説明

光センサ装置

【課題】光の入射方向の検出精度が向上された光センサ装置を提供する。
【解決手段】半導体基板に受光素子が複数形成され、半導体基板における受光素子の形成面上に透光膜が形成され、透光膜に遮光膜が形成され、遮光膜に、受光素子の受光面に入射する光の角度を規定する開口部が形成された光センサと、受光素子の出力信号に基づいて光の仰角と左右角を算出する角度算出部と、を有する光センサ装置であって、対応する開口部によって規定される光の左右角が互いに同一であり、仰角が互いに異なる複数の受光素子によって、受光素子群が複数構成され、複数の受光素子群それぞれの左右角が異なっており、角度算出部は、各受光素子の出力信号の強度を比べることで、最も強い出力信号を出力している受光素子を特定し、特定された受光素子の受光面に入射する光の角度を特定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体基板に、光を電気信号に変換する受光素子が複数形成され、半導体基板における受光素子の形成面上に、透光膜を介して遮光膜が形成され、遮光膜に、受光素子それぞれに対応して、受光素子の受光面に入射する光の角度を規定する開口部が形成された光センサと、受光素子の出力信号に基づいて、光の入射角度を算出する角度算出部と、を有する光センサ装置に関するものである。
【背景技術】
【0002】
従来、例えば特許文献1に示されるように、半導体基板にフォトダイオードが複数形成され、その形成面上に透光性を有する透光層が形成され、その透光層に遮光性を有する遮光マスクが形成され、その遮光マスクに光伝播エリアが複数形成された光センサが提案されている。この光センサでは、遮光マスクの光伝播エリアによって、フォトダイオードの受光面に入射する光の範囲が規定されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許6875974号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に示される光センサでは、対を成す2つのフォトダイオードが左右方向に隣接しており、これら2つのフォトダイオードそれぞれの受光面に入射する光の範囲が、2つのフォトダイオードの上方に位置する1つの光伝播エリアによって規定されている。したがって、左方から光センサに光が入射した場合、右方のフォトダイオードの出力信号が、左方のフォトダイオードの出力信号よりも大きくなる。これとは反対に、右方から光センサに光が入射した場合、左方のフォトダイオードの出力信号が、右方のフォトダイオードの出力信号よりも大きくなる。したがって、対を成す2つのフォトダイオードの出力信号を比べることで、光が左方から入射しているのか、右方から入射しているのかを検出することが可能となっている。
【0005】
ところで、上記構成では、左方のフォトダイオードの出力信号を、対を成す2つのフォトダイオードの出力信号の総和によって割った値と、右方のフォトダイオードの出力信号を、対を成す2つのフォトダイオードの出力信号の総和によって割った値と、を算出し、これら2つの値の比をとることで、光が、光センサに対して左方からどれくらい入射しているのか、若しくは、右方からどれくらい入射しているのか、を検出することができる。すなわち、光の左右比を検出することができる。しかしながら、左右比は、光の仰角によって変動する性質を有しており、左右比の値だけでは、正確な光の入射方向(仰角と左右角)を検出することができなかった。
【0006】
そこで、本発明は上記問題点に鑑み、光の入射方向の検出精度が向上された光センサ装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記した目的を達成するために、請求項1に記載の発明は、半導体基板に、光を電気信号に変換する受光素子が複数形成され、半導体基板における受光素子の形成面上に、透光性を有する透光膜が形成され、透光膜に、遮光性を有する遮光膜が形成され、遮光膜に、受光素子それぞれに対応して、受光素子の受光面に入射する光の角度を規定する開口部が形成された光センサと、受光素子それぞれの出力信号に基づいて、光の仰角、及び、光の左右角を算出する角度算出部と、を有する光センサ装置であって、対応する開口部によって規定される光の左右角が互いに同一であり、仰角が互いに異なる複数の受光素子によって、受光素子群が複数構成され、複数の受光素子群それぞれの左右角が異なっており、角度算出部は、各受光素子の出力信号の強度を比べることで、最も強い出力信号を出力している受光素子を特定し、特定された受光素子の受光面に入射する光の角度を特定することを特徴とする。
【0008】
このように本発明によれば、対応する開口部によって規定される光の左右角が互いに同一であり、仰角が互いに異なる複数の受光素子によって、受光素子群が複数構成されている。そして、複数の受光素子群それぞれの左右角が異なっている。これによれば、各受光素子に入射する光の量が異なることとなり、半導体基板に入射する光の角度と、受光面に入射する光の角度とが一致する受光素子、若しくは、最も近い受光素子の出力信号が最大と成る。したがって、各受光素子の出力信号の強度を比べることで、最も強い出力信号を出力している受光素子を特定し、その特定された受光素子の受光面に入射する光の角度を特定することで、半導体基板に入射する光の入射方向(仰角と左右角)を検出することができる。これにより、光の入射方向の検出精度が向上される。
【0009】
なお、請求項1に記載の光の仰角とは、受光素子の受光面に平行な方向と光の進行方向とによって形成される角度であり、光の左右角は、受光面に垂直な垂線の周囲の角度である。
【0010】
請求項2に記載のように、角度算出部は、受光素子の出力信号の電圧を要素とした行列を形成することで、受光面に入射する光の角度に応じた、受光素子の出力信号の強度分布を形成する分布形成部を有し、分布形成部は、受光面に入射する光の左右角が異なる各受光素子の出力信号を、行番号若しくは列番号が増大するにつれて、左右角が増大若しくは減少するように並べた第1行列と、受光面に入射する光の仰角が異なる各受光素子の出力信号を、行番号若しくは列番号が増大するにつれて、仰角が増大若しくは減少するように並べた第2行列と、を形成する構成が好ましい。
【0011】
各受光素子の出力信号には、多少なりともノイズが含まれているので、単純に、各受光素子の出力信号の強度を逐次比較した場合、光の角度の検出精度が低下する虞がある。これに対して、請求項2に記載の発明では、受光面に入射する光の角度に応じた、受光素子の出力信号の強度分布を形成する。これによれば、各出力信号にノイズが含まれていたとしても、強度分布の形状から、最も強い信号を出力している受光素子を特定することができる。また、ノイズによって、角度の検出精度が低下することが抑制される。更に言えば、各受光素子の出力信号を逐次比較する場合と比べて、光の入射方向の検出時間を短縮することができる。
【0012】
請求項3に記載のように、角度算出部は、受光素子の出力信号の電圧値が閾値電圧よりも高い場合にHi信号を出力し、受光素子の出力信号の電圧値が閾値電圧よりも低い場合にLo信号を出力する比較部を有し、分布形成部は、Hi信号が一度も入力されていない場合に「0」のフラグを立て続け、Hi信号が一度でも入力された場合に、フラグを「0」にするリセット信号が入力されるまで、「1」のフラグを立て続けるフリップフロップを複数有し、第1行列及び第2行列の各要素の値は、1つのフリップフロップのフラグであり、第1行列及び第2行列それぞれは、1列若しくは1行の行列であり、第1行列を成す1つのフリップフロップには、受光面に入射する光の左右角が同一であり、受光面に入射する光の仰角が異なる各受光素子の出力信号が、比較部を介して順次入力され、第2行列を成す1つのフリップフロップには、受光面に入射する光の仰角が同一であり、受光面に入射する光の左右角が異なる各受光素子の出力信号が、比較部を介して順次入力される構成が好ましい。
【0013】
例えば、受光面に入射する光の左右角が異なる各受光素子の出力信号が、行番号が増大するにつれて左右角が増大するように並べられ、受光面に入射する光の仰角が異なる各受光素子の出力信号が、列番号が増大するにつれて仰角が減少するように並べられた行列を作成した後、その行列に表れる「0」,「1」の分布から、光の入射角度を検出する構成も考えられる。この場合、上記した分布は、行要素と列要素とを乗算した数の要素から成る。
【0014】
これに対して、請求項3に記載の発明では、「0」,「1」の分布が、上記した比較例に示した行列における、1つの行要素と1つの列要素との和によって示される。このように、比較例と比べて、要素数が少なくなるので、光の入射角度を検出する演算を簡素化することができる。
【0015】
請求項3に記載の構成の具体例としては、請求項4に記載のように、角度算出部は、対応する1つの受光素子と比較部との電気的な接続を開閉制御する第1スイッチと、対応する1つのフリップフロップと比較部との電気的な接続を開閉制御する第2スイッチと、複数の第1スイッチを順次一つずつ閉状態とし、閉状態とされた第1スイッチに対応する第2スイッチを閉状態とするアドレスデコーダと、を有する構成を採用することができる。
【0016】
請求項5に記載のように、複数の受光素子よりも受光面積が広い、照射量検出用受光素子が半導体基板に形成されており、角度算出部は、照射量検出用受光素子の出力信号に基づいて、閾値電圧を生成する基準電圧生成部を有する構成が好ましい。
【0017】
光の照射量や外部環境(天気)によっては、強度分布の大部分が「1」若しくは「0」となり、光の入射角度を検出することが困難となる虞がある。そこで、請求項5に記載のように、照射量検出用受光素子の出力信号に基づいて、閾値電圧を調整することで、強度分布の大部分が「1」若しくは「0」になることを抑制することができる。これにより、光の入射角度の検出が困難となることが抑制される。
【0018】
請求項6に記載のように、照射量検出用受光素子の出力信号と、複数の受光素子の内、最も強い出力信号を出力している受光素子の受光面に入射する光の角度とに基づいて、半導体基板に照射される光の照射量を算出する照射量算出部を有する構成が良い。これによれば、照射量検出用受光素子の出力信号のみに基づいて光の照射量を検出する構成と比べて、光の照射量の検出精度が向上される。
【0019】
請求項7に記載のように、最も強い出力信号を出力している受光素子の出力信号と、その受光素子の受光面に入射する光の角度とに基づいて、半導体基板に照射される光の照射量を算出する照射量算出部を有する構成が良い。これによれば、最も強い出力信号を出力している受光素子の出力信号のみに基づいて光の照射量を検出する構成と比べて、光の照射量の検出精度が向上される。
【0020】
請求項8に記載のように、受光素子は、半導体基板の任意点から放射状に延びた複数の仮想直線それぞれの上に複数配置されて、受光素子が放射状に配置されており、放射状に配置された複数の受光素子それぞれに対応する開口部によって規定される光の仰角が、任意点から離れるにしたがって小さくなる若しくは大きくなる構成が好ましい。これによれば、各受光素子と角度算出部との電気的接続の設計が容易となる。また、最も強い出力信号を出力していると特定された受光素子の位置が、光の仰角と左右角とを示すので、光の仰角と左右角とを直感的に認識し易くなる。なお、1本の仮想直線に配置された複数の受光素子によって、請求項1に記載の受光素子群が構成されている。
【0021】
請求項8に記載の具体的な構成としては、請求項9に記載のように、任意点から、19本の仮想直線が延び、隣接する仮想直線が成す、任意点周りの角度が10°となっており、1本の仮想直線には、任意点から離れるにしたがって、受光面に入射する光の仰角が10°ずつ小さくなる若しくは大きくなるように、9個の受光素子が配置された構成を採用することができる。これによれば、光の左右角と仰角とを、±5°の誤差範囲で検出することができる。
【0022】
請求項10に記載のように、遮光膜は、透光膜に層状に複数形成されており、複数の遮光膜それぞれに形成された開口部によって、受光面に入射する光の角度が規定された構成が好ましい。これによれば、ある開口部から入射した光が、その開口部と対応する受光素子以外の受光素子に入射することが抑制される。これにより、各受光素子の出力信号に、意図しない開口部からの光出力(外乱出力)が含まれることが抑制される。
【図面の簡単な説明】
【0023】
【図1】光センサ装置の概略構成を示す回路図である。
【図2】受光素子の分布を示す上面図である。
【図3】図2のIII−III線に沿う断面図である。
【図4】各受光素子の出力信号、及び、第1行列と第2行列を説明するための概念図である。
【図5】角度算出部の信号を説明するためのタイミングチャートである。
【図6】角度算出部の信号を説明するためのタイミングチャートである。
【発明を実施するための形態】
【0024】
以下、本発明に係る光センサ装置を車両に搭載した場合の実施の形態を図に基づいて説明する。
(第1実施形態)
図1は、光センサ装置の概略構成を示す回路図である。図2は、受光素子の分布を示す上面図である。図3は、図2のIII−III線に沿う断面図である。図4は、各受光素子の出力信号、及び、第1行列と第2行列を説明するための概念図である。図5及び図6は、角度算出部の信号を説明するためのタイミングチャートである。以下においては、後述する半導体基板10の形成面10aに沿い、車両の前後を貫く方向を前後方向、形成面10aに沿い、車両の左右を貫く方向を左右方向と示す。そして、受光素子20の受光面20aに平行な方向と、光の進行方向とによって形成される角度を仰角、受光面20aに垂直な垂線の周囲の角度を光の左右角と示す。
【0025】
なお、図2では、煩雑となることを避けるために、171個の受光素子21a〜39iの内、21a〜21iと、39a〜39iの符号のみを記載した。また、図3では、開口部70によって規定される光の仰角を明瞭とするために、開口部70を介して、受光素子21a〜21i,39a〜39iそれぞれに入射する光を、実線で示した。
【0026】
光センサ装置200は、図1に示すように、要部として、光センサ100と、角度算出部110と、照射量算出部180と、を有する。光センサ100は、光センサ装置200(車両)へ入射する光を、その入射角度(仰角と左右角)と光の照射量に応じた電気信号に変換する機能を果たし、角度算出部110は、光センサ100の出力信号に基づいて、光センサ装置200(車両)へ入射する光の角度を算出する機能を果たす。そして、照射量算出部180は、光センサ100と角度算出部110の出力信号に基づいて、光センサ装置200(車両)へ入射する光の照射量を算出する機能を果たす。
【0027】
光センサ100は、図2及び図3に示すように、半導体基板10と、受光素子20と、透光膜50と、遮光膜60と、開口部70と、を有する。半導体基板10に受光素子20が形成され、受光素子20の形成面10a上に透光膜50が形成され、透光膜50に遮光膜60が形成されている。遮光膜60に開口部70が形成され、この開口部70を介して、受光素子20に光が入射するようになっている。
【0028】
半導体基板10は、矩形を成し、受光素子20の他に、角度算出部110及び照射量算出部180を構成する電子素子(図示略)が形成されている。これら電子素子は、半導体基板10に形成された配線パターン(図示略)を介して電気的に接続されている。
【0029】
受光素子20は、光を電気信号に変換するものであり、PN接合を有するフォトダイオードである。受光素子20は、受光面積が同一である、171個の受光素子21a〜39iと、受光素子21a〜39iよりも受光面積が大きい、1つの照射量検出用受光素子40と、を有する。受光素子21a〜39i,40の配置は、光センサ装置200の特徴点なので、後で詳説する。
【0030】
透光膜50は、光透過性と絶縁性とを有する材料から成る。このような性質を有する材料としては、例えば酸化シリコンSiOがある。遮光膜60は、遮光性と導電性を有する材料から成る。このような性質を有する材料としては、例えばアルミニウムがある。本実施形態では、二層の遮光膜60が透光膜50に形成されている。
【0031】
開口部70は、受光素子20の受光面20aに入射する光の角度(仰角と左右角)を規定するものである。本実施形態では、172個の開口部70が二層の遮光膜60それぞれに形成されている。受光面20aに入射する光の角度は、開口部70と受光素子20との位置によって決定されるが、その具体的な位置関係は、光センサ装置200の特徴点なので、後で詳説する。
【0032】
角度算出部110は、図1に示すように、スイッチ120と、比較部140と、基準電圧生成部150と、分布形成部160と、アドレスデコーダ170と、を有する。角度算出部110は、光センサ装置200の特徴点なので、ここでは、構成要素120〜170それぞれの概略構成を説明し、その動作を後述する。
【0033】
スイッチ120は、受光素子20と比較部140との電気的な接続を開閉制御するものである。スイッチ120は、171個のスイッチ121a〜139iを有しており、171個のスイッチ121a〜139iの内の1つが、対応する受光素子21a〜39iの内の1つと比較部140との間に配置されている。スイッチ120は、特許請求の範囲に記載の第1スイッチに相当する。
【0034】
比較部140は、受光素子21a〜39iの出力信号の電圧と、閾値電圧とを比較するものである。比較部140は、コンパレータであり、入力される受光素子21a〜39iの出力信号の電圧が閾値電圧よりも高い場合に、Hi信号を出力し、低い場合に、Lo信号を出力する。
【0035】
基準電圧生成部150は、閾値電圧を生成する基準電圧回路151と、照射量検出用受光素子40の出力信号に基づいて、基準電圧回路151が生成する閾値電圧を制御する閾値調整回路152と、を有する。閾値調整回路152は、照射量検出用受光素子40の出力信号の値が所定値よりも大きい場合に、閾値電圧を上げ、所定値よりも低い場合に、閾値電圧を下げる、という調整を行う。なお、所定値は、光センサ装置200(車両)に入射する光の仰角が90°の場合に、照射量検出用受光素子40から出力される信号の半分の値である。
【0036】
分布形成部160は、受光素子20の出力信号の電圧を要素とした行列を形成することで、光センサ装置200に入射する光の角度に応じた、受光素子20の出力信号の強度分布を形成するものである。分布形成部160は、フリップフロップ161と、フリップフロップ161と比較部140との電気的な接続を開閉制御する切替スイッチ162と、受光素子21a〜39iの出力信号の電圧を要素とした行列を形成し、その行列に表される分布に基づいて、仰角と左右角とを特定する仰角左右角処理部163と、を有する。切替スイッチ162は、特許請求の範囲に記載の第2スイッチに相当する。
【0037】
フリップフロップ161は、比較部140から、Hi信号が一度も入力されていない場合に「0」のフラグを立て続け、Hi信号が一度でも入力された場合に、フラグを「0」にするリセット信号が入力されるまで、「1」のフラグを立て続けるRSフリップフロップである。フリップフロップ161は、左右角検出用の19個の第1フリップフロップ164a〜164sと、仰角検出用の9個の第2フリップフロップ165a〜165iと、を有する。切替スイッチ162は、第1フリップフロップ164a〜164sに対応する19個の第1切替スイッチ166a〜166sと、第2フリップフロップ165a〜165iに対応する9個の第2切替スイッチ167a〜167iと、を有する。対応する第1フリップフロップ164a〜164sの内の1つと比較部140との間に、19個の第1切替スイッチ166a〜166sの内の1つが配置され、対応する第2フリップフロップ165a〜165iの内の1つと比較部140との間に、9個の第2切替スイッチ167a〜167iの内の1つが配置されている。
【0038】
第1フリップフロップ164a〜164sには、受光面20aに入射する光の左右角が同一であり、受光面20aに入射する光の仰角が異なる各受光素子20の出力信号が、比較部140を介して順次入力される。そして、第2フリップフロップ165a〜165iには、受光面20aに入射する光の仰角が同一であり、受光面20aに入射する光の左右角が異なる各受光素子20の出力信号が、比較部140を介して順次入力される。
【0039】
仰角左右角処理部163は、図4に示すように、第1フリップフロップ164a〜164sのフラグを要素とする19行1列の第1行列を作成し、第2フリップフロップ165a〜165iのフラグを要素とする1行9列の第2行列を作成する。そして、作成した第1行列と第2行列とに基づいて、最も強い出力信号を出力している受光素子20を特定する。
【0040】
アドレスデコーダ170は、スイッチ120と切替スイッチ162それぞれに開閉信号を入力するものである。また、アドレスデコーダ170は、リセット信号をフリップフロップ161に入力する機能も果たす。
【0041】
照射量算出部180は、照射量検出用受光素子40の出力信号を電流から電圧に変換する電流電圧変換回路181と、電流電圧変換回路181の出力信号と、仰角左右角処理部163の出力信号(仰角・左右角情報)とに基づいて、光の照射量を算出する照射量処理部182と、を有する。
【0042】
次に、本実施形態に係る光センサ装置200の特徴点と動作を説明する。図2に示すように、171個の受光素子21a〜39iが、照射量検出用受光素子40の中心点C1(図2で示したバツ印)から放射状に延びた複数の仮想直線(煩雑となるので図示略)それぞれに配置され、受光素子21a〜39iが放射状に配置されている。また、図示しないが、受光素子21a〜39iに対応する開口部70も仮想直線に配置されており、照射量検出用受光素子40に対応する開口部70から、171個の開口部70が放射状に配置されている。本実施形態では、19本の仮想直線が中心点C1から延びており、19本の仮想直線それぞれに、9個の受光素子が配置されている。1本の仮想直線に配置された9個の受光素子それぞれの左右角は同一となっており、光の仰角が互いに異なっている。図3に示すように、1本の仮想直線に配置された9個の受光素子の受光面に入射する光の仰角は、中心点C1から離れるにしたがって、10°ずつ小さくなるように、対応する開口部70によって規定されている。また、隣接する仮想直線が成す、中心点C1周りの角度が10°となっており、1本の仮想直線に配置された9個の受光素子の受光面に入射する光の左右角が、この仮想直線に隣接する仮想直線に配置された9個の受光素子の受光面に入射する光の左右角と10°だけ異なっている。図2に示すように、本実施形態では、中心点C1から左方向に延びる第1仮想直線と、中心点C1から右方向に伸びる第19仮想直線とが成す、中心点C1周りの角度が180°となっており、車両の前方から入射してくる光の角度を検出することを目的とした構成となっている。
【0043】
以下においては、話を簡便とするために、第n番目の仮想直線(nは1〜19までの自然数)に配置された9個の受光素子を、第n群の受光素子と示す。また、第n群を構成する9個の受光素子それぞれを、仰角が小さくなるにしたがって番号が大きくなるように、第k受光素子(kは、1〜9までの自然数)と示す。そして、第1仮想直線と、任意の仮想直線とが成す、中心点C1回りの角度を左右角と示す。以上の定義によれば、第n群の受光素子の左右角は、10(n−1)°となり、第k受光素子の仰角は、10(10−k)°となる。なお、1本の仮想直線に配置された9個の受光素子によって、特許請求の範囲に記載の受光素子群が構成されている。本実施形態では、19個の受光素子群21〜39が構成されている。
【0044】
次に、光センサ装置200の動作を図4〜図6に基づいて説明する。図4に示す19行9列の行列は、比較部140を介した、受光素子21a〜39iそれぞれの出力信号を示している。第n行に第n群の受光素子の出力信号が設けられ、第k列に第k受光素子の出力信号が設けられている。行列に示された「0」は、比較部140の出力信号がLo信号であり、「1」は、比較部140の出力信号がHi信号であることを示している。なお、図4に示す例では、13個の要素が「1」となっており、他の158個の要素が「0」となっている。そして、「1」の分布が点対称となっており、1つの要素を中心としている。これは、光センサ装置200に入射した光は、その入射角度に対応する受光素子を中心にピークを持つためである。
【0045】
図5は、スイッチ120と第1切替スイッチ166に入力される信号と、第1フリップフロップ164の出力信号(フラグ)とを示している。図5では、それらの代表として、スイッチ121a〜121i,122a、及び、第1切替スイッチ166a,166bそれぞれに入力される信号と、第1フリップフロップ164a,164bそれぞれの出力信号(フラグ)とを示した。
【0046】
図6は、スイッチ120と第2切替スイッチ167に入力される信号と、第2フリップフロップ165の出力信号(フラグ)とを示している。図6では、それらの代表として、スイッチ121a〜139a,121b、及び、第2切替スイッチ167a,167bそれぞれに入力される信号と、第2フリップフロップ165a,165bそれぞれの出力信号(フラグ)とを示した。
【0047】
光センサ装置200が動作すると、先ず、アドレスデコーダ170から、フリップフロップ161にリセット信号が入力され、フリップフロップ161のフラグが「0」になる。また、閾値電圧が、基準電圧生成部150によって決定される。
【0048】
リセット信号を出力した後、アドレスデコーダ170は、図5に示すように、第1切替スイッチ166aに閉信号を入力し、比較部140と第1フリップフロップ164aとを電気的に接続する。この比較部140と第1フリップフロップ164aとの電気的な接続が維持された状態で、アドレスデコーダ170から、第1群の受光素子21a〜21iに対応するスイッチ121a〜121iそれぞれに、閉信号が順次入力される。この結果、図4に示す19行9列の行列における第1行に示された9個の出力信号が、第1フリップフロップ164aに順次入力される。図5に示すように、スイッチ121a〜121eがオン状態に変化した結果、受光素子21a〜21eの出力信号が第1フリップフロップ164aに順次入力されるが、この場合、比較部140からはLo信号しか出力されないので、第1フリップフロップ164aのフラグは、「0」のままである。しかしながら、スイッチ121fがオン状態に変化すると、比較部140からHi信号が出力され、第1フリップフロップ164aのフラグが、「1」に変化する。第1フリップフロップ164aは、リセット信号が入力されるまで、この状態を維持する。
【0049】
以下、上記した同様の操作を、第2〜第19群の受光素子22a〜39iに対応するスイッチ122a〜139i、及び、第1切替スイッチ166b〜166iに順次行うことで、第1フリップフロップ164a〜164sそれぞれに、受光素子21a〜39iの出力信号を入力する。すなわち、第1行列におけるn行の要素に対応する第1フリップフロップ164に、第n群の受光素子の出力信号を順次入力する。仰角左右角処理部163は、第1フリップフロップ164a〜164sそれぞれのフラグ(出力信号)に基づいて、第1行列を作成する。
【0050】
その後、アドレスデコーダ170は、第2切替スイッチ167aに閉信号を入力し、比較部140と第2フリップフロップ165aとを電気的に接続する。この比較部140と第2フリップフロップ165aとの電気的な接続が維持された状態で、アドレスデコーダ170から、第1受光素子21a〜39aに対応するスイッチ121a〜139aそれぞれに、閉信号が順次入力される。この結果、図4に示す19行9列の行列における第1列に示された19個の出力信号が、第2フリップフロップ165aに順次入力される。図6に示すように、スイッチ121a〜139aがオン状態に変化した結果、受光素子21a〜39aの出力信号が第2フリップフロップ165aに順次入力される。しかしながら、この場合、比較部140からはLo信号しか出力されないので、第2フリップフロップ165aのフラグは、「0」のままである。
【0051】
以下、上記した同様の操作を、第2〜第9受光素子21b〜39iに対応するスイッチ121b〜139i、及び、第2切替スイッチ167b〜167iに順次行うことで、第2フリップフロップ165a〜165iそれぞれに、受光素子21a〜39iの出力信号を入力する。すなわち、第2行列におけるk列の要素に対応する第2フリップフロップ165に、第1〜n群それぞれの第k受光素子の出力信号を順次入力する。仰角左右角処理部163は、第2フリップフロップ165a〜165iそれぞれのフラグ(出力信号)に基づいて、第2行列を作成する。
【0052】
仰角左右角処理部163は、作成した第1行列と第2行列の「0」,「1」の分布に基づいて、最も強い出力信号を出力している受光素子を特定する。詳しく言えば、仰角左右角処理部163は、第1行列及び第2行列の「1」の並びの内、「1」の中心が位置する行と列とを特定することで、最も強い出力信号を出力している受光素子を特定する。更に詳しく言えば、仰角左右角処理部163は、第1行列及び第2行列に記された各要素を比べることで、「1」の並び(分布)の中心を算出し、その行番号と列番号とに位置する受光素子を特定する。特定後、仰角左右角処理部163は、左右角と仰角とを含む仰角左右角情報を、外部と照射量処理部182とに出力する。
【0053】
図4に示すように、第1行列に記された「1」の並び(分布)では、第3行に「1」の中心が位置し、第2行列に記された「1」の並び(分布)では、第6列に「1」の中心が位置している。これによれば、最も強い出力信号を出力している受光素子は、第3群の第6受光素子23fであることがわかる。受光素子23fに入射する光の左右角は20°であり、仰角は40°であるから、光センサ100(車両)に入射する光の左右角が20°であり、仰角が40°であることがわかる。したがって、仰角左右角処理部163からは、左右角20°、仰角40°である仰角左右角情報が出力される。
【0054】
照射量処理部182は、仰角左右角処理部163から入力された仰角左右角情報(左右角20°、仰角40°)と、電流電圧変換回路181を介して入力される照射量検出用受光素子40の出力信号とに基づいて、光の照射量を検出し、それを外部に出力する。
【0055】
次に、本実施形態に係る光センサ装置200の作用効果を説明する。上記したように、光の左右角が互いに同一であり、仰角が互いに異なる9個の受光素子によって、19個の受光素子群21〜39が構成されている。そして、19個の受光素子群21〜39それぞれの左右角が異なっている。これによれば、各受光素子21a〜39iに入射する光の量が異なることとなり、光センサ装置200(車両)に入射する光の角度と、受光面に入射する光の角度とが一致する受光素子、若しくは、最も近い受光素子の出力信号が最大と成る。したがって、受光素子21a〜39iの出力信号の強度を比べることで、最も強い出力信号を出力している受光素子を特定し、その特定された受光素子の受光面に入射する光の角度を特定することで、光センサ装置200(車両)に入射する光の入射方向(仰角と左右角)を検出することができる。これにより、光の入射方向の検出精度が向上される。
【0056】
本実施形態では、受光素子20の出力信号の電圧を要素とした行列を形成することで、光センサ装置200に入射する光の角度に応じた、受光素子20の出力信号の強度分布を形成している。
【0057】
受光素子21a〜39iの出力信号には、多少なりともノイズが含まれている。したがって、単純に、受光素子21a〜39iの出力信号の強度を逐次比較した場合、光の角度の検出精度が低下する虞がある。これに対して、本実施形態では、光センサ装置200に入射する光の角度に応じた、受光素子20の出力信号の強度分布を形成している。これによれば、受光素子21a〜39iそれぞれの出力信号にノイズが含まれていたとしても、強度分布の形状から、最も強い信号を出力している受光素子を特定することができる。また、ノイズによって、角度の検出精度が低下することが抑制される。更に言えば、受光素子21a〜39iの出力信号を逐次比較する場合と比べて、光の入射方向の検出時間を短縮することができる。
【0058】
本実施形態では、第1フリップフロップ164a〜164sのフラグを要素として、19行1列の第1行列を作成し、第2フリップフロップ165a〜165iのフラグを要素として、1行9列の第2行列を作成している。これによれば、図4に示したような、19行9列の行列を作成した後、その行列に表れる「0」,「1」の分布から、光の入射角度を検出する構成と比べて、行列の要素数が少ないので、光の入射角度を検出する演算を簡素化することができる。
【0059】
光の照射量や外部環境(天気)によっては、強度分布の大部分が「1」若しくは「0」となり、光の入射角度を検出することが困難となる虞がある。しかしながら、本実施形態で示したように、照射量検出用受光素子40の出力信号に基づいて、閾値電圧を調整することで、強度分布の大部分が「1」若しくは「0」になることを抑制することができる。これにより、光の入射角度の検出が困難となることが抑制される。
【0060】
照射量処理部182は、仰角左右角処理部163の出力信号(仰角左右角情報)と、電流電圧変換回路181を介して入力される照射量検出用受光素子40の出力信号とに基づいて、光の照射量を検出する。これによれば、照射量検出用受光素子40の出力信号のみに基づいて光の照射量を検出する構成と比べて、光の照射量の検出精度が向上される。
【0061】
受光素子21a〜39iは、中心点C1から放射状に延びた19本の仮想直線それぞれの上に配置されて、受光素子21a〜39iが放射状に配置されている。そして、放射状に配置された複数の受光素子それぞれに対応する開口部によって規定される光の仰角が、中心点C1から離れるにしたがって小さくなっている。これによれば、受光素子21a〜39iと角度算出部110との電気的接続の設計が容易となる。また、最も強い出力信号を出力していると特定された受光素子の位置が、光の仰角と左右角とを示すので、光の仰角と左右角とを直感的に認識し易くなる。
【0062】
中心点C1から19本の仮想直線が延び、隣接する仮想直線が成す、中心点C1周りの角度が10°となっている。そして、1本の仮想直線には、中心点C1から離れるにしたがって、受光面に入射する光の仰角が10°ずつ小さくなるように、9個の受光素子が配置されている。これによれば、光の左右角と仰角とを、±5°の誤差範囲で検出することができる。
【0063】
二層の遮光膜60が透光膜50に形成されている。これによれば、ある開口部70から入射した光が、その開口部70と対応する受光素子20以外の受光素子20に入射することが抑制される。これにより、各受光素子21a〜39iの出力信号に、意図しない開口部70からの光出力(外乱出力)が含まれることが抑制される。
【0064】
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
【0065】
本実施形態では、強度分布を形成して、光の入射角度を検出する例を示した。しかしながら、各受光素子21a〜39iの出力信号を逐次比較することで、最も強い出力信号を出力している受光素子を特定して、光の入射角度を検出しても良い。
【0066】
本実施形態では、「0」、「1」(デジタル信号)の強度分布を形成して、光の入射角度を検出する例を示した。しかしながら、アナログ信号の強度分布を形成して、光の入射角度を検出しても良い。
【0067】
本実施形態では、19行1列の第1行列と、1行9列の第2行列とによって、強度分布を形成した例を示した。しかしながら、図4に示したような、19行9列の行列を作成して、強度分布を形成しても良い。また、当然ではあるが、第1行列及び第2行列それぞれの行数及び列数は上記例に限定されず、例えば、1行19列の第1行列を作成し、9行1列の第2行列を作成しても良い。
【0068】
本実施形態では、171個の受光素子21a〜39iが放射状に配置された例を示した。しかしながら、受光素子21a〜39iの個数及びその配置は、上記例に限定されない。光の入射角度の検出精度を向上したければ、受光素子の個数を増大すれば良いし、複数の受光素子の配置としては、格子状を採用することもできる。
【0069】
本実施形態では、受光素子20が、受光素子21a〜39iよりも受光面積が大きい、照射量検出用受光素子40を有する例を示した。しかしながら、受光素子20が、照射量検出用受光素子40を有さない構成を採用することもできる。この場合、照射量算出部180は、最も強い出力信号を出力している受光素子(第1実施例で言えば、第3群の第6受光素子23f)の出力信号と、受光素子23fの受光面に入射する光の角度(左右角20°,仰角40°)とに基づいて、光の照射量を算出する。これによれば、最も強い出力信号を出力している受光素子23fの出力信号のみに基づいて光の照射量を検出する構成と比べて、光の照射量の検出精度が向上される。
【0070】
本実施形態では、遮光膜60が二層である例を示した。しかしながら、遮光膜60の数としては上記例に限定されず、一層でも、三層以上でも良い。
【0071】
本実施形態では、隣接する仮想直線が成す、中心点C1周りの角度が10°である例を示した。しかしながら、隣接する仮想直線が成す、中心点C1周りの角度としては、上記例に限定されず、例えば、5°でも良い。
【0072】
本実施形態では、中心点C1から離れるにしたがって、受光面に入射する光の仰角が10°ずつ小さくなるように、1本の仮想直線に9個の受光素子が配置された例を示した。しかしながら、中心点C1から離れるにしたがって、受光面に入射する光の仰角が10°ずつ大きくなるように、1本の仮想直線に9個の受光素子が配置された構成を採用することもできる。また、1本の仮想直線に配置される受光素子の数としては、上記例に限定されず、例えば、18個の受光素子が配置された構成を採用することもできる。この場合、中心点C1から離れるにしたがって、受光面に入射する光の仰角が5°ずつ大きくなる、若しくは、5°ずつ小さくなるように、1本の仮想直線に18個の受光素子が配置される。
【符号の説明】
【0073】
21a〜39i・・・受光素子
40・・・照射量検出用受光素子
70・・・開口部
100・・・光センサ
110・・・角度算出部
121a〜139i・・・スイッチ
160・・・分布形成部
161・・・フリップフロップ
162・・・切替スイッチ
163・・・仰角左右角処理部
180・・・照射量算出部
200・・・光センサ装置

【特許請求の範囲】
【請求項1】
半導体基板に、光を電気信号に変換する受光素子が複数形成され、前記半導体基板における前記受光素子の形成面上に、透光性を有する透光膜が形成され、前記透光膜に、遮光性を有する遮光膜が形成され、前記遮光膜に、前記受光素子それぞれに対応して、前記受光素子の受光面に入射する光の角度を規定する開口部が形成された光センサと、
前記受光素子それぞれの出力信号に基づいて、光の仰角、及び、光の左右角を算出する角度算出部と、を有する光センサ装置であって、
対応する前記開口部によって規定される光の左右角が互いに同一であり、仰角が互いに異なる複数の前記受光素子によって、受光素子群が複数構成され、
複数の前記受光素子群それぞれの左右角が異なっており、
前記角度算出部は、各受光素子の出力信号の強度を比べることで、最も強い出力信号を出力している受光素子を特定し、特定された受光素子の受光面に入射する光の角度を特定することを特徴とする光センサ装置。
【請求項2】
前記角度算出部は、前記受光素子の出力信号の電圧を要素とした行列を形成することで、前記受光面に入射する光の角度に応じた、前記受光素子の出力信号の強度分布を形成する分布形成部を有し、
前記分布形成部は、前記受光面に入射する光の左右角が異なる各受光素子の出力信号を、行番号若しくは列番号が増大するにつれて、左右角が増大若しくは減少するように並べた第1行列と、前記受光面に入射する光の仰角が異なる各受光素子の出力信号を、行番号若しくは列番号が増大するにつれて、仰角が増大若しくは減少するように並べた第2行列と、を形成することを特徴とする請求項1に記載の光センサ装置。
【請求項3】
前記角度算出部は、前記受光素子の出力信号の電圧値が閾値電圧よりも高い場合にHi信号を出力し、前記受光素子の出力信号の電圧値が閾値電圧よりも低い場合にLo信号を出力する比較部を有し、
前記分布形成部は、前記Hi信号が一度も入力されていない場合に「0」のフラグを立て続け、前記Hi信号が一度でも入力された場合に、フラグを「0」にするリセット信号が入力されるまで、「1」のフラグを立て続けるフリップフロップを複数有し、
前記第1行列及び前記第2行列の各要素の値は、1つの前記フリップフロップのフラグであり、
前記第1行列及び前記第2行列それぞれは、1列若しくは1行の行列であり、
前記第1行列を成す1つのフリップフロップには、前記受光面に入射する光の左右角が同一であり、前記受光面に入射する光の仰角が異なる各受光素子の出力信号が、前記比較部を介して順次入力され、
前記第2行列を成す1つのフリップフロップには、前記受光面に入射する光の仰角が同一であり、前記受光面に入射する光の左右角が異なる各受光素子の出力信号が、前記比較部を介して順次入力されることを特徴とする請求項2に記載の光センサ装置。
【請求項4】
前記角度算出部は、
対応する1つの前記受光素子と前記比較部との電気的な接続を開閉制御する第1スイッチと、
対応する1つの前記フリップフロップと前記比較部との電気的な接続を開閉制御する第2スイッチと、
複数の前記第1スイッチを順次一つずつ閉状態とし、閉状態とされた前記第1スイッチに対応する前記第2スイッチを閉状態とするアドレスデコーダと、を有することを特徴とする請求項3に記載の光センサ装置。
【請求項5】
複数の前記受光素子よりも受光面積が広い、照射量検出用受光素子が前記半導体基板に形成されており、
前記角度算出部は、前記照射量検出用受光素子の出力信号に基づいて、前記閾値電圧を生成する基準電圧生成部を有することを特徴とする請求項3又は請求項4に記載の光センサ装置。
【請求項6】
前記照射量検出用受光素子の出力信号と、複数の前記受光素子の内、最も強い出力信号を出力している受光素子の受光面に入射する光の角度とに基づいて、前記半導体基板に照射される光の照射量を算出する照射量算出部を有することを特徴とする請求項5に記載の光センサ装置。
【請求項7】
最も強い出力信号を出力している受光素子の出力信号と、その受光素子の受光面に入射する光の角度とに基づいて、前記半導体基板に照射される光の照射量を算出する照射量算出部を有することを特徴とする請求項1〜4いずれか1項に記載の光センサ装置。
【請求項8】
前記受光素子は、前記半導体基板の任意点から放射状に延びた複数の仮想直線それぞれの上に複数配置されて、前記受光素子が放射状に配置されており、
放射状に配置された複数の前記受光素子それぞれに対応する開口部によって規定される光の仰角が、前記任意点から離れるにしたがって小さくなる若しくは大きくなることを特徴とする請求項1〜7いずれか1項に記載の光センサ装置。
【請求項9】
前記任意点から、19本の前記仮想直線が延び、
隣接する前記仮想直線が成す、前記任意点周りの角度が10°となっており、
1本の前記仮想直線には、前記任意点から離れるにしたがって、受光面に入射する光の仰角が10°ずつ小さくなる若しくは大きくなるように、9個の前記受光素子が配置されていることを特徴とする請求項8に記載の光センサ装置。
【請求項10】
前記遮光膜は、前記透光膜に層状に複数形成されており、複数の前記遮光膜それぞれに形成された開口部によって、前記受光面に入射する光の角度が規定されていることを特徴とする請求項1〜9いずれか1項に記載の光センサ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−103126(P2012−103126A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−252170(P2010−252170)
【出願日】平成22年11月10日(2010.11.10)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】