説明

光学系、頭部搭載型プロジェクタ、及び再帰透過性素子

【課題】実像形成のためのプロジェクタを使用するにも関わらず、虚像変換して、スクリーンを不要とすることができる新規な光学系、頭部搭載型プロジェクタ、及び及び再帰透過性素子を提供する。
【解決手段】
光学系は、プロジェクタ20とプロジェクタ20と対向して配置された再帰透過性素子13を備え、プロジェクタ20からの未実像の入射光を、再帰透過性素子13を介して再帰透過させることにより、再帰透過性素子13の入射面とは反対側において再帰透過した光により虚像を形成させる。この再帰透過性素子13により再帰透過された光線を、観察者は虚像として観察することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学系、頭部搭載型プロジェクタ、及び再帰透過性素子に関する。
【背景技術】
【0002】
光学素子は、一般にホログラム光学素子など特殊なものを除き、屈折光学系及び反射光学系に分けることができる。光学系の構成を考案する場合、或いは、シミュレーションを用いて詳細な設計を詰める場合でも、この屈折光学系及び反射光学系が基本要素として、これらを中心として理論的な体系を成立させ、屈折光学系及び反射光学系の基本要素を単独、又は組み合わせることにより様々な光学装置が提案されている。逆に言えば、この2つの系に限られているところが、光学系を組む場合の最大の制約ともなる。
【0003】
屈折光学系は、いわば光学素子を一列に並べ、順に光を通していくものであり、光の進行方向は変わらない。反射光学系は、光の進行方向を変えることができる。動作原理を決定した後、この2種類を組合せ、空間中で素子同士が干渉しないような配置を決めることが、光学機器の構成設計である。
【0004】
なお、この出願に関する技術としては、下記の非特許文献1が公知である。
【非特許文献1】前川,仁田,的場,「微小2面コーナーリフレクタアレイを用いた面対称結像光学素子−実像を結像する「鏡」−」,情報メディア学会技術報告,情報メディア学会,30(52),2006年10月18日,Vol.30,No.52,p.49-52
【発明の開示】
【発明が解決しようとする課題】
【0005】
機械の場合と同じように、空間の取り合いは、大きな制約であり、光学機器の動作原理が決定しても、光学素子の配置が不可能な場合がある。これを解消・緩和するために、しばしば、ハーフミラーやプリズムからなるビームスプリッタが用いられている。以下に、例を示して説明する。
【0006】
頭部搭載型プロジェクタ(HMD)は、プロジェクタ10を視点位置12に置き、映像を投影することができれば、スクリーン14の形状がいかなる曲面であっても、観察される像に歪みが生じないため、好都合である(図15参照)。しかし、プロジェクタ10と視点とは干渉するため、図15のように実際に視点位置12にプロジェクタ10の射出瞳を設置することはできないものの、図16に示すように眼(図16では観察視点A)前にビームスプリッタ16を置けば、空間の取り合いは解消する。このように配置した頭部搭載型プロジェクタは従来から公知である。
【0007】
ここで、ビームスプリッタ16、すなわち、ハーフミラーのような透過性を持つ鏡は、空間を折り返している。プロジェクタ10は折り返された空間の中では人の瞳(すなわち、前記観察視点A)に重なるため、上記のような動作原理が満たされる。なお、この場合でも、配置には、工夫が必要となる。例えば、図17は、動作原理は図16と同じであるが、プロジェクタ10がスクリーン14までの光路を遮るため、完全な実像を観察することはできない。
【0008】
従来のプロジェクタを有する光学系の場合、スクリーンを必要とするばかりか、そのスクリーンの設置箇所をも考慮する必要があることから、プロジェクタを使用する光学系において、スクリーンを設ける必要がない光学系が求められている。
【0009】
本発明の目的は、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換して、スクリーンを不要とすることができる新規な光学系を提供することにある。
又、本発明の第2の目的は、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換して、スクリーンを不要とすることができる新規な頭部搭載型プロジェクタを提供することにある。
【0010】
さらに、本発明の第3の目的は、上記のようなプロジェクタを有するにも関わらずスクリーンを不要とすることができる光学系において、好適に使用することができる再帰透過性素子を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するために、請求項1に記載の発明は、プロジェクタと、前記プロジェクタと対向して配置された素子であって、入射光を、該素子の入射面とは反対側の面へ透過させ、その際、再帰透過軸に関して軸対称な方向に変えて射出させる性質を有する素子(以下、再帰透過性素子という)とを備え、前記プロジェクタからの未実像の入射光を、前記再帰透過性素子を介して再帰透過させることにより、前記再帰透過性素子の入射面とは反対側において前記再帰透過した光により虚像を形成させることを特徴とする光学系を要旨とするものである。
【0012】
未実像とは、下記のことを言う。プロジェクタから投射された光線束は、実像の結像位置が、該光線束が入射された面の向こう側(該入射された面とは反対側の面を越した側)に設定された場合、前記面に入射された光線束は、「未だ実像になっていない」、すなわち、実像未満である。この実像未満である交線束を、「未実像」という。
【0013】
また、再帰透過軸とは、下記のことを言う。再帰透過性素材に入射した光線は、素材を透過するが、射出される光は、再帰透過性素材が無かった場合と比較すると、入射光に対して軸対称になっている。この軸のことを再帰透過軸ということとする。例えば、図4乃至図6に示す様な、再帰反射性素子32と平面ビームスプリッタ(半反射層40)を用いた構造の場合には、ビームスプリッタの法線Gが再帰透過軸になる。ビームスプリッタが半透過曲面鏡であれば、その曲面形状の法線が、各位置での再帰透過軸である。さらに、曲面鏡を微細化しフレネル反射鏡とした場合にも、各反射鏡の法線が、再帰透過軸である。図7乃至図8に示す様な、直交2面鏡(コーナーミラー)を用いた構造の場合には、その交線が再帰透過軸である。又、直交2面鏡の場合、図13に示すように、再帰透過軸の配置を場所により変更することで、上記曲面鏡と同様の光学的効果を作ることができる。
【0014】
そして、上記の構成により、プロジェクタは、光線束(未実像)を再帰透過性素子に入射する。実像位置に向かって収束しつつあった光線群は、この再帰透過素子により逆に散開するが、光の進行方向、すなわち、再帰透過性素子の入射面とは反対側の側面へ通過させるという意味でその光の進行方向は変わらない。収束のための角度は、逆に散開のための角度となるため、これらの光線束は逆に虚像を形成する。この虚像と、本来の実像とは、再帰透過面に対して面対象の位置にある。すなわち、再帰透過性素子は、空間を折り返し、実像を虚像に転換しているにもかかわらず、光線束の進行方向を変えないため、観察瞳に光は入射し、像を観察することができる。
【0015】
なお、背景技術で挙げたビームスプリッタ16は、空間を折り返すという点では、同じであるが、光線の進行方向を変えてしまうところに、再帰透過性素子とは相違がある。
なお、本実施形態での光学系は、全て反射系の素子からなることが好ましい。
【0016】
請求項2の発明は、請求項1において、前記再帰透過性素子が、曲面を有するように湾曲されていることを特徴とする。
請求項3の発明は、請求項1又は請求項2に記載の光学系が、使用者の頭部に装着される支持体に設けられ、前記支持体に対して、前記再帰透過した光により虚像を前記使用者の眼で見ることが可能に、前記再帰透過性素子が配置されていることを特徴とする頭部搭載型プロジェクタを要旨とするものである。
【0017】
請求項4の発明は、透明層と、該透明層の一方の面、又は前記透明層の内部に設けられた半反射層を有し、前記透明層の一方の面とは反対側の他方の面、又は前記透明層の内部に、光線を前記半反射層側に反射させる多数の再帰反射性素子を離散的に配置したことを特徴とする再帰透過性素子を要旨とするものである。
【0018】
請求項5の発明は、請求項4において、前記半反射層が湾曲されていることを特徴とする。
請求項6の発明は、請求項5において、前記半反射層が凹型に湾曲されて、該半反射層の反射面が凹面鏡に形成され、前記半反射層を通過して前記再帰反射性素子で反射された光線が、前記反射面で反射し、前記透明層を通過して外部に出ることを特徴とする。
【0019】
請求項7の発明は、請求項5において、前記半反射層が凸型に湾曲されて、該半反射層の反射面が凸面鏡に形成され、前記透明層へ入射した光線が、該反射面で反射して、さらに該再帰反射性素子で反射し、前記半反射層を通過して外部に出ることを特徴とする。
【0020】
請求項8の発明は、板状の素子本体に対し、板状の素子本体に対し、複数の空隙が点線状にかつ、円状に配置されており、該空隙群が、複数個同心円状に配置され、前記空隙の壁面が鏡面に形成されていることを特徴とする再帰透過性素子を要旨とするものである。
【0021】
請求項9の発明は、板状の素子本体に、円状に形成されるとともに径の異なる空隙が、複数個同心円状に形成され、前記空隙の壁面が鏡面に形成され、素子本体の厚み方向の少なくとも一端は閉塞されていることを特徴とする再帰透過性素子を要旨とするものである。
【0022】
請求項10の発明は、請求項8又は請求項9において、前記空隙が透孔であることを特徴とする。
請求項11の発明は、板状の素子本体に対して、該素子本体の厚み方向に多数の空隙がランダムに配置され、前記空隙の内面には、互いに直交する第1鏡面と第2鏡面とから構成された2面直交合わせ鏡が形成され、かつ、前記第1鏡面と第2鏡面の交線が該素子本体の厚み方向に向けて配置されていることを特徴とする再帰透過性素子を要旨とするものである。
【0023】
請求項12の発明は、請求項11において、前記空隙が透孔であることを特徴とする。
請求項13の発明は、請求項11又は請求項12において、前記板状の素子本体が、曲面を有しており、その曲面の法線方向に前記2面直交合わせ鏡の交線が沿って配置されていることを特徴とする。
【0024】
請求項14の発明は、請求項11乃至請求項13のいずれか1項において、前記板状の素子本体に、2面直交合わせ鏡が配置され、再帰透過軸を場所に応じて設定されていることで、再帰透過性に加えて、光線の散開又は収束の光学特性が付加されることを特徴とする。
【0025】
ここで、鏡、再帰反射性素子、及び前記再帰透過性を有する素子(以下、再帰透過性素子という)に関する「折り返し」について説明する。
(空間の折り返し)
鏡は、空間を鏡面を基準として面対称に折り返している。これは、鏡が入射する光線を鏡の鏡面の法線方向に折り返すからである。鏡の手前の実物体もプロジェクタにより投影された実像も、鏡の向こう側に虚像として観察される。なお、鏡側から観察できる虚像は、鏡の向こう側に虚像のまま観察されることになる。
【0026】
一方、再帰反射性素子は、鏡と同じように法線方向の折り返しを行うにも関わらず物体から出る光線束や投影された実像を、元と同じ位置に実像として結像させる。ただし、再帰反射が鏡と異なるのは、面内の折り返し、すなわち、再帰反射性素子の入射面の法線方向と直交する平面方向の光の進行をも折り返すことである。この面内の折り返しによっても、空間は折り返されるため、2回の空間の折り返しにより、結果としては空間を折り返していないような効果を持つ。
【0027】
この「面内の折り返し」は、集中して結像に向かう光線束を、結像点から出た光のように開散光線束に変え、逆に物体や結像点から出た開散光線束を集中して結像させる効果を伴う。
【0028】
ここで、透明板10、鏡11、再帰反射性素子12、及び再帰透過性素子13における「面内の折り返し」と「法線H方向の折り返し」の有無を、図1に示す。
面内の折り返しとは、入射面の法線H方向と直交する平面方向における光の進行方向の折り返しをいう。又、法線H方向とは、各部材の入射面における法線方向のことをいう。
【0029】
図1において、「×(+1)」が折り返し無し、「×(−1)」が折り返し有りである。図1で示された各枠中の透明板10、鏡11、再帰反射性素子12、及び再帰透過性素子13において、(a)、(b)及び(c)は、各部材の斜視図、平面図及び側面図であり、それぞれ各部材に対して光線Kが照射された際の進行方向が示されている。図1において、(b)で示されている黒丸は各部材に対する光線Kの入射点を示している。
【0030】
(行,列)=(1,1)は法線方向、及び面内のいずれにも折り返しがない透明板10である。
(行,列)=(1,−1)は鏡11である。鏡は、法線H方向の折り返し(単純反射)があって、面内の折り返しがなく、この結果、実像を虚像にする。
【0031】
(行,列)=(−1,−1)は再帰反射性素子12である。再帰反射性素子12は、法線H方向の折り返しと、面内の折り返しのため、結果として空間を折り返さないで、集中光と拡散光を変換するため、実像は同じ位置に再び実像を結ぶ。なお、再帰反射性素子12側から観察できる虚像は、虚像位置に実像を結ぶ。
【0032】
残る1枠、すなわち(行,列)=(−1,1)は、再帰透過性素子13である。図1、図2に示すように再帰透過性素子13は、法線H方向の折り返しをせず、面内の折り返しのみを行うものである。
【0033】
(実像虚像変換)
ここで、実像の結像位置が、光線束が入射された面の向こう側(該入射された面とは反対側の面を越した側)に設定された場合、前記面に入射された光線束は、「未だ実像になっていない」、すなわち、実像未満であることから、以下では、この光線束を説明の便宜上、「未実像」という。
【0034】
そして、鏡11の場合、未実像は入射された面(この場合、鏡面)で折り返されて前記面の手前で実像を形成する。
再帰反射性素子12及び再帰透過性素子13の場合、未実像は、前記面内の折り返しにより、集中と散開が交換されることで、折り返された後は虚像を形成することになる。このように、未実像が結果的に虚像となる作用を以下では、実像虚像変換と呼ぶことにする。
【0035】
再帰反射性素子12の場合は、未実像の光線束は逆方向に進行し、再帰反射性素子が無かった場合に実像があった元位置に虚像を結像する。又、再帰透過性素子13の場合は、未実像の光線束が再帰透過性素子13の法線に直交する平面を基準として面対称に折り返されて結像した位置で虚像となる。
【発明の効果】
【0036】
請求項1の光学系によれば、実像形成のためのプロジェクタを使用するにも関わらず、未実像(光線束)を再帰透過性素子により実像虚像変換できるため、再帰透過性素子により再帰透過された光線を、観察者は虚像として観察することができ、スクリーンを不要とすることができる。
【0037】
請求項2の発明によれば、曲面を有するように湾曲されていることにより、虚像の焦点位置を湾曲していない場合に比して、遠方、又は近傍に移動させる効果があり、広視野又は狭視野を得ることができる。
【0038】
請求項3の頭部搭載型プロジェクタによれば、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換して、スクリーンを不要とすることができる。
請求項4の再帰透過性素子によれば、入射光を、該素子の入射面とは反対側の面へ透過させ、その際、再帰透過軸に関して軸対称な方向に変えて射出させる性質(再帰透過性)を有することができる。この結果、請求項1又は請求項2の構成の光学系、並びに請求項3の構成の頭部搭載型プロジェクタに好適に採用できる。
【0039】
又、請求項4の再帰透過性素子は、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に転換する新たな光学素子である。この結果、順列組合せによって決まる光学系を構成する要素として新しい要素を付加することができる。
【0040】
請求項5の発明によれば、半反射層が湾曲されていることにより、再帰透過性素子に入射された未実像(光線束)が、入射された面を通過して、該面の向こう側に通過した際に虚像の焦点位置を遠位、又は近位に移動させる効果があり、広視野又は、狭視野を得ることができる。
【0041】
請求項6の発明によれば、半反射層が凹型に湾曲されて、該半反射層の反射面が凹面鏡に形成され、半反射層を通過して前記再帰反射性素子で反射された光線が、反射面で反射し、透明層を通過して外部に出ることにより、請求項5の効果を実現することができる。
【0042】
請求項7の発明によれば、半反射層が凸型に湾曲されて、該半反射層の反射面が凸面鏡に形成され、透明層へ入射した光線が、該反射面で反射して、さらに該再帰反射性素子で反射し、半反射層を通過して外部に出ることにより、請求項5の効果を実現することができる。
【0043】
請求項8乃至請求項14の再帰透過性素子によれば、請求項1又は請求項2の構成の光学系、並びに請求項3の構成の頭部搭載型プロジェクタに好適に採用できる。
又、請求項8乃至請求項14の再帰透過性素子は、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に転換する新たな光学素子である。この結果、光学系を構成する要素として新しい要素を付加することができる。
【発明を実施するための最良の形態】
【0044】
(第1実施形態)
以下、本発明の光学系を具体化した一実施形態を図3〜6を参照して説明する。この光学系は図3(a)に示すようにプロジェクタ20と、該プロジェクタ20と対向し、かつ、プロジェクタ20が投影した光線が結像する位置以前に配置された平板状の再帰透過性素子13から構成されている。又、プロジェクタ20は、その投影点20aが、観察者の観察視点Aと光学共役な位置に、かつ、観察視点Aから見たときに観察者の視野に入らない位置に配置されている。
【0045】
プロジェクタ20は、本来実像を投影した方向において、実像を結ぶものであるが、再帰透過性素子13を前記実像の結像位置以前に配置されることから、空間の折り返しと前記実像虚像変換により、プロジェクタ20から投射された光線は再帰透過性素子13のプロジェクタ20側に虚像として観察視点Aから観察できることになる。
【0046】
前記再帰透過性素子13は、図4(a)、及び図5(a)に示すように、平板状に形成された透明層としての透明充実体層30と、該透明充実体層30の一方の面に離散的に配置された多数の再帰反射性素子32と、透明充実体層30の他方の面に積層されたビームスプリッタとしてのハーフミラーからなる平板状の半反射層40とからなる。なお、本実施形態では、半反射層40(ハーフミラー)の法線が再帰透過性素子13の再帰透過軸Gとなる。なお、本実施形態では、半反射層40は透明充実体層30との面(すなわち、境界面)に設けられているが、半反射層40は透明充実体層30の内部に設けられていてもよい。
【0047】
なお、説明の便宜上、図4(a)は光線Kの光路を示すため、再帰透過性素子13の構成は簡略化されている。
透明充実体層30は、透明材質から形成されている。なお、透明充実体層30の透明材質は限定されるものではないが、例えば、アクリル樹脂等の透明プラスチック、あるいはガラスを挙げることができる。
【0048】
再帰反射性素子32は、本実施形態では、コーナーキューブプリズムから構成されている。コーナーキューブプリズムは、透明充実体層30と同質の透明材質からなり、再帰反射性を有する。コーナーキューブプリズムの大きさは、限定はしないが、mm単位、或いはマイクロ単位の微小な大きさが好ましい。
【0049】
透明充実体層30に対するコーナーキューブプリズムの形成は、公知のフォトリソ、X線を用いたLIGA、ナノインプリント等の微細加工技術で作成可能である。コーナーキューブプリズムの外面にはアルミ蒸着等の金属膜からなるコーティング層33が形成され、光線の全反射性が高められている。又、コーティング層33はアルミ蒸着膜に変えて銀蒸着膜や、クロム蒸着膜で形成されていてもよい。
【0050】
なお、再帰反射性素子32による再帰反射の精度は、そのまま再帰透過の精度となる。又、再帰反射性素子32の透明充実体層30に対する配置は制限されるものではなく極めて自由度が高いものである。
【0051】
図4(a)、図5(a)に示すように、半反射層40表面(入射面)に入射した光線K(入射光)は、一部が半反射層40を透過して透明充実体層30内に入り、再帰反射性素子32(コーナーキューブ)の反射面で再帰反射する。再帰反射した光線Kの一部は、半反射層40でさらに、反射されて、透明充実体層30を透過して、再帰反射性素子32間から、再帰透過性素子13の入射した面とは反対側の面から外部に出る。
【0052】
なお、前記説明では、図4(a)において、半反射層40表面側から光線Kが入射する場合を説明したが、再帰透過性素子13の性質は、図4(b)に示すように透明充実体層30表面(入射面)に光線Kが入射する場合は下記のようになる。なお、説明の便宜上、図4(b)は光線Kの光路を示すため、再帰透過性素子13の構成は簡略化されている。すなわち、透明充実体層30の再帰反射性素子32間に入射した光線K(入射光)は、透明充実体層30を通過し、半反射層40の反射面で一部が反射されて、透明充実体層30側に設けられた再帰反射性素子32で再帰反射する。そして、再帰反射した光線Kの一部が透明充実体層30及び半反射層40を透過して、外部へ出る。従って、再帰透過性素子13のプロジェクタ20に対向する面は、透明充実体層30側、半反射層40側のいずれでも良い。
【0053】
このようにして、プロジェクタ20から投射された光線K(入射光)は、再帰透過性素子13の再帰反射性素子32、半反射層40でそれぞれ折り返され、すなわち、再帰透過させて、再帰透過性素子13の入射面とは反対側において反射光が結像される。
【0054】
さて、上記のように構成された本実施形態の光学系、及び再帰透過性素子13の特徴を述べる。
(1) 本実施形態の光学系は、プロジェクタ20と、該プロジェクタ20と対向して配置された再帰透過性素子13を備え、プロジェクタ20からの未実像の入射光を、再帰透過性素子13を介して再帰透過させることにより、再帰透過性素子13の入射面とは反対側において再帰透過した光により虚像を形成させる。
【0055】
このことにより、実像形成のためのプロジェクタ20を使用するにも関わらず、未実像(光線束)を再帰透過性素子13により実像虚像変換できるため、再帰透過性素子13により再帰透過された光線を、観察者は虚像として観察することができる。この結果、プロジェクタを使用するにも関わらずスクリーンを不要とすることができる。
【0056】
(2) 本実施形態の再帰透過性素子13は、透明充実体層30(透明層)と、透明充実体層30の一方の面に設けられた半反射層40を有し、透明充実体層30の一方の面とは反対側の他方の面に、光線を半反射層40側に反射させる多数の再帰反射性素子32を離散的に配置して形成されている。
【0057】
この構成によって、再帰透過性素子13に入射した光(入射光)を、入射面とは反対側の面へ透過させ、その際、再帰透過軸に関して軸対称な方向に変えて射出させる性質(再帰透過性)を有することができる。この結果、前述の光学系に好適に採用できる。
【0058】
このように、本実施形態の再帰透過性素子13は、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に転換する新たな光学素子である。この結果、光学系を構成する要素として新しい要素を付加することができる。
【0059】
(第2実施形態)
次に、第2実施形態を図3(b)を参照して説明する。なお、本実施形態を含め、以下の実施形態においては、既に説明された他の実施形態と同一構成又は相当する構成については同一符号を付して、その詳細な説明を省略する。
【0060】
図3(a)で示された第1実施形態では、プロジェクタ20は、観察者の視野に入らない位置に配置されていたが、観察者の視野に入るようにしても問題はない。例えば、図3(b)に示すように、プロジェクタ20を観察者の視野に入るようにしても、プロジェクタ20から投射された光線束は、再帰透過性素子13により実像虚像変換されて、その結果、観察者はプロジェクタ20から投射された光線が何ら遮られることなく完全な虚像を見ることができる。これは、例えば、図17のプロジェクタ10がスクリーン14までの光路を遮るため、この遮られた部分を有する不完全な実像しか観察できない従来例に比較すると、遮られることがない完全な虚像を観察することができる本実施形態の方が有利であることが分かる。なお、図3(b)の例では、プロジェクタ20の光軸と観察者の観察視点Aとは一致させているようにしているが、実際は観察者の眼にプロジェクタ20の瞳と同軸上に位置しないようにされ、プロジェクタ20が配置されて、観察者が眩しく感じないようにしている。なお、図3(b)のプロジェクタ20は、説明の便宜上、大きく図示されているが、実際は、ペンライト程度の径の大きさ程度で十分である。
【0061】
(第3実施形態)
次に、再帰透過性素子13の別の実施形態を図7及び図8を参照して説明する。
本実施形態の再帰透過性素子13は、平板状の素子本体41に対して、多数の空隙としての断面直角三角形をなす微小の透孔42が素子本体41の厚み方向に貫通されるとともにランダムに配置されている。素子本体41は、透明体であっても、非透明体であってもよい。
【0062】
前記透孔42の内面には、図8(a)に示すように互いに直交する第1鏡面44と第2鏡面45とから構成された2面直交合わせ鏡、すなわち、コーナーミラー43が形成されている。コーナーミラー43の形成は、第1実施形態で説明した金属膜で表面ミラーで形成されている。
【0063】
前記第1鏡面44と第2鏡面45の交線(すなわち、再帰透過軸G)は素子本体41の厚み方向に向けて配置されている。すなわち、再帰透過軸Gは、素子本体41の平面と直交して配置されている。前記再帰透過軸Gの向きは、素子本体41の表面の法線方向に一致している。なお、前記透孔42の大きさは、限定はしないが、mm単位、或いはマイクロ単位の微小な大きさが好ましい。
【0064】
本実施形態では、図8(a)に示すように素子本体41の一方の面側から入射した光線が透孔42の第1鏡面44と第2鏡面45で反射されて(又は、第2鏡面45と第1鏡面44で反射されて)、素子本体41の他方の面から外部へ出る。図8(b)は、素子本体41の透孔42を平面視した拡大図であり、同図に示すように前記入射した光線は、矢印に示されるように反射され、コーナーミラー43を備えた再帰透過性素子13は再帰透過性を示す。
【0065】
本実施形態によって発揮される効果について、以下に記載する。
(1) 本実施形態の再帰透過性素子13は、板状の素子本体41に対して、素子本体41の厚み方向に多数の透孔42(空隙)がランダムに配置され、透孔42の内面には、互いに直交する第1鏡面44と第2鏡面45とから構成されたコーナーミラー43(2面直交合わせ鏡)が形成されている。又、第1鏡面44と第2鏡面45の交線が素子本体41の厚み方向に向けて配置されている。
【0066】
この結果、再帰透過性素子13は、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に転換する新たな光学素子とすることができる。この結果、光学系を構成する要素として新しい要素を付加することができる。
【0067】
又、本実施形態の再帰透過性素子13を、第1実施形態の光学系に採用した場合、透孔42がランダムに配置されているため、透孔42がランダムに配置されていない場合に比して、プロジェクタ20と再帰透過性素子13との配置関係の自由度が向上する。
【0068】
(第4実施形態)
次に、再帰透過性素子13の別の実施形態を図9(a)、(b)を参照して説明する。
本実施形態の再帰透過性素子13は、平板状の素子本体41に対して、複数の空隙50、すなわち透孔が点線状にかつ、円状に配置されてなる空隙群52が、複数個同心円状に配置されている。そして、空隙50の壁面54が鏡面に形成されている。なお、前記空隙50の大きさは、限定はしないが、mm単位、或いはマイクロ単位の微小な大きさが好ましい。又、隣接する空隙群52同士の間隔は、mm単位、或いはマイクロ単位であることが好ましい。壁面54の鏡面は、第1実施形態で説明した金属膜で表面ミラーで形成されている。
【0069】
本実施形態の再帰透過性素子13を採用する光学系では、プロジェクタ20からの投射される光線束が、プロジェクタ20の射出瞳、観察者の観察瞳等の小さい領域を通ることを前提としたものである。そのために、プロジェクタ20の光軸と、空隙群52の同心となる軸が同軸となるように両者が配置される。本実施形態では、前記空隙群52の同心となる軸が再帰透過軸Gとなる。
【0070】
図9(b)は、素子本体41の空隙50を拡大した拡大断面図である。
前記のように光学系が形成された場合、図9(b)に示すように素子本体41の一方の面側から入射した光線が各空隙群52の各空隙50の壁面54(鏡面)で矢印に示されるように反射されて、素子本体41の他方の面から外部へ出る。このようにして、再帰透過性素子13は再帰透過性を示す。
【0071】
本実施形態の再帰透過性素子13も、空間を折り返し、入射した光線の一部を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えず、かつ、結像以前の未実像(光線束)を虚像に転換する新たな光学素子である。この結果、順列組合せによって決まる光学系を構成する要素として新しい要素を付加することができる。
【0072】
(第5実施形態)
次に、第5実施形態を図10(a)、(b)を参照して説明する。本実施形態は、第4実施形態の変形例である。本実施形態では、再帰透過性素子13の素子本体41に対して、円状に形成されるとともに径の異なる空隙60が、複数個同心円状に形成され、前記空隙60の壁面62が鏡面に形成されている。なお、鏡面は、少なくとも、各空隙60を形成する壁面の内、径が大きな方の壁面62に形成されていればよい。
【0073】
前記空隙の径方向の幅は、限定はしないが、mm単位、或いはマイクロ単位の微小な大きさが好ましい。又、隣接する空隙60同士の間隔は、mm単位、或いはマイクロ単位であることが好ましい。壁面62の鏡面は、第1実施形態で説明した金属膜で表面ミラーで形成されている。又、空隙60の一方の開口端側は、素子本体41に積層された透明板64により、閉塞されている。なお、本実施形態では、空隙60の一方の開口端を透明板64により、閉塞したが、素子本体41を挟むようにして、一対の透明板を積層して空隙60の厚み方向に位置する両開口端を閉塞してもよい。
【0074】
本実施形態の再帰透過性素子13を採用する光学系では、第4実施形態と同様にプロジェクタ20からの投射される光線束が、プロジェクタ20の射出瞳、観察者の観察瞳等の小さい領域を通ることを前提としたものである。そのために、プロジェクタ20の光軸と、空隙群52の同心となる軸が同軸となるように両者が配置される。
【0075】
図10(b)は、素子本体41の空隙60を拡大した拡大断面図である。
前記のように光学系が形成された場合、図10(b)に示すように素子本体41の一方の面側から入射した光線が各空隙60の壁面62(鏡面)で矢印に示されるように反射されて、透明板64を介して素子本体41の他方の面から外部へ出る。このようにして、本実施形態の再帰透過性素子13は再帰透過性を示す。 本実施形態の再帰透過性素子13の作用効果は、第4実施形態と同様である。
【0076】
(第6実施形態)
次に、第6実施形態を図11(a)を参照して説明する。なお、本実施形態では請求項6を具体化したものである。本実施形態では、図5(a)、(b)、図6(a)、(b)で説明した、いずれか1つの再帰透過性素子13が曲面化された、すなわち、透明充実体層30と半反射層40とが共に湾曲されている。なお、図11(a)、(b)では、説明の便宜上、再帰透過性素子13の断面図を、図4(a)、(b)と同様に簡略した断面図で示す。
【0077】
本実施形態の再帰透過性素子13は、具体的には図11(a)に示すように半反射層40がプロジェクタ20側に配置されるものである。そして、再帰透過性素子13は、該半反射層40と透明充実体層30が共に外側(すなわち、プロジェクタ20側)向けて湾曲形成されている。この結果、半反射層40の反射面(すなわち鏡面)が凹型となって、内側(観察視点A側)を向き、凹面鏡として機能する。
【0078】
この場合、プロジェクタ20から入射した光線は、再帰反射性素子32で再帰反射された後、この再帰反射により凹面鏡として機能する半反射層40の反射面で反射される。この凹面鏡機能により、虚像の焦点が遠位に移動されるため、観察者は、虚像を広視野で見ることになる。
【0079】
なお、前記曲面化された曲面は、プロジェクタ20の射出瞳と視点入射瞳の光学共役がとりやすい球面、回転双曲面、放物面等が利用可能である。本実施形態での曲面は、焦点位置を遠位(遠方)に移動させる効果があるため、ある画素を構成する交線束中、観察者の観察瞳に入るものが分布している領域では、曲率は等方であることが、結像が乱れなくて好ましい。
【0080】
このように本実施形態では、再帰透過性素子13の透明充実体層30及び半反射層40とが共に同方向に湾曲されていることから、半反射層40を通過した一部の光線が再帰反射性素子32で再帰反射された際、再帰反射された光線が、前記反射面(前記凹面鏡)で反射し、透明充実体層30を通過して観察視点A側の外部に出るようにされている。
【0081】
このため、再帰透過性素子13に入射された未実像(光線束)が、入射された面を通過して、該面の向こう側に通過した際に虚像の焦点位置を遠位に移動させる効果があり、広視野を得ることができる。
【0082】
(第7実施形態)
次に、第7実施形態を図11(b)を参照して説明する。なお、本実施形態は、請求項7を具体化したものである。本実施形態においても、図5(a)、(b)、図6(a)、(b)で説明した、いずれか1つの再帰透過性素子13が、透明充実体層30と半反射層40とが共に湾曲されている。
【0083】
なお、前記曲面化された曲面は、プロジェクタ20の射出瞳と視点入射瞳の光学共役がとりやすい球面、回転双曲面、放物面等が利用可能である。本実施形態での曲面は、焦点位置を遠方に移動させる効果があるため、ある画素を構成する交線束中、観察者の観察瞳に入るものが分布している領域では、曲率は等方であることが、結像が乱れなくて好ましい。
【0084】
本実施形態の再帰透過性素子13は、具体的には、図11(b)に示すように透明充実体層30がプロジェクタ20側に配置されるものである。そして、再帰透過性素子13は、半反射層40及び透明充実体層30が共にプロジェクタ20側へ凸型に湾曲されて、半反射層40の反射面が凸面鏡に形成されている。そして、再帰透過性素子13の凸側をプロジェクタ20に向けて配置された状態で光学系が形成される。
【0085】
この場合、プロジェクタ20から透明充実体層30へ入射した光線が、凸面鏡である反射面で反射して、さらに再帰反射性素子32で再帰反射し、再帰反射した光線の一部が半反射層40を通過して観察視点A側の外部に出る。
【0086】
この凸面鏡機能により、虚像の焦点が遠方に移動されるため、観察者は、虚像を広視野で見ることになる。
(第8実施形態)
次に、図14(a)、(b)を参照して第8実施形態を説明する。本実施形態は、本発明の光学系を頭部搭載型プロジェクタに具体化した実施形態である。
【0087】
図14(a)に示すように、頭部搭載型プロジェクタ100は、メガネフレーム110に設けられている。メガネフレーム110は、一対の再帰透過性素子13を支持する左右一対のリム112と、リム112を連結するブリッジ114と、リム112に対してヒンジ116を介して取付けられたテンプル118とを備える。又、各リム112の前方(観察者が見る方向側)には、ブラケット120を介してプロジェクタ20が取付けられている。プロジェクタ20の取付け位置は、再帰透過性素子13を挟んで観察者の観察視点Aと光学共役な位置に、かつ、観察視点Aから見たときに観察者の視野に入らない位置に配置されている(図14(b)参照)。なお、本実施形態の再帰透過性素子13は、第6実施形態の構成が採用されているが、勿論、再帰透過性素子13の構成としては、第7実施形態の再帰透過性素子13の構成であってもよく、さらに第6、第7実施形態以外の他の実施形態の構成を採用してもよい。
【0088】
このように、本実施形態の頭部搭載型プロジェクタは、使用者の頭部に装着されるメガネフレーム110を支持体として、該メガネフレーム110に光学系が支持されるようにした。そして、本実施形態では、メガネフレーム110(支持体)に対して、再帰透過した光により虚像を前記使用者の眼で見ることが可能に、再帰透過性素子13が配置されている。
【0089】
この結果、本実施形態の頭部搭載型プロジェクタ100は、実像形成のためのプロジェクタを使用するにも関わらず、虚像変換して、スクリーンを不要とすることができる。
なお、前記実施形態を次のように変更して構成することもできる。
【0090】
○ 図5(a)で示された実施形態では再帰透過性素子13の透明充実体層30の表面に再帰反射性素子32としてコーナーキューブプリズムを設けたが、再帰反射性素子32としては、コーナーキューブの代わりに、多数のガラスビーズを図5(b)に示すように一部を埋設する形で透明充実体層30に対して離散的に形成してもよい。このガラスビーズは、屈折率が2前後の光高屈折率が好ましい。又、ガラスビーズの外面には、コーナーキューブの外面に形成された金属薄膜と同材の質金属薄膜を蒸着してコーティング層33を形成する。
【0091】
この場合においても、ガラスビーズが、前記コーナーキューブと同様に光線を再帰反射する。
○ 図5(a)で示された実施形態では、再帰透過性素子13の透明充実体層30の表面に再帰反射性素子32としてコーナーキューブプリズムを設けたが、図6(a)に示すように、コーナーキューブプリズム全体を透明充実体層30内に埋設するようにしてもよい。
【0092】
○ 又、図5(b)で示された実施形態では、再帰透過性素子13の透明充実体層30の表面に再帰反射性素子32として多数のガラスビーズの一部を埋設するようにして離散して配置したが、図6(b)に示すように、ガラスビーズ全体を透明充実体層30内に埋設するようにしてもよい。
【0093】
○ 図4、図5の実施形態において、図4(c)に示すように透明充実体層30を設ける代わりに、再帰反射性素子32を格子状、或いは網状に形成された支持部材70で支持して離散的に配置した状態とし、再帰反射性素子32と半反射層40(ビームスプリッタ)との間は透明層としての空隙層65を形成してもよい。この場合、支持部材70と半反射層40とは適宜の部位間で間隔保持部材80を設けることにより、再帰反射性素子32と半反射層40間に前記空隙層65が形成されるものとする。
【0094】
○ 図7で示された実施形態の再帰透過性素子13では、透孔42の断面形状を直角三角形にしたが、透孔の内面に、コーナーミラーを有するようにすればよいため、透孔42の断面形状は断面直角三角形に限定されるものではなく、断面正方形、或いは断面多角形であって、少なくとも2つの鏡面が互いに直交する断面形状であればよい。
【0095】
○ 図7で示された実施形態の再帰透過性素子13では、素子本体41に空隙として透孔42を設けたが、空隙は透孔42に限定されるものではなく、透孔42の一方の開口端を塞いだ穴としたり、透孔の両方の開口端をそれぞれ透明板で塞いでできた空隙としてもよい。いずれの場合にも、空隙を囲む壁面には、コーナーミラーが形成されているため、図7と同様の作用効果を奏することができる。
【0096】
○ 第6実施形態では、広視野を得るために、再帰透過性素子13を湾曲したが、図示はしないが、図11(a)と反対の構成にして狭視野を得るようにしてもよい。この場合、再帰透過性素子13が平板状のものに比して虚像の焦点位置を近位に移動させ、虚像を大きくすることができる。具体的には、再帰透過性素子13は、半反射層40がプロジェクタ20側に配置されるとともに、半反射層40及び透明充実体層30が共に図11(a)とは反対側、すなわち、内側(観察視点A側)に湾曲形成されている。この結果、半反射層40の反射面(すなわち鏡面)が凸面鏡として機能する。
【0097】
○ 第7実施形態では、広視野を得るために、再帰透過性素子13を湾曲したが、図示はしないが、図11(b)と反対の構成にして狭視野を得るようにしてもよい。この場合、再帰透過性素子13が平板状のものに比して虚像の焦点位置を近位に移動させ、虚像を大きくすることができる。具体的には、再帰透過性素子13は、透明充実体層30がプロジェクタ20側に配置されるとともに、半反射層40及び透明充実体層30が図11(b)とは反対側、すなわち、内側(観察視点A側)に湾曲形成されている。この結果、半反射層40の反射面(すなわち鏡面)が凹面鏡として機能する。
【0098】
○ 第6実施形態及び第7実施形態において、鏡側をフレネル反射鏡(フレネル半透過鏡90)を用いて鏡側を更に微細化してもよい(図13参照)。この場合の微細構造は、物理的な形状と光学的な意味での形状を分けることができるため、設計の自由度を挙げることができる。すなわち、図11(a)、(b)のように半反射層40を曲面鏡にする代わりに、図13に示すように、半反射層(ビームスプリッタ)としてフレネル半透過鏡90を設けても、半反射層40を曲面化した場合と同様の光学的効果、すなわち、光線の散開又は収束を行うことができる。この場合、フレネル半透過鏡90は、微細化された輪帯面90aが形成されているため、各輪帯面90aにおいて、互いに異なる方向に向く再帰透過軸Gを有することになる。
【0099】
○ 図7及び図8に示す第3実施形態では、各コーナーミラー43の交線(再帰透過軸G)が、素子本体41の平面に直交するように配置した(図12(a)参照)。この場合、第3実施形態では平面鏡と同様に、矢印で示されているように、空間は単純に折り返される。なお、図12(a)〜(c)において、再帰透過性素子13は、説明の便宜上、単に直線又は曲線で示されている。
【0100】
この構成に代えて、すなわち、第3実施形態の平板状の素子本体41に変えて、素子本体41に曲面を有するように形成してもよい。この場合、この曲面は、プロジェクタ20の射出瞳と視点入射瞳の光学共役がとりやすい球面、回転双曲面、放物面等が利用可能である。この結果、図12(b)に示すように、例えば素子本体41を曲面としての球面Uを有するようにした場合、その球面Uに垂直に再帰透過軸Gに立ち、外から来た光線は、あたかも球面Uで反射されたかのように光路を持つ。又、内側から(図12(b)において下方から)来た光線の場合も、同様に、球面Uで反射されたかのように光路を持つ。
【0101】
このように、曲面に沿って配置され、再帰透過軸Gが曲面に垂直な再帰透過軸Gを有する複数のコーナーミラー43(コーナーミラーアレイ)は、再帰透過性素子13に入射した光線を再帰透過性素子13の厚み方向を通過させて、入射面とは反対側の側面へ通過させるという意味でその光の進行方向を変えないものとなる。この進行方向は、曲面鏡とは逆になっていることに注意されたい。図12(b)において、点線で示す矢印は、前記曲面鏡の場合に、曲面で反射した光線の反射方向を示している。
【0102】
又、再帰透過性素子13において、図12(c)では図示はしていないが、再帰透過性素子13に設けられたコーナーミラー43を、再帰透過性素子13の入射面の形状とは関係なく、すなわち、入射面が平面であろうが、曲面であろうが、再帰透過軸Gの向く方向を任意の方向に設定してもよい。この場合、フレネルレンズや反射鏡と同様に、物理形状と光学的な意味での形状を分離することが可能となる。
【0103】
○ 第8実施形態では光学系を支持する支持体をメガネフレーム110としたが、支持体はメガネフレーム110に限定されるものではなく、ヘルメットを支持体として、該ヘルメットに、再帰透過性素子13及びプロジェクタ20を取付けてもよい。又、支持体としてはヘルメットの代わりに、ヘッドギヤ、ヘッドバンド等のように頭に取付する部材にしてもよい。
【図面の簡単な説明】
【0104】
【図1】透明板、鏡、再帰反射性素子、再帰透過性素子の折り返しの有無の説明図であり、(a)〜(c)は、それぞれ各部材の斜視図、平面図、側面図。
【図2】再帰反射性素子の折り返しの説明図。
【図3】(a)は、第1実施形態の光学系の説明図、(b)は第2実施形態の光学系の説明図。
【図4】(a)、(b)、(c)は、それぞれ再帰透過性素子13の概略断面図。
【図5】(a)、(b)は、それぞれ再帰透過性素子13の要部断面図。
【図6】(a)、(b)は、それぞれ他の実施形態における再帰透過性素子13の要部断面図。
【図7】第3実施形態の再帰透過性素子13の概略斜視図。
【図8】(a)、(b)は、同じく第3実施形態の再帰透過性素子13における光路の説明図。
【図9】(a)は第4実施形態の再帰透過性素子13の概略斜視図、(b)は同じく光路の説明図。
【図10】(a)は第4実施形態の変形の実施形態の再帰透過性素子13の概略斜視図、(b)は、同じく光路の説明図。
【図11】(a)、(b)は、それぞれ再帰透過性素子13の他の実施形態の概略断面図。
【図12】(a)は、第3実施形態の光路の説明図、(b)、(c)は、他の実施形態の再帰透過性素子13の光路の説明図。
【図13】他の実施形態の概略断面図。
【図14】(a)、(b)は、それぞれ頭部搭載型プロジェクタ100に係る実施形態の平面図、及び光学系の説明図。
【図15】従来の頭部搭載型プロジェクタの概略説明図。
【図16】従来の頭部搭載型プロジェクタの概略説明図。
【図17】従来の頭部搭載型プロジェクタの概略説明図。
【符号の説明】
【0105】
13…再帰透過性素子、20…プロジェクタ、
30…透明充実体層(透明層)、
32…再帰反射性素子、40…半反射層、41…素子本体、
42…透孔(空隙)、50…空隙、52…空隙群、60…空隙、
62…壁面(鏡面)、65…空隙層(透明層)。

【特許請求の範囲】
【請求項1】
映像プロジェクタと、
前記プロジェクタと対向して配置された素子であって、入射光を、該素子の入射面とは反対側の面へ透過させ、その際、再帰透過軸に関して軸対称な方向に変えて射出させる性質を有する素子(以下、再帰透過性素子という)とを備え、
前記プロジェクタからの未実像の入射光を、前記再帰透過性素子を介して再帰透過させることにより、像を形成させることを特徴とする光学系。
【請求項2】
前記再帰透過性素子が、曲面を有するように湾曲されていることを特徴とする請求項1に記載の光学系。
【請求項3】
請求項1又は請求項2に記載の光学系が、使用者の頭部に装着される支持体に設けられ、
前記支持体に対して、前記再帰透過した光により虚像を前記使用者の眼で見ることが可能に、前記再帰透過性素子が配置されていることを特徴とする頭部搭載型プロジェクタ。
【請求項4】
透明層と、該透明層の一方の面、又は前記透明層の内部に設けられた半反射層を有し、
前記透明層の一方の面とは反対側の他方の面、又は前記透明層の内部に、光線を前記半反射層側に反射させる多数の再帰反射性素子を離散的に配置したことを特徴とする再帰透過性素子。
【請求項5】
前記半反射層が湾曲されていることを特徴とする請求項4に記載の再帰透過性素子。
【請求項6】
前記半反射層が凹型に湾曲されて、該半反射層の反射面が凹面鏡に形成され、
前記半反射層を通過して前記再帰反射性素子で反射された光線が、前記反射面で反射し、前記透明層を通過して外部に出ることを特徴とする請求項5に記載の再帰透過性素子。
【請求項7】
前記半反射層が凸型に湾曲されて、該半反射層の反射面が凸面鏡に形成され、
前記透明層へ入射した光線が、該反射面で反射して、さらに該再帰反射性素子で反射し、前記半反射層を通過して外部に出ることを特徴とする請求項5に記載の再帰透過性素子。
【請求項8】
板状の素子本体に対し、複数の空隙が点線状にかつ、円状に配置されており、該空隙群が、複数個同心円状に配置され、前記空隙の壁面が鏡面に形成されていることを特徴とする再帰透過性素子。
【請求項9】
板状の素子本体に、円状に形成されるとともに径の異なる空隙が、複数個同心円状に形成され、前記空隙の壁面が鏡面に形成され、素子本体の厚み方向の少なくとも一端は閉塞されていることを特徴とする再帰透過性素子。
【請求項10】
前記空隙が透孔であることを特徴とする請求項8又は請求項9に記載の再帰透過性素子。
【請求項11】
板状の素子本体に対して、該素子本体の厚み方向に多数の空隙がランダムに配置され、
前記空隙の内面には、互いに直交する第1鏡面と第2鏡面とから構成された2面直交合わせ鏡が形成され、かつ、前記第1鏡面と第2鏡面の交線が該素子本体の厚み方向に向けて配置されていることを特徴とする再帰透過性素子。
【請求項12】
前記空隙が透孔であることを特徴とする請求項11に記載の再帰透過性素子。
【請求項13】
前記板状の素子本体が、曲面を有しており、その曲面の法線方向に前記2面直交合わせ鏡の交線が沿って配置されていることを特徴とする請求項11又は請求項12に記載の再帰透過性素子。
【請求項14】
前記板状の素子本体に、前記2面直交合わせ鏡が配置され、再帰透過軸が場所に応じて設定されていることで、再帰透過性に加えて、光線の散開又は収束の光学特性が付加されることを特徴とする請求項11乃至請求項13のいずれか1項に記載の再帰透過性素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2009−288696(P2009−288696A)
【公開日】平成21年12月10日(2009.12.10)
【国際特許分類】
【出願番号】特願2008−143496(P2008−143496)
【出願日】平成20年5月30日(2008.5.30)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成16〜20年度、文部科学省、地域科学技術振興施策、委託研究(知的クラスター創成事業、岐阜・大垣地域ロボティック先端医療クラスター)、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(304019399)国立大学法人岐阜大学 (289)
【Fターム(参考)】