説明

加熱処理時の到達温度評価方法

【課題】複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、部材の到達温度を正確且つ容易に評価することができる加熱処理時の到達温度評価方法を提供する。
【解決手段】複数の部材1を積み重ねた状態でこの部材1に加熱処理を施す。互いに重なり合う前記部材1の間にガラス粉体2を介在させる。加熱処理後の前記ガラス粉体2の溶着の有無を、ガラス粉体2が配置されている位置における加熱処理時の部材の到達温度の指標とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の部材が積み重ねられた状態で、この部材に加熱処理が施される場合に、加熱処理時の部材の到達温度を評価する方法に関する。
【背景技術】
【0002】
石綿スレートや石綿セメント板などの、アスベスト(石綿)を含有する部材の廃棄にあたっては、アスベストの無害化が必要とされる。これらの部材におけるアスベストの無害化のためには、主として加熱処理が採用されている。すなわち、これらの部材が加熱されることで、この部材中のアスベストが熱変性し、無害化する。アスベストは針状結晶を有することで障害を引き起こすものであるが、アスベストが一定温度以上まで加熱されると結晶性が変性して無害化することが知られている(特許文献1,2等参照)。
【0003】
石綿スレートや石綿セメント板などの部材に加熱処理が施される場合には、処理効率向上の観点から、複数の部材が積み重ねられた状態で加熱処理が施されることが一般的である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平3−60789号公報
【特許文献2】特開平7−171536号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
複数の部材が積み重ねられる場合、これらの部材が加熱されても、部材内の温度が均一化することは難しい。特にアスベストを含有する部材では、アスベスト自体が高い断熱性を有し、しかもこの部材がセメント硬化物である場合には部材に含まれているセメントや充填材なども熱伝導性が低い材料であるため、温度の不均一が生じやすい。加熱処理中の部材に、その温度がアスベストの変性温度よりも低くなる箇所が生じると、その箇所におけるアスベストが無害化されなくなってしまう。このため、部材の加熱処理時の到達温度の確認が重要となる。
【0006】
加熱処理時の到達温度の評価にあたっては、積み重ねられている部材同士の間の位置で部材の温度を評価する必要がある。このような位置では、熱が充分に伝達されず、到達温度が低くなる可能性が高い。また、マイクロ波発振により部材の内部を充分に加熱することも考えられるが、この場合も実際の部材の内部の温度を評価する必要がある。
【0007】
温度の評価方法としては、高温加熱処理時の温度評価にしばしば採用されているリファサーモ、ゼーゲルコーン、シース熱電対等を使用した方法が、まず考えられる。
【0008】
しかし、リファサーモは、相当の時間加熱がされなければ温度の評価が困難であること、並びに部材との間で反応が生じるおそれがあるためリファサーモと部材との間にアルミナ板等を介在させるなどの必要が生じることから、非常に使い勝手が悪い。
【0009】
ゼーゲルコーンは、その形状のため、部材同士の間には配置することは困難である。
【0010】
シース熱電対は、ローラハースキルンなどの移動式トンネル炉での高温加熱処理においては、部材と共に移動させることが困難である。また、マイクロ波発振によって部材が加熱される場合にはマイクロ波対策が必要となるため、常時計測は困難である。
【0011】
また、放射温度計を使用した温度測定も考えられる。放射温度計には、接触式の放射温度計と、非接触式の放射温度計とがある。
【0012】
しかし、接触式の放射温度計は、シース熱電対の場合と同様に、部材と共に移動させることが困難である。また、非接触式の放射温度計では、測定可能な箇所が制限されるため、積み重ねられている部材の内部の温度を測定することはできない。
【0013】
このように既存の温度測定方法による部材の到達温度の評価には、大きな制約が伴ってしまう。
【0014】
本発明は上記事由に鑑みてなされたものであり、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、部材の到達温度を正確且つ容易に評価することができる加熱処理時の到達温度評価方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明に係る加熱処理時の到達温度評価方法では、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、互いに重なり合う前記部材の間にガラス粉体を介在させ、加熱処理後の前記ガラス粉体の溶着の有無を、ガラス粉体が配置されている位置における加熱処理時の部材の到達温度の指標とする。
【0016】
本発明においては、互いに重なり合う前記部材の間に、互いに軟化温度の異なる複数種の前記ガラス粉体を介在させてもよい。
【0017】
本発明においては、前記ガラス粉体の平均粒径が1〜1000μmの範囲であってもよい。
【発明の効果】
【0018】
本発明によれば、複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、部材の到達温度を正確且つ容易に評価することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施の形態の一例を示す図であり、(a)は複数の部材から構成される積載物を示す正面図、(b)は部材の加熱処理工程を示す概略図である。
【図2】実施例における試験方法を説明する図であり、(a)は試験用の積載物の正面図、(b)は(a)に示される試験用の積載物から部材を1枚除いた状態を示す平面図である。
【発明を実施するための形態】
【0020】
部材1としては、アスベストを含有する部材1が挙げられるが、これに限定されるものではない。アスベストを含有する部材1の具体例としては、建築資材である石綿スレート、石綿セメント板、石綿セメントサイディングなどが挙げられる。
【0021】
加熱処理の前に、図1(a)に示されるように、複数の部材1が積み重ねられる。以下、この積み上げられた複数の部材1からなる集合を、積載物3とよぶ。一つの積載物3を構成する部材1の数は、加熱炉4の能力や処理効率等を考慮して適宜決定されるものであって、特に制限されない。
【0022】
加熱処理の前に、この積載物3における、互いに重なり合う部材1同士の間に、ガラス粉体2を介在させる。積載物3を構成する部材1の数が三以上である場合には、互いに重なり合う全ての部材1同士の間にガラス粉体2が介在しても、適宜選択される任意の部材1同士の間のみにガラス粉体2が介在してもよい。更に、ガラス粉体2が配置されている部材1同士の間では、ガラス粉体2が一箇所のみに配置されていてもよく、複数箇所に配置されていてもよい。積載物3におけるガラス粉体2が配置される箇所としては、積載物3における到達温度の確認がされるべき位置が、適宜選択される。
【0023】
部材1同士の間には、まとまった量のガラス粉体2が密集した状態で配置されていることが好ましい。一箇所に配置されるガラス粉体2の量は0.5〜5.0gの範囲であることが好ましい。
【0024】
このようにガラス粉体2が配置された積載物3に加熱処理が施されると、軟化点以上に加熱されたガラス粉体2は溶融後に固化し、ガラス粉体2中の粒子同士が溶着する。一方、軟化点まで加熱されなかったガラス粉体2の粒子には溶着が認められることはない。このため、加熱処理後の積載物3におけるガラス粉体2の粒子同士の溶着の有無が確認されれば、このガラス粉体2が配置されていた箇所の到達温度が、ガラス粉体2の軟化点以上であるか否かが、容易に確認される。すなわち、ガラス粉体2の溶着の有無が、ガラス粉体2が配置されている位置における加熱処理時の部材1の到達温度の指標となる。
【0025】
ガラス粉体2の平均粒径は、1〜1000μmの範囲であることが好ましい。この範囲において、ガラス粉体2の溶着の有無の判別が容易になる。尚、この平均粒径は、レーザ回折・散乱法により測定されるメディアン径である。ガラス粉体2の粒径が大きすぎると、粒子間の接触が少なくなるなどして、粒子間の溶着の確認が難しくなることがある。一方、ガラス粉体2の粒径が小さすぎると、ガラス粉体2が部材1からの荷重によって固められてしまうことで、粒子間の溶着の確認が難しくなることがある。
【0026】
一つの積載物3中に、互いに軟化点が異なる複数種類のガラス粉体2が配置されてもよい。この場合において、加熱処理後に溶着が認められるガラス粉体2と溶着が認められないガラス粉体2とが存在すれば、到達温度は、溶着が認められるガラス粉体2の軟化点以上であり、且つ溶着が認められないガラス粉体2の軟化点未満であると、評価される。溶着が認められるガラス粉体2が配置されている箇所と、溶着が認められないガラス粉体2が配置されている箇所とは一致し得ないが、これらのガラス粉体2が、積載物3中において加熱処理時の到達温度が同程度であると予測される箇所にそれぞれ配置されていれば、正確な到達温度の評価が可能となる。
【0027】
本実施形態による積載物3中における到達温度の評価は、例えば部材1の加熱処理条件を決定するための予備試験において適用される。すなわち、例えば予備試験において部材1の加熱処理条件が種々変更される共に各条件において積載物3中における到達温度が評価されることで、その結果に基づいて適当な加熱条件が決定される。
【0028】
加熱処理条件が決定された後にも、部材1の加熱処理時において、本実施形態による積載物3中における到達温度の評価が適用され得る。この場合、加熱処理後の部材1に、必要とされる条件で加熱処理が施されたか否かが容易に確認される。
【0029】
本実施形態による加熱処理時の到達温度評価方法における部材1の種類は、上記のとおり特に制限されないが、本方法は特にアスベストを含有する部材1に無害化のための加熱処理が施される場合において、好適に適用される。本実施形態では積載物3内の任意の位置の到達温度が一定温度以上であるか否かが容易に評価されるため、部材1の無害化のため加熱処理のように部材1全体が一定以上の温度に加熱される必要があり、且つ簡便で効率のよい処理が求められる場合に好適である。更に、ガラス粉体2の軟化点は650〜1000℃の範囲で調整可能であり、本実施形態による到達温度の評価方法は、このような温度範囲における到達温度の評価に好適である。この温度範囲は、アスベストの結晶性が変性する温度と重なるため、この点からも、本実施形態は、アスベストの確実な無害化のための部材1の到達温度の評価に好適である。更に、ガラス粉体2の組成の変更によりガラス粉体2の軟化点が調製されたり、軟化点の異なる複数種のガラス粉体2が用いられたりすることで、到達温度の精密な評価が可能となる。
【0030】
図1(b)は、アスベストを含有する部材1の無害化のための加熱処理に使用される加熱炉4の一例を、概略的に示す。本実施形態による加熱処理時の到達温度評価方法は、例えばこのように加熱炉4によって部材1に加熱処理が施される場合に、適用される。
【0031】
この加熱炉4は、一端に入口41、他端に出口42をそれぞれ備える、細長いトンネル炉である。
【0032】
この加熱炉4による加熱処理の前に、既述のとおり複数の部材1は予め積み重ねられることで積載物3とされると共に、この積載物3において、互いに重なり合う部材1同士の間に、ガラス粉体2が配置される。加熱処理時には、積載物3が入口41から加熱炉4内に導入され、コンベアなどの搬送装置の上で一定速度で送られ、加熱炉4内を通過した後に、出口42から加熱炉4外へ送り出される。
【0033】
加熱炉4内は、入口41側から順に、第1加熱ゾーン43、第2加熱ゾーン44、第3加熱ゾーン45、及び冷却ゾーン46に区切られている。各ゾーン間は、カーテンなどで仕切られてもよく、或いは仕切られていなくてもよい。
【0034】
第1乃至第3の加熱ゾーン43,44,45内にはそれぞれ、外部加熱手段と内部加熱手段が設けられている。外部加熱手段は、それ自体が熱を放出することによって、部材1に外側から熱を加えて、部材1を外部から加熱させる手段であり、その具体としては電気ヒータなどのヒータが挙げられる。内部加熱手段は、それ自体が熱を放出することはなく、部材1を内部から加熱させる手段であり、その具体例としてマイクロ波発振器が挙げられる。マイクロ波発振器が使用されると、マイクロ波(高周波)による高周波誘電加熱によって部材1自体が発熱し、部材1が内部から加熱される。マイクロ波の周波数としては、日本の電波法で許可されている915MHz帯、及び2.45GHz帯が挙げられる。
【0035】
部材1の加熱処理にあたっては、積載物3が入口41から加熱炉4内に導入され、第1加熱ゾーン43、第2加熱ゾーン44、第3加熱ゾーン45で、順次加熱された後、冷却ゾーン46で冷却され、更に出口42から外部を送り出される。
【0036】
例えば第1加熱ゾーンでは、部材1が加熱されることにより、部材1中の自由水及び結晶水が飛散する。第1加熱ゾーン43では内部加熱手段が比較的小さな出力で作動すると、部材1の内部での昇温速度が緩やかになり、このため部材1から自由水や結晶水が徐々に蒸発するようになる。自由水とは、部材1に取り込まれている、結露水、気中水分、雨水等や、水硬反応により部材1が作製される場合の反応の余剰水などを指す。これにより部材1の内部での自由水及び結晶水の急激な蒸発が抑制され、このような急激な水の蒸発による部材1の爆裂が抑制される。
【0037】
第2加熱ゾーンで部材1が更に加熱される。第2加熱ゾーンでは例えば内部加熱手段の出力が第1加熱ゾーンよりも高くされることで、部材1の内部の温度上昇が大きくなり、部材1の内部と表面の温度とが近づけられる。
【0038】
第3加熱ゾーンでは、部材1がアスベストの結晶性が変性する温度まで加熱される。これにより、部材1の無害化がなされる。
【0039】
尚、図1(b)に示される加熱炉4は、内部が複数の加熱ゾーンに区切られているが、加熱炉4は複数の加熱ゾーンに区切られていなくてもよい。また、加熱炉4が加熱手段として外部加熱手段と内部加熱手段のうち、外部加熱手段のみを備えていてもよく、内部加熱手段のみを備えていてもよい。
【実施例】
【0040】
以下に、本実施形態による到達温度の評価方法の有用性を明らかにするための実施例を示す。尚、以下の実施例は、本実施形態による到達温度の評価方法の具体的な適用例を示すものではない。
【0041】
[試験例1]
部材として、アスベストを含有する化粧スレート(カラーベスト(登録商標)の従来品)の廃材を用意した。
【0042】
ガラス粉体2として、次の三種類を用意した。尚、軟化点は、示差熱分析装置(DTA)により測定した値である。
ガラス粉体A:奥野製薬工業株式会社製の試作G3−3545、軟化点770℃、平均粒径3μm。
ガラス粉体B:奥野製薬工業株式会社製、品番GF5770、軟化点740℃、平均粒径3μm。
ガラス粉体C:奥野製薬工業株式会社製の試作G3−3855、軟化点669℃、平均粒径3μm。
【0043】
図2に示すように、三つの部材11,12,13を積み重ねて積載物3を構成した。積載物中の下から二段目の部材12は、その中心線で切断して二つの部分121,122に分割し、この二つの部分121,122の間にはシース熱電対5を配置した。二段目の部材12の上には、ガラス粉体2(ガラス粉体A、ガラス粉体B及びガラス粉体C)を、それぞれ1.5〜2.0gの範囲に収まるように配置した。各ガラス粉体2は、図2(b)に示されるように、二段目の部材の上のそれぞれ別々の位置に、密集させて配置した。この各ガラス粉体2を間に介在させて、図2(a)に示されるように二段目の部材12の上に三段目の部材13を重ねた。
【0044】
この積載物3を、図2(a)に示すようにるつぼ6で支持して電気炉内に配置し、シース熱電対5による温度が目標温度に達するまで加熱した。目標温度は、650℃、700℃、750℃、及び800℃及び850℃とした。
【0045】
加熱処理後の積載物3を電気炉から取り出し、三種類の各ガラス粉体2の外観を目視で観察し、粒子同士の溶着が認められる場合を「溶着あり」、粒子同士の溶着が認められない場合を「溶着なし」と評価した。その結果を、下記表1に示す。
【0046】
【表1】

【0047】
表1に示されるように、ガラス粉体2における溶着の有無、及びこのガラス粉体2の軟化点は、設定温度の値とよく相関している。これにより、本実施形態による到達温度の評価方法によって、積載物3中の部材1の到達温度が正確に評価可能なことが、確認できた。
【0048】
[試験例2]
下記の八種類のガラス粉体2を用意した。
ガラス粉体D:奥野製薬工業株式会社製の試作品、軟化点863℃、平均粒径10μm。
ガラス粉体E:日硝マテリアル株式会社製、品番E200、軟化点847℃、平均粒径20μm。
ガラス粉体F:奥野製薬工業株式会社製の試作品、軟化点853℃、平均粒径30μm。
ガラス粉体G:奥野製薬工業株式会社製の試作品、軟化点884℃、平均粒径50μm。
ガラス粉体H:奥野製薬工業株式会社製の試作品、軟化点847℃、平均粒径70μm。
ガラス粉体I:日硝マテリアル株式会社製、品番E−48−80、軟化点847℃、平均粒径270μm。
ガラス粉体J:日硝マテリアル株式会社製、品番E22−80、軟化点847℃、平均粒径420μm。
ガラス粉体K:日硝マテリアル株式会社製、品番E16−18、軟化点847℃℃、平均粒径1230μm。
【0049】
各ガラス粉体2を用い、試験例1と同じ手法により、部材1に加熱処理を施した。但し、加熱処理時のシース熱電対5による設定温度は950℃とした。
【0050】
加熱処理後の積載物3を電気炉から取り出し、各ガラス粉体2の外観を目視で観察した。その結果、ガラス粉体D〜Jでは、粒子同士の溶着が速やかに確認できた。一方、平均粒径が1000μmより大きいガラス粉体Kの場合では、粒子同士が溶着していたが、それを確認するために、ガラス粉体D〜Jの場合よりも長い時間を要した。
【符号の説明】
【0051】
1 部材
2 ガラス粉体

【特許請求の範囲】
【請求項1】
複数の部材を積み重ねた状態でこの部材に加熱処理を施すにあたり、互いに重なり合う前記部材の間にガラス粉体を介在させ、加熱処理後の前記ガラス粉体の溶着の有無を、ガラス粉体が配置されている位置における加熱処理時の部材の到達温度の指標とする、加熱処理時の到達温度評価方法。
【請求項2】
互いに重なり合う前記部材の間に、互いに軟化温度の異なる複数種の前記ガラス粉体を介在させる請求項1に記載の加熱処理時の到達温度評価方法。
【請求項3】
前記ガラス粉体の平均粒径が1〜1000μmの範囲である請求項1又は2に記載の加熱処理時の到達温度評価方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2011−214998(P2011−214998A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−83340(P2010−83340)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(503367376)ケイミュー株式会社 (467)
【Fターム(参考)】