rc1(配列番号33:5'-TGCCAAATACGGGCTACTG-3')およびmetF-fc(配列番号35:5'-GAGAATAGGAACTTCGGAATAGGAACTAAGGAGGAGCTGGTTGCGTTTACGTC-3')を用いた。PCR条件は変性94℃-30秒、アニーリング60℃-30秒、伸長反応72℃-30秒のサイクルを25サイクルで行った。断片3(Km耐性遺伝子断片)はpKD4プラスミドを鋳型とし、PCRプライマーはpKD-Kmf(配列番号36:5'-GCATTACACGTCTTGAGCGATTGTGTAGGC-3')およびpKD-KmGmr(配列番号37:5'-CCTCCTTAGTTCCTATTCCGAAGTTCCTATTCTC-3')を用いた。PCR条件は変性94℃-30秒、アニーリング60℃-30秒、伸長反応72℃-30秒のサイクルを25サイクルで行った。断片1および2を1%の低融点アガロースゲルにて分離し、Promega社製のWizard PCR Preps DNA purification sysytemにて精製した。各断片の濃度を測定し、断片1,2,3の濃度が2:2:1となるように混合したものを鋳型
とし、PCRプライマーはmetF-fn2(配列番号31:5'-GACCACGTCATTTTCCCT-3')およびmetF-rc2(配列番号34:5'-TCCGGGCTCAATTCACTC-3')を用いた。PCR条件は変性98℃-20秒、伸長反応68℃-3分のサイクルを25サイクルで行った。この増幅には特にLA taqポリメラーゼ(タカラバイオ)を用いた。このようにして増幅されたDNA断片はmetF遺伝子周辺の遺伝子断片のほぼ中央にカナマイシン耐性遺伝子が挿入された構造を持っている。このDNA断片を約3マイクログラム調製し、これをV3E2S株にエレクトロポレーション法によって導入した。回復培養には0.4g/LのL-メチオニンを含むSEII液体培地を用い、これを20mg/Lのカナマイシン、0.4g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含むSEII寒天培地に塗布した。出現したコロニーをL-メチオニンを含まないSEII寒天培地に塗布したとき生育することができない、すなわちL-メチオニン要求性を示す株を選択し、V3E3Fと命名した。この株を0.075g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含み、硫酸アンモニウムの最終濃度が6g/Lとなるように硫酸アンモニウムを追加添加したSEII生産培地にて培養したところLys蓄積が向上した。V3E2F株のLys蓄積の相対値をVmac3SのLys蓄積を100としたときの値で表11に示す。L-リジン蓄積が向上したのはL-メチオニン要求性付与によって菌体生成量が抑制された結果であると思われる。
【0090】
【表11】

【0091】
【表12】

【実施例20】
【0092】
<pBG-lysCプラスミドの構築、V3E2F/pBGlysC株の構築>
これまでの検討で、M.methylotrophusにおいてアスパルトキナーゼ活性を増強するとL-リジンの生産性が向上することがわかってきたが、実施例15で示したようにこれまではM.methylotrophus由来の野生型のAKの増強を行ってきた。しかし、このask遺伝子にコードされるアスパルトキナーゼ活性はL-リジンおよびL-スレオニンによってフィードバック阻害を受けることがわかっている。L-リジン生産性を向上させるためにはL-リジンやL-スレオニンによるフィードバック阻害を受けないほうが望ましい。そこで、E.coli由来のアスパルトキナーゼでL-リジンによるフィードバック阻害を受けない変異型AKIIIを用いた。L-リジンによるフィードバック阻害が解除された変異型AKIIIをコードする変異型lysCは既知の配列をもとに作成した2種のオリゴヌクレオチドプライマーを用いたPCR法により、公知のプラスミドであるRSFD80(WO95/16042号)を鋳型として得た。プライマーはplysC-f(配列番号38:5'- GAACCTGCAGGCCCTGACACGAGGTAGATTATGTC -3')およびplysC-r(配列番号39:5'- CTTTCGGCTAGAAGAGCGAGATGCAGATAAAAAAATTAAAGGCAATTATTCTCCG -3')を用い、PCRの条件は変性94℃-20秒、アニーリング55℃-30秒、伸長反応72℃-90秒のサイクルを25サイクルで行った。これをあらかじめプライマーにデザインしておいたSse8387IおよびSapIにて消化し、既知のプラスミドpRStac(特開2003-61687)をSse8387I-SapIにて消化したものと連結した。このプラスミドをpRSlysC*と命名した。次に、このpRSlysC*を
EcoRI-SapIにて消化し、tacプロモーター配列を含むlysC*断片を切り出し、これを公知のプラスミドpBHR1を制限酵素DraIで消化し平滑末端化、脱リン酸化処理したものと連結した。このプラスミドをpBHR-lysCプラスミドと命名した。これをNcoIにて消化し、平滑末端化、脱リン酸化したものをベクターとし、ここに実施例11に記載の方法で調製したゲンタマイシン耐性遺伝子断片を挿入し、pBGlysCプラスミドを構築した。このpBGlysCプラスミドを実施例19で作成したV3E2F株に導入したところ、L-リジン蓄積の向上が観察された。また、このV3E2F/pBGlysC株にさらに公知のpRSlysEdapA(特開2003-61687号広報参照)を導入することでさらにL-リジン生産量は向上した。このV3E2F/pBGlysC株およびV3E2F/pBGlysC/pRSlySEdapA株を50mg/Lのゲンタマイシンおよび50mg/Lのストレプトマイシンを含み(対照株の培地はいずれをも含まない)、0.08g/LのL-メチオニンおよび2.5g/Lのピルビン酸ナトリウムを含み、硫酸アンモニウムの最終濃度が6g/Lとなるように硫酸アンモニウムを追加添加したSEII生産培地にて培養したところLys蓄積が向上した。このときのLys蓄積の相対値をV3E2FのLys蓄積を100としたときの相対値で表13に示す。
【0093】
【表13】

【図面の簡単な説明】
【0094】
【図1】pM12プラスミドの構築を示す図。
【図2】pMIV5プラスミドの構築を示す図。
【図3】pMIV-FRTKmFRTプラスミドの構築を示す図。
【図4】pAET7プラスミドの構築を示す図。
【図5】pFLP31プラスミドの構築を示す図。

【特許請求の範囲】
【請求項1】
L-リジンによるフィードバック阻害が解除されたジヒドロジピコリン酸合成酵素をコードするDNA、および、メタノール資化性細菌に導入したときにL−リジンの細胞外への排出を促進する変異型LysEタンパク質をコードするDNAを保持し、ジアミノピメリン酸デヒドロゲナーゼ、ジアミノピメリン酸デカルボキシラーゼ、ジヒドロジピコリン酸レダクターゼおよびアスパラギン酸セミアルデヒドデヒドロゲナーゼの細胞内活性が増強されるように改変されたメタノール資化性細菌。
【請求項2】
L-リジンによるフィードバック阻害が解除されたアスパルトキナーゼをコードするDNAをさらに保持することを特徴とする請求項1に記載のメタノール資化性細菌。
【請求項3】
前記各酵素もしくは変異型LysEタンパク質をコードするDNAが染色体DNA上に組み込まれたこと、および/または前記各酵素もしくは変異型LysEタンパク質をコードするDNAを含むプラスミドで形質転換されたことを特徴とする、請求項1または2に記載のメタノール資化性細菌。
【請求項4】
ジヒドロジピコリン酸合成酵素をコードするDNA、ジヒドロジピコリン酸レダクターゼをコードするDNA、アスパラギン酸セミアルデヒドデヒドロゲナーゼをコードするDNA、およびアスパルトキナーゼをコードするDNAがエシェリヒア属細菌由来であり、ジアミノピメリン酸デカルボキシラーゼをコードするDNAがメチロフィラス属細菌由来であり、かつジアミノピメリン酸デヒドロゲナーゼをコードするDNAおよび変異型LysEをコードするDNAがブレビバクテリウム属細菌由来である、請求項3に記載のメタノール資化性細菌。
【請求項5】
メチロフィラス属細菌である、請求項1〜4のいずれか一項に記載のメタノール資化性細菌。
【請求項6】
メチロフィラス・メチロトロファスAJ110196株(FERM BP-10434)由来の微生物である、請求項1〜5のいずれか一項に記載のメタノール資化性細菌。
【請求項7】
請求項1〜6のいずれか一項に記載のメタノール資化性細菌を培地で培養し、該培地又は菌体内にL−リジンを生産蓄積させ、該培地又は菌体内からL−リジンを採取することを特徴とするL−リジンの製造法。
【請求項8】
前記培地がメタノールを主たる炭素源とすることを特徴とする請求項7記載のL−リジンの製造法。
【請求項9】
メチロフィラス・メチロトロファスAJ110196株(FERM BP-10434)。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−89603(P2009−89603A)
【公開日】平成21年4月30日(2009.4.30)
【国際特許分類】
【出願番号】特願2006−25617(P2006−25617)
【出願日】平成18年2月2日(2006.2.2)
【出願人】(000000066)味の素株式会社 (887)
【Fターム(参考)】