説明

分割シュラウド型廃棄ノズル

【課題】簡単かつ精巧堅牢な構造を使用してスロート面積及び拡張比率の独立した制御を行うことができる排気ノズルを提供する。
【解決手段】ガスタービンエンジン用のノズル30は、その残余部分に比較して大きい直径のスロートセクションを含むセンタボデー32と、前記センタボデーを囲み、外面とその残余部分に比較して小さい直径の中間セクションを含む内面とを有し、前方及び後方方向に選択的に移動可能である内側シュラウド34と、内側シュラウド34を囲み、センタボデー32に対して前方及び後方方向に移動可能である外側シュラウド36と、センタボデー32に対して前方及び後方方向に前記内側及び外側シュラウド34、36を独立して選択的に移動させるための手段と、を含み、前記センタボデー32、前記内側シュラウド34の内面及び前記外側シュラウド36の内面が、共同して該ノズル30を通る流体流路を形成している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、総括的にはガスタービンエンジン用のノズルに関し、より具体的には可変式収束−発散形ノズルに関する。
【背景技術】
【0002】
広範囲の圧力比(すなわち、ノズルスロート圧力/周囲圧力、すなわち「P8/Pamb」)にわたって作動するガスタービンエンジン用の排気システムは、ノズルスロート面積(「A8」)を調節してエンジンサイクルの要求に適合するようにするために、またノズル拡張比率(すなわち、ノズル出口面積/ノズルスロート面積、すなわち「A9/A8」)を調節して様々な作動ポイントにおいて良好な性能を得るようにするために可変式形態を必要とする。
【0003】
従来技術の排気ノズルには、商用亜音速エンジンに典型的な固定式排気システムと、さらにアフタバーナを使用する超音速軍用機に典型的な可変式排気ノズルとが含まれる。固定式ノズルは、その形態を運動学的に変化させるものではなく、従って広範囲のノズル圧力比(P8/Pamb)にわたって効率的に作動するように設計されていない。
【0004】
従来技術の可変式排気ノズルでは、スロート面積A8及び拡張比率の制御は、一般的にA9/A8比率をA8にリンクさせること(運動学的にリンクした面積比率スケジュール)によって設定されてきた。例えば、円周方向に一連の重合せフラップ及びシールを使用して、A8を設定する収束形流路を形成することができる。類似した重合せフラップ及びシールの組を収束形フラップ及びシールの後端部に結合して、ノズルの発散形部分を設定し、それによってノズルの出口面積A9を形成する。発散形フラップもまた、別個の運動学的部材(例えば圧縮リンク)を介して例えばダクトのようなエンジン排気システムの比較的静止した部分に対して運動学的に連結される。得られたフォー(four)バー・リンク機構(ダクト、収束形フラップ、発散形フラップ、圧縮リンク)は、出口面積A9のノズルスロート面積A8に対する運動学的関係を定め、従ってA8の関数としてA9/A8比率スケジュールを確定する。このことにより、一般的にA8が増大すると増大するようなA9/A8が得られる。この形式のノズル設計は、いくつかの欠点を有する。重合せフラップ及びシール構造のために、作動効率を低下させる多数の漏れ経路が発生し、また必要とする多数の部品により、コスト、重量及び保守作業が増加しかつ信頼性が低下する。さらに、多くのエンジンサイクルにおいて、スケジュールしたA9/A8比率対A8の関係が、エンジンサイクル要求に最適には適合しなくなり、従ってある特定の主要作動ポイントにおいて最高ノズル性能が得られないことになる。
【0005】
独立したA9及びA8制御を可能にする従来技術の重合せフラップ及びシールノズルは存在するが、それらは、依然として非常に複雑でありかつシールが困難である欠点をもつ。
【0006】
平行移動式の輪郭付きシュラウドと固定した内部プラグとを備え、それらによってある程度のA8変化を可能にする排気システムが、提案された。これにより、各A8に対して特有のA9/A8が存在するような「スケジュールした」A9/A8特性が得られる。平行移行式シュラウド設計は、重合せフラップ及びシールノズルよりもはるかに簡単であり、漏れ経路が少なくなり、かつかなり軽量とすることができるが、エンジンサイクルが、所定のノズルスロート面積A8において2つの大きく異なるノズル圧力比(例えば、ほぼ同一のA8における一方の飛行条件でP8/Pamb=2.5及び他方の飛行条件でP8/Pamb=20.0)を必要とする場合に、ノズルは、両ポイントにおいて良好な性能をもたらす形態を達成することができなくなる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】英国特許出願公開第1114478号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
従って、簡単かつ精巧堅牢な構造を使用してスロート面積及び拡張比率の独立した制御を行うことができる排気ノズルに対する必要性が存在する。
【課題を解決するための手段】
【0009】
上述の必要性は本発明によって満たされ、1つの態様によると、長手方向軸線を有するガスタービンエンジン用のノズルを提供し、本ノズルは、長手方向軸線に沿って後方に延びかつその残余部分に比較して大きい直径のスロートセクションを含むセンタボデーと、センタボデーを囲みかつ外面とその残余部分に比較して小さい直径の少なくとも中間セクションを含む内面とを有しかつ長手方向軸線に沿ってセンタボデーに対して前方及び後方方向に選択的に移動可能である内側シュラウドと、内側シュラウドを囲みかつ前方端部、後方端部及び該前方端部から後方端部まで延びる内面を有しかつセンタボデーに対して前方及び後方方向に移動可能である外側シュラウドとを含む。センタボデーに対して前方及び後方方向に内側及び外側シュラウドを独立して選択的に移動させるための手段が、設けられる。センタボデー、内側シュラウドの内面及び外側シュラウドの内面が、共同してノズルを通る流体流路を形成する。
本発明の別の態様によると、長手方向軸線を有するガスタービンエンジンは、センタボデーと、外面とその残余部分に比較して小さい直径の中間セクションを含む内面とを有しかつ長手方向軸線に沿ってセンタボデーに対して前方及び後方位置間で選択的に移動可能である環状の内側シュラウドと、内面及び外面を有する円筒形セクションを有しかつセンタボデーに対して前方及び後方位置間で選択的に移動可能である環状の外側シュラウドと、内側及び外側シュラウドを独立して平行移動させるための手段とを含む。
【0010】
本発明の別の態様によると、長手方向軸線を有するノズルを通る流体流を制御する方法は、長手方向軸線に沿って後方に延びかつその残余部分に比較して大きい直径のスロートセクションを含むセンタボデーを設ける段階と、センタボデーを囲みかつ外面とその残余部分に比較して小さい直径の少なくとも中間セクションを含む内面とを有する内側シュラウドを設ける段階と、内側シュラウドを囲みかつ前方端部、後方端部及び該前方端部から後方端部まで延びる内面を有する外側シュラウドを設ける段階とを含む。
【0011】
センタボデーに対して前方及び後方方向に内側及び外側シュラウドを独立して選択的に平行移動させて、センタボデー及び内側シュラウドが共同してノズルのスロート面積を形成しかつ外側シュラウド及びセンタボデーが共同してノズルの出口面積を形成するようにするための手段を設ける。内側シュラウドを選択的に平行移動させてスロート面積を変化させ、また外側シュラウドを選択的に平行移動させて出口面積のスロート面積に対する比率を変化させる。
【図面の簡単な説明】
【0012】
【図1】ガスタービンエンジンの概略側面断面図。
【図2】本発明によって構成したノズル組立体の部分断面図。
【図3】別の作動構成における、図2のノズル組立体を示す図
【図4】本発明によって構成した別のノズル組立体の部分断面図。
【図5】別の作動構成における、図4のノズル組立体を示す図。
【図6】さらに別のノズル組立体を含むガスタービンエンジンの概略上面図。
【図7】図6のエンジン及びノズル組立体の側面図。
【図8】本発明によって構成したさらに別のノズル組立体の部分断面図。
【発明を実施するための形態】
【0013】
本発明は、添付図面の図と関連して行った以下の説明を参照することによって最もよく理解することができる。
【0014】
様々な図全体を通して同じ参照符号が同じ要素を表す図面を参照すると、図1は、全体を符号10で表した代表的なガスタービンエンジンを示す。エンジン10は、長手方向中心線すなわち軸線Aと該軸線Aの周りで同心にかつ軸線Aに沿って同軸に配置された環状の外側固定ケーシング12とを有する。エンジン10は、直列流れ関係で配置されたファン14、圧縮機16、燃焼器18、高圧タービン20及び低圧タービン22を有する。作動中、圧縮機16からの加圧空気は燃焼器18内で燃料と混合されかつ点火されて、それによって燃焼ガスを発生する。幾らかの仕事量が高圧タービン20によってこれらのガスから取り出され、高圧タービン20は、外側シャフト24を介して圧縮機16を駆動する。次に、燃焼ガスは低圧タービン22内に流入し、低圧タービンは、内側シャフト26を介してファン14を駆動する。航空機の加速度、操作性又は速度を高める必要がある場合にエンジン10の推力を増大させるために、アフタバーナ28又はオーグメンタを随意選択的に設けることができる。
【0015】
エンジン10は、本発明によって構成したノズル30を含む。ノズル30の基本構成部品は、センタボデー32、内側シュラウド34及び外側シュラウド36である。センタボデー32は、エンジン10の長手方向軸線Aに沿って中心を置きかつ後方方向に延びる。センタボデー32は順次に、小さい直径のテーパ状の前方セクション32aと、大きい直径のスロートセクション32bと、直径がテーパ状になって後方向きの円錐形状を形成した後方セクション32cとを含む。センタボデー32は、例えば耐熱性金属合金のような適切な材料で形成される。
【0016】
図2は、ノズル30をより詳細に示した片側断面図である。例示した実施例では、センタボデー32は、中空であり、内側セクション40を囲む外側セクション38を含み、これら両セクションは協働してプレナム42を形成する。プレナム42の前端部は、例えば圧縮機ブリード空気又はファンバイパス空気のような加圧空気源(図示せず)と流れ連通状態になっている。プレナム42の後端部は、出口スロット44で終端しており、この出口スロットにより、プレナム42からの加圧空気を境界層の制御又は冷却のためにセンタボデー32の表面に沿って導くことが可能になる。
【0017】
内側シュラウド34は、センタボデー32を囲む。例示した実施例では、センタボデー32及び内側シュラウド34は回転体であるが、二次元の長円形又は多角形形状を使用することもできる。内側シュラウド34は、前方端部46、後方端部48、内面50及び外面52を有する。内面50は、センタボデー32に面している。内面50は、順番に、前方円筒形セクション50a、小さい直径の中間セクション50b及びテーパ状の後方セクション50cを含む。外面52は、その長さに沿って一定断面の円筒形又はそれ以外の形状である。内側シュラウド34は、例えば公知の耐熱性金属合金のような適切な材料で構成され、また単一の一体形部品として形成することができる。内側シュラウド34を複数の構成部品から組立てた場合、それら構成部品は互いに対して移動する必要がなく、従って、あらゆる構成部品間ギャップは確実にシールすることができる。内側シュラウド34は、例えば油圧式ピストン−シリンダ組立体のような公知の形式の1つ又はそれ以上の内側シュラウド作動装置54に接続され、これらの内側シュラウド作動装置54は、エンジン10の比較的静止した部分に対して固定される。内側シュラウド作動装置により、内側シュラウド34をエンジン10の長手方向軸線Aと平行に選択的に平行移動させることが可能になる。
【0018】
外側シュラウド36は、内側シュラウド34を囲む。例示した実施例では、外側シュラウド36は回転体であるが、二次元の長円形又は多角形形状を使用することもできる。外側シュラウド36は、前方端部56、後方端部58、内面60及び外面62を有する。内面60は、センタボデー32に面している。内面60は、その長さに沿って一定断面積のほぼ円筒形又はそれ以外の形状である。外面62は、外部空気流に曝すことができ、例えばドラグ最少化のような関連した設計要件に適合するような形状の輪郭を有する。外側シュラウド36は、例えば公知の耐熱性金属合金のような適切な材料で構成され、単一の一体形部品として形成することができる。外側シュラウドを複数の構成部品から組立てた場合、それら構成部品は互いに対して移動する必要がなく、従って、あらゆる構成部品間ギャップは確実にシールすることができる。外側シュラウド36は、例えば油圧式ピストン−シリンダ組立体のような公知の形式の1つ又はそれ以上の外側シュラウド作動装置64に接続され、これらの外側シュラウド作動装置64は、エンジン10の比較的静止した部分に対して固定される。外側シュラウド作動装置により、外側シュラウド36をエンジン10の長手方向軸線Aと平行に選択的に平行移動させることが可能になる。
【0019】
内側及び外側シュラウド34及び36の内面50及び60は、センタボデー32の表面と協働してノズル30を通る環状のガス流路「F」を形成する。流路「F」がA8で表したその最少面積を有するノズル30のスロート「T」は、内側シュラウド34の内面50の中間セクション50bとセンタボデー32のスロートセクション分32bとの間に位置する。出口面積、すなわちより正確にはA9iで表した内部出口面積は、外側シュラウドの後方端部58と同一平面内において外側シュラウド36とセンタボデーとの間に位置する。
【0020】
作動中、内側及び外側シュラウド34及び36を独立して平行移動させることにより、スロート面積A8又はノズル拡張比率A9i/A8を所望に応じて変更する。図2は、高速巡航状態におけるノズル30を示す。内側シュラウド34は、その内面50の中間セクション50bがセンタボデーのスロートセクション32bと同一平面内になった長手方向位置に配置されて、最小ノズルスロート面積A8を形成する。外側シュラウド36は、その後方移動限界付近の長手方向位置に配置されて、高いノズル拡張比率A9i/A8を形成する。
【0021】
図3は、離陸又は低騒音亜音速巡航構成におけるノズル30を示す。内側シュラウド34は、その内面50の中間セクション50bがセンタボデー32のスロートセクション32bの前方に移動した前方長手方向位置に配置されて、最大ノズルスロート面積A8を形成する。外側シュラウド36は、その前方移動限界付近の長手方向位置に配置されて、ほぼ単一のノズル拡張比率A9i/A8を形成する。
【0022】
内側及び外側シュラウド34及び36を独立して平行移動させることは、内側及び外側シュラウド作動装置54及び64に対する手動入力によって制御することができる。異なるエンジン作動状態におけるシュラウド位置はまた、例えばエンジン圧力比、圧縮機入口温度、ファン速度、自由ストリームマッハ数などのような幾つかのエンジン作動パラメータの関数としてスケジュールすることもできる。これらのパラメータは、例えばフル・オーソリティ・デジタル電子制御装置(FADEC)(図示せず)のような公知の形式の制御装置に送信し、次にこのデジタル電子制御装置が内側及び外側シュラウド作動装置54及び64に対して位置指令を送信するよにすることができる。
【0023】
図4及び図5は、別のノズル130を示す。ノズル130の基本構成部品は、センタボデー132、内側シュラウド134及び外側シュラウド136である。ノズル130及びその構成部品の構造は、以下に詳細に述べる外側シュラウド136を除いて、構造が上述したノズル30とほぼ類似している。
【0024】
外側シュラウド136は、前方端部156、後方端部158、内面160及び外面162を有する。内面160は、センタボデー132に面している。外側シュラウド136は、その内面160が一定面積の前方セクション164と側面断面で見たときアーチ形輪郭を有する後方セクション166とを含み、該外側シュラウドの直径が前方及び後方端部156及び158における直径よりも前方及び後方端部156及び158間の位置でより大きくなっているという点で、外側シュラウド36とは異なる。例示した実施例では、外側シュラウド136は、回転体であるが、二次元の長円形又は多角形形状を使用することもできる。
【0025】
作動中、内側及び外側シュラウド134及び136を独立して平行移動させることにより、ノズル30に対して上で述べたのと同様に、スロート面積A8又はノズル拡張比率A9i/A8を変更する。図4は、高速巡航状態におけるノズル130を示す。内側シュラウド134は、その内面150の中間セクション150bがセンタボデー132のスロートセクション132bと同一平面内になった後方長手方向位置に配置されて、最小ノズルスロート面積A8を形成する。外側シュラウド136は、その後方移動限界付近の長手方向位置に配置されて、高いノズル拡張比率A9i/A8を形成する。後方セクション166をアーチ形の輪郭にすることにより、内側シュラウド134からの滑らかで損失の少ない流れ移行部が形成される。この別のノズル130はまた、外側シュラウド136の内面160の後方セクション166が、センタボデー132の表面に沿うように排気流を下方に方向転換する傾向をもつというノズル30に優る利点を有する。このことは、センタボデー132からの早期の流れ剥離を防止するのに役立つ。
【0026】
図5は、離陸又は低騒音亜音速巡航状態におけるノズル130を示す。内側シュラウド134は、その内面150の中間セクション150bがセンタボデーのスロートセクション132bの前方に移動した前方長手方向位置に配置されて、最大ノズルスロート面積A8を形成する。外側シュラウド136は、その前方移動限界付近の長手方向位置に配置されて、ほぼ単一のノズル拡張比率A9i/A8を形成する。この位置においては、内側シュラウド134の後方端部に後方向きの不連続部すなわち段部「S」が形成される。この段部は、図5に「B」を付した矢印で示すような補助流体流によって流体的に「埋める」ことができる。この補助流は、その一つを図5に概略的に示した外側シュラウド136内の複数の通路168を通して又は他の適切な手段によってダクト送流することができる。補助流は、ファンバイパス空気、圧縮機ブリード空気、エンジンベイエジェクタ空気又は他の公知の手段から取り入れることができる。
【0027】
図6及び図7は、さらに別のノズル230を組込んだエンジン110を示す。ノズル230の基本構成部品は、センタボデー232、内側シュラウド234及び外側シュラウド236である。ノズル230及びその構成部品の構造は、その全体的構造及び作用が上述したノズル30及び130とほぼ類似している。しかしながら、内側シュラウド234、外側シュラウド236及びセンタボデー232は、前方又は後方方向から見たとき、全て長円形形状である。この形状は、軸対称ノズルと比較して「低可観測(lowobservable)」の利点(例えば、低い音響、レーダ又は赤外線シグネチャ)を有することができる。ノズル230は、本明細書で述べたようにセンタボデーを囲む内側及び外側シュラウドに適応することができる任意の形状とすることができる。
【0028】
内側又は外側シュラウド234及び236、又はその両方はまた、そのそれぞれの後端部に一体形に配置された複数の円周方向すなわち横方向に隣接する鋸歯状のシェブロン170及び172を含むことができる。シェブロン172(シェブロン170も代表して)の各々は、形状が三角形であり、その基部172aが、隣接するシェブロン基部172aと円周方向すなわち横方向に同延に外側シュラウド236に対して固定的に又は一体形に結合された状態になっている。各シェブロン172はさらに、軸方向に対向する頂部172bと、基部172aからそれぞれの頂部172bまで下流後方方向に収束した一対の円周方向すなわち横方向に対向する後縁すなわち側辺部172cとを含む。
【0029】
隣接シェブロン172の後縁172cは、基部172aから頂部172bまで円周方向すなわち横方向に離れるように間隔を置いて配置されて、横方向かつ軸方向に発散したそれぞれのスロットすなわち切欠き部174を形成し、かつノズル230の内部と流れ連通した状態で配置されてスロット174を通して流れを半径方向に流すようになっている。図6及び図7に示した例示的な実施形態では、スロット174は、同様に三角形状であり、三角形シェブロン172と相補形状であり、かつシェブロン基部172aと円周方向に同延のスロット基部174aからシェブロン頂部172bまで軸方向後方に発散している。
【0030】
作動中、これらのシェブロン172は、ノズル排気ストリームを外部空気流と混合するのを促進し、排気ノズル及びプルームによって発生するノイズを低減する。内側シュラウド234がシェブロン170を含む場合には、シェブロン170は、外側シュラウド236が完全前方位置になったときに排気プルーム及び外部空気流と相互作用することになり、排気ノズル及びプルームによって発生するノイズをさらに低減する。
【0031】
図8は、さらに別のノズル330を示す。ノズル330の基本構成部品は、センタボデー332、内側シュラウド334及び外側シュラウド336である。ノズル330及びその構成部品は、その全体的構造及び作用が上述したノズル30及び130とほぼ類似している。ノズル330は、主として内側及び外側シュラウド334及び336が「段付き」構成になっている点で異なる。
【0032】
外側シュラウド336は、後方部分361及び前方部分363を含む内面360を有する。前方部分363は、後方部分361の直径よりも大きい直径を有し、前方及び後方部分361及び363は、ほぼ前方向きの壁365によって結合される。外側シュラウド336は、例えば油圧式ピストン−シリンダ組立体のような公知の形式の1つ又はそれ以上の外側シュラウド作動装置364に接続され、これらの外側シュラウド作動装置364は、エンジンの比較的静止した部分(図示せず)に対して固定される。外側シュラウド作動装置364により、外側シュラウド336をエンジンの長手方向軸線と平行に選択的に平行移動させることが可能になる。
【0033】
内側シュラウド334は、後方部分353と前方部分355とを含む外面352を有する。前方部分355は、後方部分353の直径よりも大きい直径を有し、前方及び後方部分353及び355は、ほぼ後方向きの壁357によって結合される。内側シュラウド334は、例えば油圧式ピストン−シリンダ組立体のような公知の形式の1つ又はそれ以上の内側シュラウド作動装置354に結合され、これらの内側シュラウド作動装置354は、エンジンの比較的静止した部分(図示せず)に対して固定される。内側シュラウド作動装置354により、内側シュラウド334をエンジンの長手方向軸線と平行に選択的に平行移動させることが可能になる。
【0034】
内側及び外側シュラウド334及び336は、内側シュラウド334の外面352の後方部分353が外側シュラウド336の内面360の後方部分361と係合しかつ内側シュラウド334の外面352の前方部分355が外側シュラウド336の内面360の前方部分363と係合するように、重ね合わされる。外側シュラウド336の前方向きの壁365と内側シュラウド334の後方向きの壁357との間にギャップ「G」が形成される。このギャップGにより、内側及び外側シュラウド334及び336を互いに干渉させずに、独立して平行移動させることが可能になる。
【0035】
この段付き構成により、内側及び外側シュラウド34及び336の流路面を所望の半径方向位置に配置することが可能になると同時に、内側及び外側シュラウド作動装置364及び354を異なる半径方向位置に個別に配置することが可能になる。このことは、付加的な設計自由度を可能にし、また他の方法で実現可能なものよりもさらにコンパクトな構成をもたらすことができる。この段付き構成は、上述したノズル30、130又は230のいずれにも組込むことができる。
【0036】
以上は、可変式収束−発散形ノズルについて説明した。本発明の特定の実施形態を説明してきたが、本発明の技術思想及び技術的範囲から逸脱することなく本発明に対して様々な変更を加えることができることは、当業者には明らかであろう。特許請求の範囲内に記載した参照符号は、本発明の技術的範囲を狭めるためものでなく、それらを容易に理解するためのものである。
【符号の説明】
【0037】
10 ガスタービンエンジン
30 ノズル
32 センタボデー
32a センタボデーの前方セクション
32b センタボデーのスロートセクション
32c センタボデーの後方セクション
34 内側シュラウド
36 外側シュラウド
38 センタボデーの外側セクション
40 センタボデーの内側セクション
42 プレナム
44 出口スロット
50 内側シュラウドの内面
50a 内側シュラウド内面の前方セクション
50b 内側シュラウド内面の中間セクション
50c 内側シュラウド内面の後方セクション
52 内側シュラウドの外面
54 内側シュラウド作動装置
60 外側シュラウドの内面
62 外側シュラウドの外面
64 外側シュラウド作動装置。
F 環状のガス流路
T ノズルのスロート

【特許請求の範囲】
【請求項1】
長手方向軸線を有するガスタービンエンジン用のノズル(30)であって、
前記長手方向軸線に沿って後方に延び、その残余部分に比較して大きい直径のスロートセクションを含むセンタボデー(32)と、
前記センタボデーを囲み、外面とその残余部分に比較して小さい直径の少なくとも中間セクションを含む内面とを有し、前記長手方向軸線に沿って前記センタボデー(32)に対して前方及び後方方向に選択的に移動可能である内側シュラウド(34)と、
前記内側シュラウド(34)を囲み、前方端部、後方端部及び該前方端部から後方端部まで延びる内面を有し、前記センタボデー(32)に対して前方及び後方方向に移動可能である外側シュラウド(36)と、
前記センタボデー(32)に対して前方及び後方方向に前記内側及び外側シュラウド(34、36)を独立して選択的に移動させるための手段と、
を含み、
前記センタボデー(32)、前記内側シュラウド(34)の内面及び前記外側シュラウド(36)の内面が、共同して該ノズル(30)を通る流体流路を形成している、
ノズル(30)。
【請求項2】
前記センタボデー(32)が、前方方向に向かってより小さい直径までテーパ状になった、前記スロートセクションの前方に位置する前方セクションと、後方方向に向かってより小さい直径までテーパ状になった、前記スロートセクションの後方に位置する後方セクションとを含む、請求項1記載のノズル(30)。
【請求項3】
前記外側シュラウド(36)の内面が、該外側シュラウド(36)の前方端部から後方端部までほぼ一定の断面積を形成している、請求項1記載のノズル(30)。
【請求項4】
前記外側シュラウドの(36)の内面が、前記前方及び後方端部における該内面の直径が該前方及び後方端部間の位置における該内面の直径よりもより小さくなるようなアーチ形断面輪郭を有する、請求項1記載のノズル。
【請求項5】
前記外側シュラウド(36)の内面に沿ってほぼ後方向きの補助流体流を噴射するための手段をさらに含む、請求項4記載のノズル(30)。
【請求項6】
前記センタボデー、内側シュラウド(34)及び外側シュラウド(36)が、エンジンの長手方向軸線周りの回転体である、請求項1記載のノズル(30)。
【請求項7】
前記内側及び外側シュラウド(34、36)の少なくとも1つが、その後方端部に配置された複数の隣接するシェブロン(170、172)を含む、請求項1記載のノズル(30)。
【請求項8】
前記内側及び外側シュラウド(34、36)の各々が、そのそれぞれの後方端部に配置された複数の隣接するシェブロン(170、172)を含む、請求項6記載のノズル(30)。
【請求項9】
前記内側シュラウド(34)の外面が、後方部分と、前記後方部分の直径よりも大きい直径を有する前方部分と、該外面の前方及び後方部分を結合するほぼ後方向きの壁(357)とを含み、
前記外側シュラウド(36)の内面が、後方部分と、前記後方部分の直径よりも大きい直径を有する前方部分と、該内面の前方及び後方部分を結合するほぼ前方向きの壁(365)とを含み、
前記内側及び外側シュラウド(34、36)が、前記内側シュラウド(34)の外面の後方部分が前記外側シュラウド(36)の内面の後方部分と係合しかつ前記内側シュラウド(34)の外面の前方部分が前記外側シュラウド(36)の内面の前方部分と係合するように配置されている、
請求項1記載のノズル(30)。
【請求項10】
ノズル(30)を通る流体流を制御する方法であって、
長手方向軸線に沿って後方に延び、その残余部分に比較して大きい直径のスロートセクションを含むセンタボデー(32)を設ける段階と、
前記センタボデー(32)を囲み、外面とその残余部分に比較して小さい直径の少なくとも中間セクションを含む内面とを有する内側シュラウド(34)を設ける段階と、
前記内側シュラウド(34)を囲み、前方端部、後方端部及び該前方端部から後方端部まで延びる内面を有する外側シュラウド(36)を設ける段階と、
前記センタボデー(32)に対して前方及び後方方向に前記内側及び外側シュラウド(34、36)を独立して選択的に平行移動させて、前記センタボデー及び内側シュラウド(34)が共同して前記ノズル(30)のスロート面積を形成しかつ前記外側シュラウド(36)及びセンタボデーが共同して前記ノズル(30)の出口面積を形成するようにするための手段を設ける段階と、
前記内側シュラウド(34)を選択的に平行移動させて前記スロート面積を変化させる段階と、
前記外側シュラウド(36)を選択的に平行移動させて前記出口面積の前記スロート面積に対する比率を変化させる段階と、
を含む方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−52547(P2012−52547A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−223001(P2011−223001)
【出願日】平成23年10月7日(2011.10.7)
【分割の表示】特願2005−147696(P2005−147696)の分割
【原出願日】平成17年5月20日(2005.5.20)
【出願人】(390041542)ゼネラル・エレクトリック・カンパニイ (6,332)