説明

光学式測距装置および電子機器

【課題】高耐熱かつ高精度の光学式測距装置を提供する。
【解決手段】発光レンズ5および受光レンズ6を保持した、金属からなるレンズフレーム11を遮光性樹脂からなる2次モールド9および3次モールド10の間に保持する。2次モールド9の上面に形成された固定穴9aと、レンズフレーム11に形成された貫通穴11aに3次モールド10を形成するための遮光性樹脂を充填することにより、アンカー10aを形成する。レンズフレーム11が金属からなることにより、周囲温度の変化および自己発熱によってもほとんど熱膨張しないために、レンズ間距離の変化量の差がほとんどない。また、アンカー10aにより、レンズフレーム11を2次モールド9および3次モールド10の間に固定するので、レンズフレーム11と2次モールド9および3次モールド10との間で生じる熱膨張係数の差による滑りを抑える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測距対象物までの距離を光学的に測定する光学式測距装置、特にリフロー等による温度変化により熱膨張または収縮する場合においても高い測距精度を有する光学式測距装置およびそれを搭載した電子機器に関する。
【背景技術】
【0002】
図17は、一般的な三角測距法の原理を説明するための図である。
【0003】
図17に示すように、従来の一般的な光学式測距装置は、例えば、発光素子201、受光素子202、発光レンズ203および受光レンズ204を備えている。
【0004】
この光学式測距装置において、原点(0,0)に配置された発光素子201より出射された光束は、A点(0,d)に配置された発光レンズ203により略平行光束(発光軸205)となり、スポット光として、測距対象物211上のB点(0,y)に照射される。測距対象物211により反射された光束(受光軸206)は、C点(L,d)に配置された受光レンズ204(集光レンズ)により集光され、x方向に沿った軸上に配置された受光素子202上のD点(L+l,0)に結像されて、受光スポットを形成する。ここで、C点(受光レンズ204の中心)を通りy軸と平行な線が受光素子202の受光面と交差する点をE点(L,0)とすると、三角形ABCと三角形ECDとは相似する。したがって、測距対象物211までの距離yは、受光素子202により受光スポットの位置を検出して辺ED(=l)を測定することにより、下記の式(1)によって算出される。
【0005】
【数1】

【0006】
上記のように、光学式測距装置は、受光素子202上に形成された受光スポットの位置を検出し、式(1)に基づいて測距対象物211までの距離を算出する。当該距離を正確に求めるためには、発光レンズ203と受光レンズ204との間の距離L、および受光レンズ204と受光素子202との間の距離dが固定されている必要がある。
【0007】
図18は、上記の原理を利用した一般的な光学式測距装置300の構成を示す断面図である。
【0008】
図18に示すように、光学式測距装置300は、上記の発光素子201、受光素子202、発光レンズ203および受光レンズ204を備えるとともに、これらをケース301によって保持している。ケース301は、一般に低価格化のために遮光性樹脂により形成されている。
【0009】
この光学式測距装置300では、ケース301は、一般に大きな熱膨張係数を有する樹脂により形成されていることから、周囲温度が変化すると、その影響を受けて伸縮する。このため、例えば、周囲温度が上昇することによりケースが伸長すると、発光レンズ203と受光レンズ204とがそれぞれ点線で示す位置に移動し、レンズ間の距離Lが変化してしまう(大きくなる)。その結果、室温時の発光レンズ203の光軸205aおよび受光レンズ204の光軸206aは、それぞれ破線にて示す光軸205bおよび光軸206
bのように変化してしまう。この状態では、測距対象物211の位置が変わっていないにも関わらず、受光素子202上に形成される受光スポットの位置は、室温時に比べて外側にシフトしてしまう。このように、例えば周囲温度が上昇した場合には、測距対象物211は、実際よりも近い位置にあると誤って測定されてしまう。
【0010】
特許文献1,2には、このような不都合を解消することができる技術が開示されている。図19は、特許文献1に記載された光学式測距装置400の構成を示す断面図である。図20は、特許文献2に記載された光学式測距装置500の構成を示す断面図である。
【0011】
図19に示すように、光学式測距装置400は、発光素子401、受光素子402、投光レンズ403(発光レンズ)および受光レンズ404を備えている。発光素子401を収納するパッケージ405および投光レンズ403は、同一の第1ケース406に固定される一方、受光素子402を収納するパッケージ407および受光レンズ404は、同一の第2ケース408に固定されている。第1ケース406および第2ケース408は、本体部409によって接続されて本体ケース410を構成している。
【0012】
このような光学式測距装置400では、本体ケース410に熱膨張が生じた場合でも、第1ケース406において発光素子401および投光レンズ403の位置関係が維持され、第2ケース408において受光素子402および受光レンズ404の位置関係が維持される。これにより、受光素子402の中心から反射光の光スポットの位置までの距離に変動が生じなくなるので、測距精度が保持される。
【0013】
図20に示すように、光学式測距装置500は、結像レンズ501a,501b、結像レンズ501a、501bの保持部材502、CCDパッケージ503a,503b(光センサアレイ)、およびCCDパッケージ503a,503bの保持部材504を備えている。この光学式測距装置500では、結像レンズ501a,501bおよび保持部材502,504が吸湿性のないプラスチックからなる同一材料により形成されている。
【0014】
このような光学式測距装置500では、結像レンズ501a,501bおよび保持部材502,504が熱膨張により全体に均等に伸びる。これにより、温度変化による測距精度の低下を防ぐことができる。
【0015】
このように、上記の光学式測距装置400,500では、受発光素子およびレンズを保持する部材が周囲温度の変化により均等に伸縮する場合において、三角測量の原理を満足するように、受発光素子およびレンズの位置関係が保持される。しかしながら、光学式測距装置400,500では、受発光素子が自己発熱した場合には、装置全体における温度変化が均等でないため、受発光素子の近傍の部材とレンズ近傍の部材とが、異なる温度となる結果、それに応じて異なる伸縮量で伸縮する。このため、受発光素子とレンズとの位置関係を維持することができない。
【0016】
このように均等でない温度変化が生じた場合における受光スポットの位置の補正方法について、特許文献1,2には記載されていない。したがって、特許文献1,2に記載された技術では、受発光素子の自己発熱による測距精度の低下を防ぐことができないため、三角測距法の原理を満足に利用することができない。
【0017】
特許文献3には、このような不都合を解消することができる技術が開示されている。図21は、特許文献3に記載された光学式測距装置600の構成を示す断面図である。
【0018】
図21に示すように、光学式測距装置600は、一対のレンズ601a,601b、一対のCCDパッケージ602a,602b、レンズ保持部材603、CCD保持部材60
4および温度センサ605,606を備えている。温度センサ605は、レンズ保持部材603上のレンズ602a,602bの間に取り付けられ、温度センサ606は、CCD保持部材604上のCCDパッケージ602a,602bの間に取り付けられている。
【0019】
このような光学式測距装置600では、温度センサ605,606の出力を用いて、CCDパッケージ602a,602b内のCCDチップ607a,607b(受光素子)の自己発熱によるレンズ保持部材603およびCCD保持部材604の温度差が求められる。そして、この温度差を利用して、CCDチップ607a,607b上の物体像のシフト量が補正される。これにより、CCDチップ607a,607bの自己発熱によるレンズ保持部材603およびCCD保持部材604の熱膨張の差を補正して測距精度を保つことができる。
【0020】
ところが、光学式測距装置600では、測距精度の低下を防ぐために、温度センサ605,606を必要とする。また、温度センサ605,606は、CCDチップ607a,607b等に内蔵することができず、個別にレンズ保持部材603およびCCD保持部材604に接触するように配置されなければならない。しかも、温度センサ605,606が出力した信号を送信するための配線も必要となる。このため、光学式測距装置600の構造が複雑になる結果、組み立て工数が増加してしまい、光学式測距装置600を安価に提供することが困難となる。
【0021】
そこで、温度センサ605,606をいずれか1つのみ設けることで、光学式測距装置600の構造をより簡素化することが考えられる。しかしながら、温度センサ605,606をいずれか1つのみ設けることは、次に説明するような不具合を招来する。
【0022】
図22は、従来の光学式測距装置700の構成を示す断面図である。
【0023】
図22に示すように、光学式測距装置700において、周囲熱は、光学式測距装置700の側面を含めた光学式測距装置700全体を均等に加熱または冷却し、各部材を膨張または収縮させる。これにより、発光レンズ703と受光レンズ704との間の距離、および発光素子701と受光素子702との間の距離を変化させる。一方、発光素子701および受光素子702の通電による自己発熱は、これらの素子を封止している遮光性樹脂部705を直接加熱して膨張させる。また、発光素子701および受光素子702からの放射熱と、遮光性樹脂部705から発光レンズ703および受光レンズ704を保持するレンズ保持部材706を伝導する熱とは、レンズ保持部材706におけるレンズ保持部分を間接的に加熱して膨張させる。
【0024】
したがって、自己発熱が生じた場合には、遮光性樹脂部705とレンズ保持部材706とは、温度が異なるために、固有の熱膨張係数によって、それぞれの温度変化にしたがって膨張することとなる。そのため、発光レンズ703および受光レンズ704の間の距離の変化量は、周囲熱によって光学式測距装置700が加熱された場合に矢印Iに示すようになり、自己発熱によって光学式測距装置700が加熱された場合に矢印Jに示すようになり、それぞれの場合で異なる。
【0025】
したがって、自己発熱による、両素子701,702間の距離の変化と、両レンズ703,704間の距離の変化とをそれぞれ予測するためには、遮光性樹脂部705の温度と、レンズ保持部材706の温度とをそれぞれ個別に検出する温度センサを備える必要がある。
【0026】
光学式測距装置600においても、レンズ601a,601b間の距離の変化量は、周囲熱によって光学式測距装置600が加熱された場合と、自己発熱によって光学式測距装
置600が加熱された場合とで異なる。したがって、温度センサ605,606をレンズ保持部材603にのみ、またはCCD保持部材604にのみに取り付けると、例えば温度が上昇した場合に、周囲温度の上昇または自己発熱のいずれの影響により温度が変化したのかが不明である。それゆえ、レンズ601a,601bとCCDチップ607a,607bとの位置関係を正確に把握することができず、測距精度が低下してしまうという問題が生じる。
【0027】
そこで、周囲熱および自己発熱が原因で生じる熱膨張による受発光レンズの間の距離の変化そのものを抑えるため、例えば図18に示す光学式測距装置300において、発光レンズ203および受光レンズ204を保持するケース301の一部を金属により形成することが考えられる。具体的には、発光レンズ203および受光レンズ204を保持する部分を金属製のフレーム(レンズフレーム)で構成し、このレンズフレームをケース301に取り付ける。このように、ケース301の一部を熱膨張係数の小さい金属製にすることで、熱膨張による受発光レンズの間の距離の変化を抑えることができ、周囲熱および自己発熱に応じて生じる熱膨張による受発光レンズ間の距離の変化の相違をなくすことができる。また、ケース301の全体を金属製にすることに比べて価格の上昇を抑えることができる。
【先行技術文献】
【特許文献】
【0028】
【特許文献1】特開2006−337320号公報(2006年12月14日公開)
【特許文献2】特開平11−281351号公報(1999年10月15日公開)
【特許文献3】特開2001−99643号公報(2001年4月13日公開)
【発明の概要】
【発明が解決しようとする課題】
【0029】
ところで、光学式測距装置を電子機器に搭載するためには、光学式測距装置を基板等に実装する必要がある。実装においては、発光素子および受光素子に対する信号の入出力や電源供給のために、発光素子および受光素子が実装されるリードフレームに設けられる複数の端子が基板に半田付けされる。
【0030】
近年の光学式測距装置の小型化に伴って、上記の端子間の間隔が狭くなってきている。また、このような小型化された光学式測距装置を搭載する電子機器を効率的に大量生産することも求められる。このような要求を受けて、端子の半田付けの手段として、従来の手作業よりもリフローへの需要が非常に高まっている。
【0031】
光学式測距装置をリフロー炉に通すと、一般に260℃以上の高温に短時間ではあるが曝される。このとき、受発光レンズ、受発光素子、ケース、受発光素子を封止する素子封止部等の各部を形成する各樹脂は、その熱膨張係数にしたがって膨張し、リードフレームや前述のレンズフレームも同様にその熱膨張係数にしたがって膨張する。
【0032】
しかしながら、リードフレームおよびレンズフレームを構成する金属の熱膨張係数は樹脂の熱膨張係数より小さい。このため、リードフレームと素子封止部との界面、レンズフレームとケースとの界面、およびレンズフレームとレンズとの界面には熱膨張係数の差による応力が発生する。また、リフロー炉から排出されるときには、光学式測距装置が逆に室温付近まで急激に冷却される。このため、高温雰囲気により膨張した光学式測距装置が急激に収縮する。
【0033】
このような加熱から冷却に至る過程において、例えばケースおよびレンズフレームに着目すると、ケースとレンズフレームとの密着力が不十分な場合、高温雰囲気中の昇温中に
それらの界面の応力により、レンズフレームがケースから滑ってしまう。また、室温への急激な降温中にもそれらの界面には応力が作用し、レンズフレームがケースから滑ってしまう。このため、リフローによる実装前に比べて受発光レンズと受発光素子との相対的な位置関係が変化してしまう。この結果、前述の三角測距の原理で説明したように受光スポットの位置がシフトするので、この位置を用いて前述の式(1)による演算を行っても、得られた距離が正しい値からずれる。
【0034】
冷却時に過熱時と全く逆の滑りが生じれば、ケースとレンズフレームとの位置関係が元に戻ることにより、リフローによる上記のような不都合は生じない。しかしながら、実際には、ケースとレンズフレームとの位置関係が元に戻ることはない。
【0035】
ケースとレンズフレームとの界面に着目した場合、加熱時の膨張と冷却時の収縮とで、当該界面で発生する歪みが全く正反対のベクトルで生じない。例えば、リフローの昇温プロファイルと降温プロファイルとが異なることから、上記の界面における内部温度分布が加熱時と冷却時とで対称になることはない。したがって、加熱時に発生する滑りと冷却時に発生する滑りとが異なり、受発光素子に対する受発光レンズの相対的な位置関係が変化してしまう。
【0036】
このように、金属製のレンズフレームを用いたとしても、急激な加熱および冷却によるレンズフレームと樹脂部材との界面に生じる滑りのために、測距精度が低下するという問題が生じる。
【0037】
本発明は、上記の問題に鑑みてなされたものであり、その目的は、高耐熱かつ高精度の光学式測距装置を提供することにある。
【課題を解決するための手段】
【0038】
本発明に係る光学式測距装置は、前記の課題を解決するために、測距対象物までの距離を測定する光学式測距装置であって、実装部材上に実装された発光素子と、上記発光素子の出射光を上記測距対象物に照射する発光レンズと、上記実装部材上に実装され、上記測距対象物による反射光が集束する位置を検出する受光素子と、上記反射光を上記受光素子に集束させる受光レンズと、上記出射光が上記発光素子から上記発光レンズに至る空間および上記反射光が上記受光レンズから上記受光素子に至る空間を形成するように上記透光性樹脂体を覆う第1の遮光性樹脂体と、金属で形成され、上記発光レンズおよび上記受光レンズを保持するレンズフレームと、上記第1の遮光性樹脂体を封止するとともに、上記第1の遮光性樹脂体とで上記レンズフレームを保持する第2の遮光性樹脂体とを備え、上記レンズフレームには貫通穴が形成され、上記第1の遮光性樹脂体または上記第2の遮光性樹脂体のいずれか一方が他方側に向けて突出する凸部を有し、当該凸部が上記貫通穴を貫通して上記レンズフレームから突出した状態で、他方が当該凸部の突出部分と結合していることを特徴としている。
【0039】
上記構成において、第1の遮光性樹脂体または第2の遮光性樹脂体のいずれか一方に設けられる凸部は、レンズフレームの貫通穴を貫通してレンズフレームから突出した突出部分で他方と結合している。このようにして、第1遮光性樹脂体と第2の遮光性樹脂体とが凸部で結合することにより、レンズフレームは、第1の遮光性樹脂体と第2の遮光性樹脂体とに保持された状態で、さらに凸部によって固定される。それゆえ、光学式測距装置をリフロー処理するときの周囲温度変化により、レンズフレームと第1および第2の遮光性樹脂体との界面に熱膨張による応力が作用する場合においても、それぞれが滑りを起こすことはない。
【0040】
したがって、リフロー処理後の発光レンズおよび受光レンズと発光素子および受光素子
との相対的な位置関係が保たれる。よって、光学式測距装置の耐熱性および測距精度を高いレベルに維持することができる。
【0041】
前記光学式測距装置において、上記第1の遮光性樹脂体には上記レンズフレームの上記貫通穴と一致する位置に固定穴が形成され、上記第2の遮光性樹脂体は上記凸部を有しており、当該凸部は上記貫通穴および上記固定穴に遮光性樹脂が充填されることにより形成されていることが好ましい。
【0042】
上記構成においては、第2の遮光性樹脂体に設けられた凸部が貫通穴および上記固定穴に遮光性樹脂が充填されることにより形成されている。これにより、第1の遮光性樹脂体と第2の遮光性樹脂体との結合構造が得られる。また、凸部と貫通穴および固定穴とが密着するので、レンズフレームが強固に第1および第2の遮光性樹脂体に固定される。
【0043】
あるいは、前記光学式測距装置において、上記第1の遮光性樹脂体は上記凸部を有し、上記第2の遮光性樹脂体は遮光性樹脂が上記レンズフレームの上を覆うことにより上記凸部と結合していることが好ましい。
【0044】
上記構成においては、第2の遮光性樹脂体は遮光性樹脂がレンズフレームの上を覆うことにより、第1の遮光性樹脂体に設けられた凸部と結合している。これにより、第1の遮光性樹脂体と第2の遮光性樹脂体との結合構造が得られる。また、凸部を貫通穴に貫通させることにより、レンズフレームを第1の遮光性樹脂体上に配置するときに、凸部をレンズフレームの位置決めの基準として用いることができる。それゆえ、光学式測距装置の製造時に、レンズフレームを第1の遮光性樹脂体上に配置するときの位置決めを容易にすることができる。
【0045】
前記光学式測距装置において、上記貫通穴は上記発光レンズおよび上記受光レンズの間に少なくとも2つ形成されることが好ましい。
【0046】
上記構成においては、貫通穴が受発光レンズ間に少なくとも2つ形成されるので、固定穴も同じ位置に形成される。これにより、周囲温度の変化時に、レンズフレームが固定穴を中心に回転方向に滑ることはない。また、発光レンズおよび受光レンズの間でレンズフレームを固定するので、第1および第2の遮光性樹脂体とレンズフレームとの熱膨張の差の影響が大きいレンズフレームの端部で滑りを抑えることができる。したがって、発光レンズおよび受光レンズと発光素子および受光素子との相対的な位置関係に与える影響を小さくすることができる。
【0047】
前記光学式測距装置において、上記貫通穴は上記レンズフレームの端部側に少なくとも2つ形成されることが好ましい。
【0048】
上記構成においては、貫通穴がレンズフレームの端部側に少なくとも2つ形成されるので、固定穴も同じ位置に形成される。これにより、周囲温度の変化時に、レンズフレームが固定穴を中心に回転方向に滑ることはない。また、レンズフレームの端部側でレンズフレームを固定するので、第1および第2の遮光性樹脂体とレンズフレームとの熱膨張の差の影響が大きいレンズフレームの端部で滑りを抑えることができる。したがって、発光レンズおよび受光レンズと発光素子および受光素子との相対的な位置関係に与える影響を小さくすることができる。
【0049】
前記光学式測距装置において、上記貫通穴は上記レンズフレームの4隅に形成されることが好ましい。
【0050】
上記構成においては、貫通穴がレンズフレームの4隅に形成されるので、固定穴も同じ位置に形成される。これにより、周囲温度の変化時に、レンズフレームが固定穴を中心に回転方向に滑ることはない。また、レンズフレームの4隅でレンズフレームを強固に固定するので、第1および第2の遮光性樹脂体とレンズフレームとの熱膨張の差の影響が大きいレンズフレームの端部で滑りをより効果的に抑えることができる。したがって、発光レンズおよび受光レンズと発光素子および受光素子との相対的な位置関係に与える影響を一層小さくすることができる。
【0051】
また、上記貫通穴は4隅だけではなく、さらに上記発光レンズおよび上記受光レンズの間に2つ形成されることが好ましい。
【0052】
上記構成においては、貫通穴がレンズフレームの4隅および受光レンズの間に2つ形成されるので、固定穴も同じ位置に形成される。これにより、レンズフレームは、滑りを起こす可能性がある領域のすべてが固定される。それゆえ、周囲温度の変化による滑りをより強固に抑えることができる。したがって、発光レンズおよび受光レンズと発光素子および受光素子との相対的な位置関係に与える影響をより一層小さくすることができる。
【0053】
前記光学式測距装置において、上記貫通穴の位置は、上記発光レンズの中心と上記受光レンズの中心とを結ぶレンズ中心線の中心を通り、かつ当該レンズ中心線に直交する中心線について対称であることが好ましい。
【0054】
上記構成においては、固定穴が上記の位置に配置されるので、周囲温度の変化による応力が均等に分散する。これにより、応力が1つの固定穴に集中することはないので、より効果的に滑りを防止することができる。
【0055】
前記光学式測距装置において、上記レンズフレームは上記レンズフレームの面に垂直な方向に突出する突出部を有し、当該突出部内に上記貫通穴が形成され、上記突出部が上記固定穴に嵌合されていることが好ましい。
【0056】
上記構成においては、貫通穴を通して充填される遮光性樹脂により、第1の遮光性樹脂体と第2の遮光性樹脂体とが固定される。また、レンズフレームが有する突出部が固定穴に嵌合されることにより、突出部が、滑りを発生させる応力が作用するレンズフレームの面と垂直方向に固定穴に杭打ちされる。これにより、レンズフレームの第1の遮光性樹脂体への固定力が増すので、より効果的に滑りを防止することができる。
【0057】
前記光学式測距装置において、上記突出部は上記レンズフレームの面方向と平行な方向に貫通する穴が形成されていることが好ましい。
【0058】
上記構成においては、突起部に上記穴が形成されていることにより、この穴を通して充填される遮光性樹脂により、第1の遮光性樹脂体と第2の遮光性樹脂体とが固定される。これにより、周囲温度の変化時に、レンズフレームが、レンズフレームを持ち上げようとする応力に対しても固定されるので、より強固に滑りを防止することができる。
【0059】
光学式測距装置において、上記レンズフレームの表面、裏面または両面に、上記発光レンズおよび上記受光レンズを形成する透光性樹脂により薄膜が形成されていることが好ましい。
【0060】
上記構成においては、レンズフレームの表面、裏面または両面に、発光レンズおよび受光レンズを形成する透光性樹脂により薄膜が形成されているので、金属製のレンズフレームと第1および第2の遮光性樹脂体との間の密着性が高まる。これにより、レンズフレー
ムのすべりを防止することができる。
【0061】
光学式測距装置において、上記第1の遮光性樹脂体は上記発光レンズの中心と上記受光レンズの中心とを結ぶレンズ中心線について略対称に形成されていることが好ましい。
【0062】
上記構成においては、第1の遮光性樹脂体がレンズ中心線に対して対称に形成されているので、周囲温度の変化時に、第1の遮光性樹脂体が対称に膨張する。これにより、応力が特定の固定穴に集中することを回避できる。したがって、効果的に滑りを防止することができる。
【0063】
光学式測距装置において、上記第1の遮光性樹脂体および上記第2の遮光性樹脂体は同一樹脂により形成されていることが好ましい。
【0064】
上記構成においては、第1の遮光性樹脂体および第2の遮光性樹脂体が同一樹脂で形成されるので、周囲温度の変化時の膨張を両遮光性樹脂体の間で等しくすることができる。これにより、レンズフレームとの第1および第2の遮光性樹脂体との界面に作用する応力が低減されるので、レンズフレームの滑りを防止することができる。
【0065】
光学式測距装置において、上記レンズフレームを形成する金属の熱膨張係数と上記第1の遮光性樹脂体および上記第2の遮光性樹脂体の熱膨張係数とが略等しいことが好ましい。特に、上記レンズフレームを形成する金属が銅または銅合金であることにより、金属および遮光性樹脂体の熱膨張係数が略等しくなる。
【0066】
上記構成においては、金属および遮光性樹脂体の熱膨張係数が略等しいので、周囲温度の変化時のレンズフレームと第1および第2の遮光性樹脂体との界面に作用する応力を最小化することができる。これにより、レンズフレームの滑りをさらに防止することができる。
【0067】
なお、金属および遮光性樹脂体の熱膨張係数を略等しくすることにより、受発光レンズを樹脂部材で保持する従来の光学式測距装置と同様、周囲熱および自己発熱に応じて生じる熱膨張による受発光レンズ間の距離に変化の相違が生じる。しかしながら、その相違をなくすように温度特性を向上させること(レンズフレームの熱膨張を抑えること)より、リフローによるレンズフレームの滑りを防止することを優先させる必要がある場合は、上記の構成を採用することが好ましい。
【0068】
本発明に係る電子機器は、上記のいずれかの光学式測距装置を搭載していることを特徴としている。
【0069】
これにより、光学式測距装置を、パソコン、キッチン家電、サニタリ機器等の電子機器を搭載して、人までの距離を検出して機器を制御したり、非接触スイッチや非接触コントローラとして電子機器を制御したりするセンサとして利用することができる。
【発明の効果】
【0070】
本発明に係る光学式測距装置は、上記のように構成されることにより、光学式測距装置の高耐熱化および高精度化を容易に図ることができるという効果を奏する。
【図面の簡単な説明】
【0071】
【図1】(a)は本発明の実施形態1に係る光学式測距装置の構成を示す平面図であり、(b)は当該平面図のM−M線矢視断面図である。
【図2】上記光学式測距装置における発光素子および受光素子の他の配置を示す側面図である。
【図3】(a)〜(c)は上記光学式測距装置においてレンズフレームが2次モールドおよび3次モールドの間に固定される保持構造を得るための工程を示す断面図であり、(d)は、当該工程により得られる上記レンズフレームの保持構造と異なる他の保持構造を示す断面図である。
【図4】実施形態1の変形例を示すものであり、固定穴および貫通穴が2つずつ光学式測距装置の長辺側の側方に配置された構成を示す平面図である。
【図5】実施形態1の変形例を示すものであり、固定穴および貫通穴が2つずつ対角位置に配置された構成を示す平面図である。
【図6】実施形態1の変形例を示すものであり、固定穴および貫通穴が4つずつ配置された構成を示す平面図である。
【図7】実施形態1の変形例を示すものであり、固定穴および貫通穴が6つずつ配置された構成を示す平面図である。
【図8】(a)〜(c)は実施形態1の変形例を示すものであり、レンズフレームの保持構造を形成するためにレンズフレームが2次モールドおよび3次モールドの間に固定される工程を示す図である。
【図9】(a)〜(c)は実施形態1の変形例を示すものであり、レンズフレームの他の保持構造を形成するためにレンズフレームが2次モールドおよび3次モールドの間に固定される工程を示す図である。
【図10】(a)は本発明の実施形態2に係る光学式測距装置の構成を示す平面図であり、(b)は当該平面図のN−N線矢視断面図である。
【図11】図10の光学式測距装置に設けられるレンズ付レンズフレームの構成を示す平面図である。
【図12】(a)〜(f)は図10の光学式測距装置の製造の各工程を示す断面図である。
【図13】本発明の実施形態3に係る光学式測距装置の構成を示す断面図である。
【図14】(a)は図13の光学式測距装置におけるレンズ付レンズフレームの構成を示す平面図であり、(b)は当該平面図のP−P線矢視断面図である。
【図15】本発明の実施形態4に係るパソコンの構成を示す斜視図である。
【図16】(a)は本発明の実施形態に対する比較例に係る光学式測距装置の構成を示す平面図であり、(b)は当該平面図のQ−Q線矢視断面図である。
【図17】一般的な三角測距法の原理を説明するための図である。
【図18】一般的な測距装置の構成を示す断面図である。
【図19】特許文献1に記載された測距装置の構成を示す断面図である。
【図20】特許文献2に記載された測距装置の構成を示す断面図である。
【図21】特許文献3に記載された測距装置の構成を示す断面図である。
【図22】測距装置において周囲熱および自己発熱によるレンズ間距離の変化量がそれぞれ異なることを説明するための図である。
【発明を実施するための形態】
【0072】
[実施形態1]
本発明に係る一実施形態について、図1〜図9を参照して以下に説明する。
【0073】
〔光学式測距装置の構成〕
図1(a)および(b)は、本発明の一実施形態に係る光学式測距装置1の構成を示す平面図および断面図である。図2は、光学式測距装置1における発光素子2および受光素子3の配置を示す側面図である。
【0074】
本実施形態に係る光学式測距装置1は、測距対象物までの距離を測定するための装置である。図1(a)および(b)に示すように、光学式測距装置1は、発光素子2、受光素
子3、リードフレーム4、発光レンズ5、受光レンズ6、発光側1次モールド7、受光側1次モールド8、2次モールド9、3次モールド10およびレンズフレーム11を備えている。
【0075】
リードフレーム4(実装部材)は、搭載部4aと複数の端子4bとを有している。搭載部4aは、発光素子2および受光素子3を搭載するように平板状に形成されている。端子4bは、光学式測距装置1の長辺側の対向する2つの外壁面からM−M線方向と直交する方向に互いに平行に伸びるように、搭載部4aと一体に形成されている。
【0076】
発光素子2は、リードフレーム4の搭載部4a上の一端側に搭載されており、透光性樹脂からなる発光側1次モールド7(透光性樹脂体)で封止されている。一方、受光素子3は、リードフレーム4の搭載部4a上の他端側に搭載されており、発光側1次モールド7と同じ透光性樹脂からなる受光側1次モールド8(透光性樹脂体)で封止されている。これらの発光側1次モールド7および受光側1次モールド8は、遮光性樹脂からなる2次モールド9(第1の遮光性樹脂体)で覆われている。これにより、発光素子2から受光素子3へ光が直接入射することが防止される。
【0077】
受光素子3としては、PSD(Position Sensitive Detector)、複数のフォトダイオード(PD)が配置されたリニアセンサ、イメージセンサなどが用いられる。この受光素子3は、受光した反射光が集束したスポットの位置を検出するために、受光光量を電気信号に変換するが、その電気信号に所定の演算処理を施す信号処理部を内蔵している。あるいは、図2に示すように、信号処理部12が受光素子3と別の素子としてリードフレーム4上に構成されていてもよい。
【0078】
なお、発光素子2および受光素子3は、リードフレーム4に代えて、表面に配線が形成された基板(実装部材)上に配置されてもよい。
【0079】
上記の2次モールド9は、開口部91,92を有している。開口部91は、発光素子2の上方に開口するようにすり鉢状に形成され、開口部92は、受光素子3の上方に開口し、かつ開口部91より傾斜度の大きい傾斜面を有するように形成されている。2次モールド9の上端部には、開口部91,92をそれぞれ覆うように発光レンズ5および受光レンズ6が配置されている。開口部91により、発光素子2からの出射光が発光レンズ5に至る空間が形成され、開口部92により、受光レンズ6に入射した測距対象物からの反射光が受光素子3に至る空間が形成される。
【0080】
発光レンズ5は、透光性を有しており、発光素子2からの出射光を平行光束に変換して測距対象物に照射する。受光レンズ6は、透光性を有しており、測距対象物からの反射光を受光素子3の受光面上に集束させる。発光レンズ5および受光レンズ6は、レンズフレーム11に保持されており、当該レンズフレーム11が2次モールド9上の所定の位置に配置されることにより、それぞれ開口部91,92に配置される。また、発光レンズ5および受光レンズ6は、透光性を有するように透光性樹脂によって形成されている。この透光性樹脂としては、レンズを形成するために一般的に用いる公知の透光性の樹脂(例えばエポキシ樹脂)を用いることができる。
【0081】
なお、発光レンズ5および受光レンズ6は、同一の透光性樹脂により構成されていてもよいし、それぞれ異なる透光性樹脂により構成されていてもよい。
【0082】
遮光性樹脂からなる3次モールド10(第2の遮光性樹脂体)は、2次モールド9の外周面およびレンズフレーム11の上端面を覆い、かつ発光レンズ5および受光レンズ6を露出するように形成される。これにより、3次モールド10は、2次モールド9とレンズ
フレーム11とを保持している。
【0083】
2次モールド9および3次モールド10は、射出成形によって形成される。また、2次モールド9および3次モールド10を構成する遮光性樹脂としては、公知の遮光性の樹脂を用いることができる。このような樹脂としては、例えば、ポリフタルアミド、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP,熱膨張係数:5E−5)を好適に用いることができる。このように、遮光性樹脂からなる2次モールド9および3次モールド10は、後述する金属からなるレンズフレーム11に対して大きい熱膨張係数を有する。
【0084】
レンズフレーム11は金属により長方形をなす平板状に形成されている。また、レンズフレーム11は、発光レンズ5および受光レンズ6を保持するための保持穴を有している。レンズフレーム11を構成する金属材料としては、例えば42アロイ(熱膨張係数:5.5E−6)が好適であるが、これに限定されない。
【0085】
レンズフレーム11には、所定の位置に貫通穴11aが形成されている。具体的には、貫通穴11aは、発光レンズ5および受光レンズ6の中心を結ぶM−M線に直交する方向で両レンズ5,6間の中心を通る中心線CL上に、M−M線に対して対称となる端子4b寄りの位置に形成される。
【0086】
一方、2次モールド9には、所定の位置に固定穴9aが形成されている。具体的には、固定穴9aは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で貫通穴11aと重なる(一致する)位置(中心線CL上)に形成される。また、固定穴9aおよび貫通穴11aには、3次モールド10の一部となるアンカー10aが嵌合している。
【0087】
なお、図1(b)に示す固定穴9aは、説明の便宜上、図1(a)のM−M線の断面に位置するように描かれているが、実際には図示する位置に存在していない。
【0088】
ここで、レンズフレーム11の保持構造について説明する。
【0089】
図3(a)〜(c)は、上記の保持構造(第1の保持構造)を形成するためにレンズフレーム11が2次モールド9および3次モールド10の間に固定される工程を示す断面図である。また、図3(d)は、上記の保持構造と異なる他の保持構造(第2の保持構造)を示す断面図である。
【0090】
図3(a)に示すように、貫通穴11aの位置を固定穴9aの位置とを合わせるようにして、図3(b)に示すように、2次モールド9上にレンズフレーム11を重ねる。この状態で、射出成形により3次モールド10を形成する。具体的には、2次モールド9を装着した金型内に遮光性樹脂を注入することにより、3次モールド10が2次モールド9を覆うように形成され、レンズフレーム11が2次モールド9と3次モールド10との間にインサート部品として挿入される。このとき、図3(c)に示すように、固定穴9aおよび貫通穴11aに遮光性樹脂が充填されることにより、アンカー10a(凸部)が隙間なく形成される。アンカー10aは、貫通穴11aを貫通してレンズフレーム11から2次モールド9側に突出しており、この突出部分で2次モールド9と結合している。このようにして第1の保持構造が得られる。この第1の保持構造において、3次モールド10は、アンカー10aにより2次モールド9に固着され、レンズフレーム11は、2次モールド9と3次モールド10との間に挟持されるように固定される。
【0091】
また、上記の構成によって得られる保持構造とは異なる保持構造として、図3(d)に
示す保持構造を採用してもよい。
【0092】
図3(d)に示すように、この保持構造では、2次モールド9に設けられた固定ピン9h(凸部)が、レンズフレーム11の貫通穴11aを貫通しており、3次モールド10と結合している。固定ピン9hは、2次モールド9の上面に垂直な方向に立ち上がるように形成されている。
【0093】
上記の保持構造を得るには、まず、貫通穴11aの位置を2次モールド9の固定ピン9hの位置とを合わせ、固定ピン9hが貫通穴11aを通してレンズフレーム11から突出するようにして、2次モールド9上にレンズフレーム11を重ねる。次に、この状態で、上記と同様の射出成形により、3次モールド10を形成する。このとき、図3(d)に示すように、固定ピン9hが貫通穴11aを貫通してレンズフレーム11から突出していることにより、3次モールド10を形成する遮光性樹脂が、レンズフレーム11上に流し込まれると、固定ピン9hの突出部分を隙間のないように覆う。このようにして第2の保持構造が得られる。この第2の保持構造において、3次モールド10は、固定ピン9hの突出部分と結合することにより、2次モールド9に固着され、レンズフレーム11は、2次モールド9と3次モールド10との間に挟持されるように固定される。
【0094】
なお、上述のように、第1の保持構造および第2の保持構造においては、ともに貫通穴11aを介して2次モールド9と3次モールド10とが結合されることにより、2次モールド9と3次モールド10との間にレンズフレーム11を固定している。したがって、以降の説明においては、便宜上、アンカー10aが固定穴9aに形成される保持構造にのみ言及する。
【0095】
ただし、第1の保持構造および第2の保持構造には、2次モールド9および3次モールド10の間におけるレンズフレーム11の固定構造に次の相違がある。
【0096】
第1の保持構造では、アンカー10aが固定穴9aおよび貫通穴11aに隙間のない状態で流れ込んだ遮光性樹脂が固化することにより形成される。このため、第1の保持構造では、固定穴9aおよび貫通穴11aに遮光性樹脂が充填される前に、固定穴9aおよび貫通穴11aが正しく位置合わせされていれば、レンズフレーム11を正確な位置で2次モールド9と3次モールド10との間に固定することができる。
【0097】
これに対し、第2の保持構造では、固定ピン9hを挿入するために、固定ピン9hと貫通穴11aとの間に隙間を設ける必要があるので、貫通穴11aの直径が固定ピン9hの直径より大きくなければならない。このため、第2の保持構造では、2次モールド9と貫通穴11aとの間に形成される隙間によって、レンズフレーム11の配置位置にずれが生じる可能性がある。したがって、このようなずれを極力小さくするために、貫通穴11aに固定ピン9hが貫通できる範囲で、固定ピン9hの直径と貫通穴11aの直径とを近づけるように設定する。
【0098】
このようして、固定ピン9hと貫通穴11aとの隙間が小さく設定されると、3次モールド10を形成する遮光性樹脂が、その粘性のため、上記の隙間に流れ込めない。このため、第1の保持構造のような貫通穴11aにおける密着構造を得ることができない。そこで、3次モールド10の形成時に、粘性を有する遮光性樹脂が流れ込むことができる程度に、上記の隙間を大きく形成することが考えられる。しかしながら、このように隙間が大きくなると、固定ピン9hと貫通穴11aとの位置合わせを高精度で行うことが難しいので、上記のずれを小さくすることがより困難になる。このように、貫通穴11aにおける密着構造を得ることと、固定ピン9hと貫通穴11aとの位置合わせを高精度で行うことは、トレードオフの関係にある。
【0099】
したがって、レンズフレーム11を高精度かつ強固に2次モールド9と3次モールド10との間に固定するという観点から、第1の保持構造が第2の保持構造よりも好ましいといえる。
【0100】
なお、固定ピン9hは、貫通穴11aに貫通されることから、後述する位置決めピン9g(図10(a)および(b)参照)と同様、レンズフレーム11を2次モールド9上に配置するときの位置決めの基準として利用することができる。
【0101】
上記のように構成される光学式測距装置1は、金属からなるレンズフレーム11により発光レンズ5および受光レンズ6を保持している。これにより、周囲熱または発光素子2および受光素子3の自己発熱によって2次モールド9および3次モールド10が熱膨張しても、レンズフレーム11はほとんど膨張することがない。それゆえ、周囲熱および自己発熱による発光レンズ5および受光レンズ6の間の距離の変動量の差がほとんどない。したがって、前述の測距装置600のように、周囲熱および自己発熱によるレンズ間距離の変動量の相違が生じることなく、測距精度の低下を防ぐことができる。よって、簡単な構造にて、周囲温度の変化と自己発熱とによる測距精度の低下を防ぐことができる。
【0102】
〔レンズフレームのすべり防止効果〕
ここでは、光学式測距装置1が、リフロー等により高温雰囲気中または低温雰囲気中に置かれた場合に熱膨張または収縮する状態について説明する。
【0103】
遮光性樹脂からなる2次モールド9および3次モールド10は、金属からなるレンズフレーム11に対して大きな熱膨張係数を有する。このため、レンズフレーム11と2次モールド9および3次モールド10との界面には、膨張係数の差により生じる応力が発生する。この応力は、レンズフレーム11と2次モールド9および3次モールド10との密着力より大きいとき、レンズフレーム11と2次モールド9および3次モールド10との間に滑りを生じさせる。
【0104】
しかしながら、3次モールド10のアンカー10aがレンズフレーム11を貫通して2次モールド9の固定穴9aに嵌合しているので、レンズフレーム11は、2次モールド9および3次モールド10の間に強固に固定される。これにより、レンズフレーム11と2次モールド9および3次モールド10との滑りを抑えることができる。したがって、常温に戻ったときに、発光素子2および受光素子3と発光レンズ5および受光レンズ6との相対的な位置関係にずれが生じない。
【0105】
温度変化により光学式測距装置1が膨張(収縮)するとき、熱膨張係数の小さいレンズフレーム11の変化量は2次モールド9および3次モールド10の変化量より小さい。このため、2次モールド9および3次モールド10は、レンズフレーム11との界面に歪みを生じ、その大きさは外側ほど大きくなる。
【0106】
光学式測距装置1においては、2つの固定穴9aおよび2つの貫通穴11aが、発光レンズ5および受光レンズ6の間において、レンズ中心線に対して対称に配置されている。これにより、レンズフレーム11は、発光レンズ5および受光レンズ6の間で2つのアンカー10aにより固定されるので、歪みの大きいレンズフレーム11の周囲部分での滑りが抑えられる。それゆえ、発光素子2および受光素子3と発光レンズ5および受光レンズ6との相対的な位置関係を保つことができる。したがって、光学式測距装置1の高耐熱化および高精度化を容易に図ることができる。
【0107】
また、光学式測距装置1では、アンカー10aが、上記のように、発光レンズ5および
受光レンズ6の間で対称となる位置に2つ配置されている。これにより、周囲温度の不均一により膨張(収縮)が一様でない場合に、レンズフレーム11が滑りにより回転することを防止できる。しかも、温度変化による応力が均等に分散されることから、1つの固定穴9aに応力が集中しなくなるので、より効果的に滑りを防止することができる。
【0108】
したがって、本実施形態の光学式測距装置1は、リフロー等による高温雰囲気中や低温雰囲気中においても、発光素子2および受光素子3と発光レンズ5および受光レンズ6との相対的な位置関係を保つことにより、高い測距精度を維持することができる。
【0109】
また、上記の構成においては、2次モールド9がレンズ中心線に対して略対称となる形状に形成されている。これにより、熱膨張(収縮)が均等になり、レンズ中心線に対して対称に配置されたそれぞれのアンカー10aにはバランスのとれた応力が作用するので、効果的にレンズフレーム11の滑りを防止することができる。
【0110】
また、上述の2次モールド9および3次モールド10を形成する遮光性樹脂は同一樹脂であることが好ましい。これにより、2次モールド9および3次モールド10は同じ熱膨張係数を有するので、その界面において膨張(収縮)が同じになる。それゆえ、レンズフレーム11に作用する歪応力を低減することができる。したがって、レンズフレーム11の滑りを防止しやすくなる。
【0111】
2次モールド9および3次モールド10を形成する遮光性樹脂としては、例えば前述のようにPPSが用いられる。このPPSは、樹脂の流動方向に対して2E−5程度の熱膨張係数を有する。また、レンズフレーム11を形成する金属としては、例えば銅または銅合金を用いてもよい。この銅または銅合金は、PPSと同程度(あるいは略等しい)の1.7E−5の熱膨張係数を有する。このように、2次モールド9および3次モールド10とレンズフレーム11とを熱膨張係数が同程度の材料を用いて形成することにより、それぞれの熱膨張(収縮)が同程度になる。これにより、レンズフレーム11が2次モールド9および3次モールド10に対して、より滑りにくくすることができる。
【0112】
なお、上記のように、2次モールド9および3次モールド10とレンズフレーム11との熱膨張(収縮)が同程度になったとしても、両者の間の滑りが完全になくなるわけではない。例えば、前述のように、リフローの昇温プロファイルと降温プロファイルとが相違することによる加熱時と冷却時との滑りの相違のために、冷却後に2次モールド9および3次モールド10とレンズフレーム11との間にずれが生じてしまう。したがって、この場合でも、アンカー10aによって、2次モールド9および3次モールド10とレンズフレーム11との間の滑りを阻止することが有効であることは勿論である。
【0113】
また、レンズフレーム11を熱膨張係数の大きい銅または銅合金で形成することにより、受発光レンズを樹脂部材で保持する従来の光学式測距装置と同様、周囲熱および自己発熱に応じて生じる熱膨張による受発光レンズ間の距離の変化に相違が生じる。しかしながら、その相違をなくすように温度特性を向上させること(レンズフレーム11の熱膨張を抑えること)より、リフローによるレンズフレーム11の滑りを防止することを優先させる必要がある場合は、上記の構成を採用することが好ましい。
【0114】
〔変形例1〕
本実施形態の変形例について説明する。図4〜図7は、本実施形態の変形例に係る光学式測距装置1の要部の構成を示す平面図である。
【0115】
なお、図4〜図7においては、説明の便宜上、3次モールド10の記載を省略している。
【0116】
〈2つのアンカーを有する構成〉
本変形例に係る光学式測距装置1は、図4に示すように、2次モールド9が2つの固定穴9bを有し、レンズフレーム11が2つの貫通穴11bを有している。
【0117】
貫通穴11bは、レンズフレーム11における一方の長辺側の2つの頂角の近傍に形成されている。また、貫通穴11bは、中心線CLに対して対称な位置に配置されている。
【0118】
固定穴9bは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で貫通穴11bと重なる位置に形成される。
【0119】
本変形例に係る他の光学式測距装置1は、図5に示すように、2次モールド9が2つの固定穴9cを有し、レンズフレーム11が2つの貫通穴11cを有している。
【0120】
一方の貫通穴11cは、レンズフレーム11における一方の長辺側の1つの頂角の近傍に形成されている。また、他方の貫通穴11cは、レンズフレーム11における他方の長辺側の上記の頂角と対角の関係にある頂角の近傍に形成されている。
【0121】
固定穴9cは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で貫通穴11cと重なる位置に形成される。
【0122】
上記の構成では、固定穴9bおよび貫通穴11bならびに固定穴9cおよび貫通穴11cにアンカー10aが形成される。すなわち、アンカー10aは、固定穴9bおよび貫通穴11bならびに固定穴9cおよび貫通穴11cの位置に配置される。このような構造では、2次モールド9および3次モールド10において周囲温度の変化による膨張(収縮)時に大きな歪みを生じるレンズフレーム11の周囲部分(端部)が固定される。これにより、レンズフレーム11が2次モールド9および3次モールド10に対して滑りを起こすことはない。また、レンズフレーム11が2点でアンカー10aにより固定されているので、図1(a)および(b)に示す構成と同様、不均一な膨張時においてもレンズフレーム11が回転することもない。
【0123】
〈4つのアンカーを有する構成〉
本変形例に係る光学式測距装置1は、図6に示すように、2次モールド9が4つの固定穴9dを有し、レンズフレーム11が4つの貫通穴11dを有している。
【0124】
貫通穴11dは、レンズフレーム11における4つの頂角の近傍に形成されている。また、貫通穴11dは、レンズフレーム11における同一の長辺側の頂角に位置するもの同士が、中心線CLに対して対称な位置に配置されている。
【0125】
固定穴9dは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で貫通穴11dと重なる位置に形成される。
【0126】
上記の構成では、固定穴9dおよび貫通穴11dにアンカー10aが形成される。すなわち、アンカー10aは、レンズフレーム11の4隅に配置される。これにより、レンズフレーム11を強固に2次モールド9および3次モールド10の間に固定することができる。
【0127】
〈6つのアンカーを有する構成〉
本変形例に係る光学式測距装置1は、図7に示すように、2次モールド9が6つの固定穴9eを有し、レンズフレーム11が6つの貫通穴11eを有している。
【0128】
貫通穴11eは、レンズフレーム11における4つの頂角の近傍に4つ形成され、レンズフレーム11における発光レンズ5および受光レンズ6の間の中心線CL上に2つ形成されている。また、貫通穴11eは、レンズフレーム11における同一の長辺側の頂角に位置するもの同士が、中心線CLに対して対称な位置に配置されている。
【0129】
固定穴9eは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で貫通穴11eと重なる位置に形成される。
【0130】
上記の構成では、固定穴9eおよび貫通穴11eにアンカー10aが形成される。すなわち、アンカー10aは、レンズフレーム11の4隅と発光レンズ5および受光レンズ6の間とに配置される。これにより、レンズフレーム11をより強固に2次モールド9および3次モールド10の間に固定することができる。
【0131】
〔変形例2〕
本実施形態の他の変形例について説明する。図8および図9は、レンズフレーム11の保持構造を形成するためにレンズフレーム11が2次モールド9および3次モールド10の間に固定される工程を示す図である。
【0132】
〈レンズフレームがアンカーを有する構成〉
図8(a)に示すように、レンズフレーム11は、貫通穴11fの位置にレンズフレーム11の面に垂直な方向に筒状に突出するように伸びる突出部11gを有している。貫通穴11fは、突出部11g内に突出部11gの下端まで形成されている。一方、2次モールド9は、突出部11gが嵌合する形状の固定穴9fを有している。
【0133】
図8(a)に示すように、突出部11gを固定穴9fの位置とを合わせるようにして、図8(b)に示すように、突出部11gを固定穴9fに嵌め合わせて、2次モールド9上にレンズフレーム11を重ねる。この状態で、図8(c)に示すように、レンズフレーム11上に遮光性樹脂を塗布することにより、3次モールド10が形成される。このとき、貫通穴11fに遮光性樹脂が充填されることによりアンカー10aが形成される。このようにして、3次モールド10は、アンカー10aにより2次モールド9およびレンズフレーム11に固着される。したがって、レンズフレーム11は、2次モールド9と3次モールド10との間に挟持されるように固定される。
【0134】
上記の構成では、図8(c)に示すように、アンカー10aだけでなく、金属からなるレンズフレーム11の突出部11gを含めて2次モールド9の固定穴9fに嵌め込まれる。これにより、滑りが生じるレンズフレーム11の面方向に対して垂直に、突出部11gからなる金属のアンカーが2次モールド9に打ち込まれることになる。したがって、遮光性樹脂からなるアンカー10aのみでレンズフレーム11を固定する構造と比較して、より強固にレンズフレーム11を2次モールド9および3次モールド10の間に固定することができる。よって、レンズフレーム11と2次モールド9および3次モールド10との間の滑りをより確実に防止することができる。
【0135】
また、光学式測距装置1の製造において、レンズフレーム11を2次モールド9上に重ね合わせるときに、固定穴9fに嵌合可能な突出部11gが位置決めとして機能する。これにより、レンズフレーム11の位置決めが容易になり、光学式測距装置1の製造の容易化を図ることができる。
【0136】
〈レンズフレームが浮き上がり防止機能を有する構成〉
図9(a)に示すように、レンズフレーム11は、図8(a)に示す構成と同様、突出
部11gを有している。この突出部11gは、レンズフレーム11の面方向と平行な方向に貫通する横穴11h(穴)を有している。一方、2次モールド9は、図8(a)に示す構成と同様、固定穴9fを有している。
【0137】
図9(a)に示すように、突出部11gを固定穴9fの位置とを合わせるようにして、図9(b)に示すように、突出部11gを固定穴9fに嵌め合わせて、2次モールド9上にレンズフレーム11を重ねる。この状態で、図9(c)に示すように、レンズフレーム11上に遮光性樹脂を塗布することにより、3次モールド10が形成される。このとき、貫通穴11fおよび横穴11hに遮光性樹脂が充填されることにより突起10bを有するアンカー10aが形成される。このようにして、3次モールド10は、アンカー10aにより2次モールド9およびレンズフレーム11に固着される。したがって、レンズフレーム11は、2次モールド9と3次モールド10との間に挟持されるように保持される。
【0138】
上記の構成では、図9(c)に示すように、図8(b)に示す構成と同様、滑りが生じるレンズフレーム11の面方向に対して垂直に、突出部11gからなる金属のアンカーが2次モールド9に打ち込まれることになる。したがって、レンズフレーム11と2次モールド9および3次モールド10との間の滑りをより確実に防止することができる。
【0139】
また、突起10bによっても2次モールド9とレンズフレーム11とが固定されるので、レンズフレーム11の面方向と垂直な方向に作用する応力に抗することができる。したがって、レンズフレーム11が上記の応力によって浮き上がることを防止できる。
【0140】
[実施形態2]
本発明に係る他の実施形態について、図10〜図12を参照して以下に説明する。
【0141】
なお、本実施形態において、前述の実施形態1における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
【0142】
〔光学式測距装置の構成〕
図10(a)および(b)は、本発明の他の実施形態に係る光学式測距装置21の構成を示す平面図および断面図である。図11は、光学式測距装置21におけるレンズ付レンズフレーム22の構成を示す平面図である。
【0143】
なお、図10(a)および(b)においては、説明の便宜上、3次モールド10の記載を省略している。
【0144】
図10(a)および(b)に示すように、光学式測距装置21は、光学式測距装置1と同様に、発光素子2、受光素子3、リードフレーム4、発光レンズ5、受光レンズ6、発光側1次モールド7、受光側1次モールド8および2次モールド9を備えている。また、図10(a)および(b)に示さないが、光学式測距装置21は、3次モールド10を備えている。さらに、光学式測距装置21は、図11に示すレンズ付レンズフレーム22を備えている。
【0145】
2次モールド9は、その上面に、前述の図5に示す2次モールド9と同様に、その上面に、2つの固定穴9cを有するとともに、2つの位置決めピン9gを有している。
【0146】
なお、2次モールド9は、固定穴9cに限定されず、図4に示す固定穴9bまたは図6に示す固定穴9dを有していてもよい。
【0147】
位置決めピン9gは、2次モールド9の上面に垂直な方向に立ち上がるように形成され
ている。この位置決めピン9gは、位置決め用穴11iへの挿入が容易になるように、先端部分にテーパ面を有している。また、位置決めピン9gは、発光レンズ5が配置される開口部91と受光レンズ6が配置される開口部92との間の中心線CL上に、N−N線(レンズ中心線)に対して互いに対称となる端子4b寄りの位置に配置される。
【0148】
図11に示すように、レンズ付レンズフレーム22は、レンズフレーム11に発光レンズ5および受光レンズ6が保持されて構成されている。このレンズフレーム11は、図5に示すレンズフレーム11と同様に、2つの貫通穴11cを有しており、さらに2つの位置決め用穴11iを有している。
【0149】
なお、レンズフレーム11は、貫通穴11cに限定されず、図4に示す貫通穴11bまたは図6に示す貫通穴11dを有していてもよい。
【0150】
位置決め用穴11iは、レンズフレーム11が2次モールド9上の所定の位置に配置された状態で、位置決めピン9gに嵌合される大きさおよび位置に配置される。また、位置決め用穴11iは、発光レンズ5および受光レンズ6の間における2つの長辺寄りに配置される。
【0151】
上記の構成では、2次モールド9が位置決めピン9gを有しているので、光学式測距装置21の製造において、位置決め用穴11iに位置決めピン9gを挿入することにより、レンズフレーム11の位置決めを行うことができる。これにより、レンズフレーム11の位置決めが容易になり、光学式測距装置21の製造の容易化を図ることができる。
【0152】
ここで、位置決めピン9gは、位置決め用穴11iに挿入されるときに破損しないように、一定の強度が要求されることから、所定以上の直径を必要とする。このため、図10(a)に示すように、2次モールド9の上面における開口部91,92の間の比較的広い中央部分に、十分な強度を有する位置決めピン9gが配置される。一方、アンカー10aを形成するために固定穴9cは、2次モールド9の中央部分ではなく、端子4bが設けられていない端部側に配置される。
【0153】
位置決めピン9gは、上記のように十分な強度を有するように形成されることから、アンカー10aと同様に、レンズフレーム11を固定することにより、2次モールド9および3次モールドとレンズフレーム11との間の滑りの防止に寄与することができる。また、位置決めピン9g(凸部)は、図3(d)に示す前述の固定ピン9hと同様、射出成形によって形成される3次モールド10と結合することから、固定ピン9hと同様のレンズフレーム11の保持効果を有する。
【0154】
ただし、位置決めピン9gを位置決め用穴11iに挿入できるように、挿入された状態で位置決めピン9gと位置決め用穴11iとの間には隙間が設けられている。このため、2次モールド9および3次モールド10とレンズフレーム11との間には、上記の隙間により僅かなずれが生じてしまう。したがって、発光素子2および受光素子3と発光レンズ5および受光レンズ6との相対的な位置関係のずれをより少なくする観点では、遮光性樹脂が固定穴9cおよび貫通穴11cに隙間なく充填されることにより形成されるアンカー10aを用いる方が好ましい。
【0155】
〔光学式測距装置の製造〕
光学式測距装置21の製造手順について説明する。図12(a)〜(f)は、光学式測距装置21の製造における各工程を示す断面図である。
【0156】
なお、図12(d)〜(f)に示す位置決め用穴11iは、説明の便宜上、レンズ中心
線(図10(a)のN−N線)の断面に位置するように描かれているが、実際には図示する位置に存在していない。
【0157】
まず、図12(a)に示すように、リードフレーム4上に発光素子2と受光素子3とを配置する。この状態で、Auワイヤ(図示せず)により、発光素子2および受光素子3と端子4bとを電気的に接続する。
【0158】
次に、図12(b)に示すように、透光性樹脂により発光素子2を封止することにより発光側1次モールド7を形成する。同時に、透光性樹脂により受光素子3を封止することにより受光側1次モールド8を形成する。
【0159】
別工程では、図12(c)に示すように、発光レンズ5および受光レンズ6をレンズフレーム11に透光性樹脂により形成する。このレンズフレーム11には、位置決め用穴11iが位置決めピン9gに対応する位置に予め形成されている。
【0160】
その後、図12(d)に示すように、遮光性樹脂により2次モールド9を形成する。このとき、2次モールド9の上面における開口部91,92の間の領域には、位置決めピン9gが形成される。
【0161】
さらに、図12(e)に示すように、位置決めピン9gを位置決め用穴11iに挿入することにより、2次モールド9上にレンズフレーム11を配置する。
【0162】
そして、図12(f)に示すように、遮光性樹脂により3次モールド10を形成することにより光学式測距装置21が完成する。
【0163】
なお、実施形態1に係る光学式測距装置1も上記の工程と同様にして製造することができる。光学式測距装置1は、位置決めピン9gを有していないので、位置決めピン9gによるレンズフレーム11の位置決めの工程は省かれる。しかしながら、光学式測距装置1にも、2次モールド9に位置決めピン9gと同様な位置決めピンを設け、レンズフレーム11に位置決め用穴11iと同様な位置決め用穴を設けてもよい。これにより、図12(e)に示すようなレンズフレーム11の位置決め工程を実施することができる。この場合、発光レンズ5および受光レンズ6の間の領域がアンカー10aの形成のために使用されない図4、図5および図6に示す構成に、上記の位置決めピンおよび位置決め用穴を設けることが好ましい。
【0164】
[実施形態3]
本発明に係るさらに他の実施形態について、図13および図14を参照して以下に説明する。
【0165】
なお、本実施形態において、前述の実施形態1における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
【0166】
〔光学式測距装置の構成〕
図13は、本発明のさらに他の実施形態に係る光学式測距装置31の構成を示す断面図である。図14(a)および(b)は、光学式測距装置31におけるレンズ付レンズフレーム32の構成を示す平面図および断面図である。
【0167】
なお、図14(a)においては、説明の便宜上、貫通穴の記載を省略している。
【0168】
図13に示すように、光学式測距装置31は、光学式測距装置1と同様に、発光素子2
、受光素子3、リードフレーム4、発光側1次モールド7、受光側1次モールド8、2次モールド9および3次モールド10を備えている。また、光学式測距装置31は、レンズ付レンズフレーム32を備えている。
【0169】
図14(a)および(b)に示すように、レンズ付レンズフレーム32は薄膜部33を有している。薄膜部33は、発光レンズ5および受光レンズ6が取り付けられる部分以外のレンズフレーム11の表面、裏面または両面の領域に、発光レンズ5および受光レンズ6を形成する樹脂と同樹脂により一体に形成されている。
【0170】
上記のように構成される光学式測距装置31において、レンズ付レンズフレーム32のレンズフレーム11が薄膜部33により覆われているので、レンズフレーム11が2次モールド9および3次モールド10と接しない。これにより、図13において破線で示す破線で示すU部、V部およびW部では、レンズ付レンズフレーム32と2次モールド9および3次モールド10とが樹脂同士で接触することとなり、密着性が高まる。したがって、レンズフレーム11が2次モールド9および3次モールド10と接する構成と比較して、滑りの発生をより低減することができる。
【0171】
例えば、発光レンズ5における3次モールド10の外側端部のU部で滑りが発生するためには、3次モールド10の中心側のV部および反対側の外側端部のW部でも同様に滑りを起こす必要がある。このため、非常に大きな応力が作用しない限り滑りが生じることはない。それゆえ、滑り防止の大きな効果を期待することができる。
【0172】
ただし、V部におけるレンズフレーム11の下面側の薄膜部33は、その膜厚によっては、発光素子2から出射した光の導波路となって受光素子3側へ直接入射するパスとなりえる。したがって、薄膜部33については、光が侵入しないような膜厚の設計や、薄膜部33内で光の迷路となるような薄膜構造を採用することが好ましい。
【0173】
また、上記の構成では、薄膜部33が発光レンズ5および受光レンズ6を形成する樹脂と同樹脂により一体に形成されている。これにより、レンズフレーム11に発光レンズ5および受光レンズ6を形成するときに、同時に薄膜部33を形成することができる。したがって、薄膜部33を容易に形成することができる。
【0174】
[実施形態4]
本発明に係るさらに他の実施形態について、図15を参照して以下に説明する。
【0175】
図15は、電子機器としてのパーソナルコンピュータ(パソコン)51を示す斜視図である。
【0176】
図15に示すように、パソコン51は、本体部52および表示部53を有している。表示部53の額縁部分の上端部には光学式測距装置54が取り付けられている。光学式測距装置54としては、前述の高耐熱かつ高性能である光学式測距装置1,21,31のうちのいずれか1つが用いられる。
【0177】
このパソコン51では、光学式測距装置54によってパソコン51の前における人の有無を正確に検知することができる。これにより、パソコン51の前から人がいなくなるとパソコン51の動作をスリープモードに切り替えることによって、省エネルギー化を効率よく行うことが可能となる。
【0178】
また、光学式測距装置54は、高耐熱かつ高性能であるので、リフローにより容易に短時間で大量に基板に実装することができる。
【0179】
なお、光学式測距装置54を搭載することができる電子機器は、パソコン51に限定されない。例えば、光学式測距装置54は非接触での操作に用いることができる。具体的には、キッチン家電やサニタリ機器では、非接触で動作をON/OFFさせる非接触スイッチとして光学式測距装置54を利用することができる。また、手までの距離を検知してボリュームコントロールを行うなど、手が濡れていたり汚れていたりする場合における電子機器の操作に光学式測距装置54を利用することができる。
【0180】
[比較例]
本発明に係る比較例について、図16を参照して以下に説明する。
【0181】
図16(a)および(b)は、本比較例に係る光学式測距装置61の構成を示す平面図および断面図である。
【0182】
図16に示すように、光学式測距装置61は、発光素子62、受光素子63、リードフレーム64、発光レンズ65、受光レンズ66、ベース67、ケース68およびレンズフレーム69を備えている。
【0183】
リードフレーム64上に形成された発光素子62および受光素子63は、遮光性樹脂からなるベース67によって封止されている。ベース67は、発光素子62からの出射光および受光素子63への入射光を互いに遮光する遮光壁67aと、側方に形成される側壁67bとを有している。さらに、側壁67bを覆うように遮光性樹脂からなるケース68が形成されている。
【0184】
レンズフレーム69は、金属により平板状に形成されており、発光レンズ65および受光レンズ66を保持している。このレンズフレーム69は、ベース67およびケース68の間に挟持されるように保持されている。
【0185】
上記のように構成される光学式測距装置61では、レンズフレーム69が、ベース67およびケース68を形成する遮光性樹脂の熱膨張係数より小さい熱膨張係数を有する金属により形成されている。これにより、周囲熱または発光素子62および受光素子63の自己発熱によってベース67およびケース68が熱膨張しても、レンズフレーム69はほとんど膨張することがない。それゆえ、周囲熱および自己発熱による発光レンズ65および受光レンズ66の間の距離の変化量の差がほとんどない。したがって、前述の光学式測距装置600のように、周囲熱および自己発熱によるレンズ間距離の変化量の相違が生じることなく、測距精度の低下を防ぐことができる。
【0186】
しかしながら、光学式測距装置61に対してリフローによるはんだ付けを行う場合、短時間ではあるが周囲温度が260℃程度に上昇する。このため、発光レンズ65および受光レンズ66、ベース67およびケース68を構成する樹脂が大きく膨張する一方、リードフレーム64やレンズフレーム69を構成する金属は樹脂に比べるとその熱膨張係数が小さくほとんど膨張しない。
【0187】
このため、ベース67およびケース68とレンズフレーム69との界面で熱膨張係数の差に起因する応力が大きくなる。この結果、レンズフレーム69が、ベース67およびケース68を構成する樹脂に対して滑ってしまう。この滑りが発生すると、リフロー後に常温に戻ったときに、リフロー前の発光レンズ65および受光レンズ66と発光素子62および受光素子63との相対的な位置関係が変化する。したがって、前述の三角測量の原理によって得られる反射光のスポット位置が変化するため、測距値が正確な値からシフトするという不都合が生じる。
【0188】
これに対し、前述の各実施形態に係る光学式測距装置1,21,31では、アンカー10aでレンズフレーム11を保持することにより、上記のような滑りの発生を抑えることができる。したがって、リフローによる高熱に対しても、測距精度の低下を防ぐことができる。
【0189】
[付記事項]
本発明は、下記のようにも表現することができる。
【0190】
光学式測距装置は、測距対象物までの距離を測定する光学式測距装置であって、実装部材上に実装された発光素子と、上記発光素子の出射光を上記測距対象物に照射する発光レンズと、上記実装部材上に実装され、上記測距対象物による反射光が集束する位置を検出する受光素子と、上記反射光を上記受光素子に集束させる受光レンズと、上記発光素子および上記受光素子を封止する透光性樹脂体と、上記透光性樹脂体を封止する第1の遮光性樹脂体と、金属で形成され、上記発光レンズおよび上記受光レンズが設けられたレンズフレームと、上記第1の遮光性樹脂体を封止するとともに、上記第1の遮光性樹脂体とで上記レンズフレームを保持する第2の遮光性樹脂体とを備え、上記レンズフレームには所定の位置に貫通穴が形成され、上記第1の遮光性樹脂体には上記レンズフレームの貫通穴と一致する位置に固定穴が形成され、上記第2の遮光性樹脂体は上記貫通穴および上記固定穴に遮光性樹脂が充填されることにより形成される充填部を有していることを特徴としている。
【0191】
上記構成においては、第2の遮光性樹脂体は、遮光性樹脂が、レンズフレームに形成された貫通穴を通して第1の遮光性樹脂体に形成された固定穴に充填されることにより形成される充填部を有している。これにより、レンズフレームは、第1の遮光性樹脂体と第2の遮光性樹脂体とに保持された状態で、さらに充填部によって固定される。それゆえ、光学式測距装置をリフロー処理するときの周囲温度変化により、レンズフレームと第1および第2の遮光性樹脂体との界面に熱膨張による応力が作用する場合においても、それぞれが滑りを起こすことはない。
【0192】
また、充填部は、貫通穴および固定穴に隙間のない状態で流れ込んだ遮光性樹脂が固化することにより形成される。これに対し、充填部の代わりにピン等の固定部を貫通穴および固定穴に挿入する構造では、固定部の挿入のために固定部と貫通穴および固定穴との間に隙間を設ける必要があり、第1および第2の遮光性樹脂体とレンズフレームとの間にその隙間によるずれが生じる。充填部は、このような隙間を生じないので、第1および第2の遮光性樹脂体とレンズフレームとの間のずれをなくすことができる。
【0193】
したがって、リフロー処理後の発光レンズおよび受光レンズと発光素子および受光素子との相対的な位置関係が保たれる。よって、光学式測距装置の耐熱性および測距精度を高いレベルに維持することができる。
【0194】
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【産業上の利用可能性】
【0195】
本発明に係る光学式測距装置は、リフローによるはんだ付けにより電子機器に実装されることに対して好適に利用できる。
【符号の説明】
【0196】
1 光学式測距装置
2 発光素子
3 受光素子
4 リードフレーム(実装部材)
5 発光レンズ
6 受光レンズ
7 発光側1次モールド(透光性樹脂体)
8 受光側1次モールド(透光性樹脂体)
9 2次モールド(第1の遮光性樹脂体)
9a〜9f 固定穴
9g 位置決めピン(凸部)
9h 固定ピン(凸部)
10 3次モールド(第2の遮光性樹脂体)
10a アンカー(凸部)
10b 突起
11 レンズフレーム
11a〜11f 貫通穴
11g 突出部
11h 横穴(穴)
11i 位置決め用穴
21 光学式測距装置
22 レンズ付レンズフレーム
31 光学式測距装置
32 レンズ付レンズフレーム
33 薄膜部(薄膜)
51 パソコン(電子機器)

【特許請求の範囲】
【請求項1】
測距対象物までの距離を測定する光学式測距装置であって、
実装部材上に実装された発光素子と、
上記発光素子の出射光を上記測距対象物に照射する発光レンズと、
上記実装部材上に実装され、上記測距対象物による反射光が集束する位置を検出する受光素子と、
上記反射光を上記受光素子に集束させる受光レンズと、
上記発光素子および上記受光素子を封止する透光性樹脂体と、
上記出射光が上記発光素子から上記発光レンズに至る空間および上記反射光が上記受光レンズから上記受光素子に至る空間を形成するように上記透光性樹脂体を覆う第1の遮光性樹脂体と、
金属で形成され、上記発光レンズおよび上記受光レンズを保持するレンズフレームと、
上記第1の遮光性樹脂体を封止するとともに、上記第1の遮光性樹脂体とで上記レンズフレームを保持する第2の遮光性樹脂体とを備え、
上記レンズフレームには貫通穴が形成され、
上記第1の遮光性樹脂体または上記第2の遮光性樹脂体のいずれか一方が他方側に向けて突出する凸部を有し、当該凸部が上記貫通穴を貫通して上記レンズフレームから突出した状態で、他方が当該凸部の突出部分と結合していることを特徴とする光学式測距装置。
【請求項2】
上記第1の遮光性樹脂体には上記レンズフレームの上記貫通穴と一致する位置に固定穴が形成され、
上記第2の遮光性樹脂体は上記凸部を有しており、当該凸部は上記貫通穴および上記固定穴に遮光性樹脂が充填されることにより形成されていることを特徴とする請求項1に記載の光学式測距装置。
【請求項3】
上記第1の遮光性樹脂体は上記凸部を有し、
上記第2の遮光性樹脂体は遮光性樹脂が上記レンズフレームの上を覆うことにより上記凸部と結合していることを特徴とする請求項1に記載の光学式測距装置。
【請求項4】
上記貫通穴は上記発光レンズおよび上記受光レンズの間に少なくとも2つ形成されることを特徴とする請求項1、2または3に記載の光学式測距装置。
【請求項5】
上記貫通穴は上記レンズフレームの端部側に少なくとも2つ形成されることを特徴とする請求項1、2または3に記載の光学式測距装置。
【請求項6】
上記貫通穴は上記レンズフレームの4隅に形成されることを特徴とする請求項5に記載の光学式測距装置。
【請求項7】
上記貫通穴は上記発光レンズおよび上記受光レンズの間に2つ形成されることを特徴とする請求項6に記載の光学式測距装置。
【請求項8】
上記貫通穴の位置は、上記発光レンズの中心と上記受光レンズの中心とを結ぶレンズ中心線の中心を通り、かつ当該レンズ中心線に直交する中心線について対称であることを特徴とする請求項4から7のいずれか1項に記載の光学式測距装置。
【請求項9】
上記レンズフレームは上記レンズフレームの面に垂直な方向に突出する突出部を有し、当該突出部内に上記貫通穴が形成され、
上記突出部が上記固定穴に嵌合されていることを特徴とする請求項2に記載の光学式測距装置。
【請求項10】
上記突出部は上記レンズフレームの面方向と平行な方向に貫通する穴が形成されていることを特徴とする請求項9に記載の光学式測距装置。
【請求項11】
上記レンズフレームの表面、裏面または両面に、上記発光レンズおよび上記受光レンズを形成する透光性樹脂により薄膜が形成されていることを特徴とする請求項1に記載の光学式測距装置。
【請求項12】
上記第1の遮光性樹脂体は上記発光レンズの中心と上記受光レンズの中心とを結ぶレンズ中心線について略対称に形成されていることを特徴とする請求項1に記載の光学式測距装置。
【請求項13】
上記第1の遮光性樹脂体および上記第2の遮光性樹脂体は同一樹脂により形成されていることを特徴とする請求項1に記載の光学式測距装置。
【請求項14】
上記レンズフレームを形成する金属の熱膨張係数と上記第1の遮光性樹脂体および上記第2の遮光性樹脂体の熱膨張係数とが略等しいことを特徴とする請求項1に記載の光学式測距装置。
【請求項15】
上記レンズフレームを形成する金属は銅または銅合金であることを特徴とする請求項14に記載の光学式測距装置。
【請求項16】
請求項1から15のいずれか1項に記載された光学式測距装置を搭載していることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate