説明

勾配相互接続部を有する固体酸化物型燃料電池(solidoxidefuelcell、SOFC)装置

【課題】固体酸化物燃料電池(solid oxide fuel cell、SOFC)装置を提供する。
【解決手段】勾配相互接続部を有するSOFC装置が提供される。本装置は、以下の構成素子からなる。第一勾配相互接続部は、互いに向かい合う第一と第二表面を有し、第一トレンチが第一勾配相互接続部の第一表面上に形成され、第二トレンチが第一勾配相互接続部の第二表面上に形成される。相互接続トンネルは、第一勾配相互接続部中に形成され、第一と第二トレンチを接続する。第一多孔導電ディスクが第一トレンチ中に設置されて、一部が、第一勾配相互接続部の第一表面から突出する。第一密封層が第一勾配相互接続部の第一表面上に設置されて、第一トレンチを囲繞する。膜・電極一体構造MEAが、第一勾配相互接続部の第一表面上に形成され、第一多孔導電ディスクと第一密封層と接触する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池機器に関するものであって、特に、勾配相互接続部を有する固体酸化物型燃料電池(solid oxide fuel cell、SOFC)装置に関するものである。
【背景技術】
【0002】
低温で動作する固体高分子型燃料電池(proton exchange membrane fuel cells 、PEMFC) 、或いは、直接メタノール型燃料電池(direct methanol fuel cell 、DMFC) 等の燃料電池、及び、高温で動作する溶融炭酸塩型燃料電池(molten carbonates fuel cells 、MCFC) 、及び、固体酸化物型燃料電池(solid oxide fuel cells、SOFC)等の燃料電池が既に開発されている。SOFCの長所は、電解質が固体で形成されるので、低汚染、高エネルギー変換効率(high energy conversion efficiency)で、電解質蒸発(electrolyte evaporation)、漏れ(leakage)、腐蝕(corrosion)がないことである。よって、SOFCの動作寿命は長い。
【0003】
SOFCは、陽極(anode)、陰極(cathode)、固体酸化物電解質(solid oxide electrolyte)、及び、相互接続板(interconnect plate) (又は、バイポーラ板(bipolar plate)、或いは、相互接続とも称される)からなる。相互接続板はSOFCの鍵となる要素で、材料はセラミックか金属である。相互接続板は、二つの近接する単一セルユニットの陰極と陽極を接合し、又、物的障壁となり、SOFCの陰極端の還元環境から、陰極電極中の材料を保護する。同様に、相互接続板は、SOFCの陽極端の酸化環境から、陽極電極材料を保護する。
【0004】
主に、鉄ベース材料等の材料からなる金属相互接続板がSOFCに用いられる。LaCrO3 等のセラミック酸化物が早期の相互接続板に用いられ、高い動作温度を可能にしていたが、LaCrO3 は、鉄ベースの材料と比較すると、高価で、加工しにくく、延性に乏しい。
【0005】
よって、現在は、鉄ベースの材料がSOFCに用いられる。しかし、鉄ベースの材料とイットリア安定化ジルコニア(yttria-stabilized zirconia 、YSZ)の固体酸化物電解質との間に、セラミック/鉄の界面の接合問題が存在し、固体酸化物電解質の辺縁において、水素と酸素との混合が起こってしまい、これにより、SOFCの密封に影響を与える。また、鉄ベースの材料は、空気中の高温で酸化される。
【0006】
更に、SOFCの高い動作温度と快速な温度サイクリングの問題により、SOFCが高い熱応力を受ける。故に、SOFC中の固体酸化物電解質、電極、及び、相互接続板などの素子間の異なる材料の接合は、高温度動作と温度サイクリング動作下で、異なる材料間の接合状況の機械性質の差異により熱応力を生成し、この熱応力が、SOFC内の素子を破裂させたり、SOFCの機械構造の整合性を破壊し、SOFCの反応ガスの漏れが発生する。
【0007】
よって、従来の固体酸化物電解質と相互接続板とを用いることにより生じる、密封問題、高動作温度での酸化問題、機械構造整合性の問題を解決するために、SOFCの構造を改善する必要がある。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、勾配相互接続部を有する固体酸化物燃料電池(solid oxide fuel cell、SOFC)装置とその製造方法を提供し、上述の問題を解決することを目的とする。
【課題を解決するための手段】
【0009】
一具体例によると、勾配相互接続部を有する固体酸化物燃料電池装置は、以下の構成要素からなる。第一勾配相互接続部は、互いに向かい合う第一、及び、第二表面を有し、第一トレンチが第一勾配相互接続部の第一表面上に形成され、第二トレンチが、第一勾配相互接続部の第二表面上に形成される。相互接続トンネルが、第一勾配相互接続部中に形成され、第一と第二トレンチを接続する。第一多孔導電ディスクは、第一トレンチ中に位置し、一部が第一勾配相互接続部の第一表面から突出する。第一密封層は、第一勾配相互接続部の第一表面上に形成され、第一トレンチを囲繞する。膜・電極一体構造(membrane electrode assembly、MEA)は、第一勾配相互接続部の第一表面上に形成され、MEAは、互いに向かい合う第一、及び、第二表面を有する電解質層と、第一表面上に位置する第一電極と、第二表面上に位置する第二電極と、からなり、電解質層の第一表面は第一密封層と接触し、第一電極は第一多孔導電ディスクと接触する。
【0010】
他の具体例によると、SOFC装置は、更に、以下の構成要素からなる。第二勾配相互接続部は、電解質層の第二表面に位置し、互いに向かい合う第三、及び、第四表面を有し、第三トレンチが第二勾配相互接続部の第三表面上に形成され、第四トレンチが、第二勾配相互接続部の第四表面に形成され、第二相互接続トンネルが、第二勾配相互接続部中に形成され、第三と第四トレンチを接続する。第二多孔導電ディスクは、第三トレンチ中に位置し、一部が第二勾配相互接続部の第三表面から突出する。第二密封層は、第二勾配相互接続部の第三表面上に位置し、第三トレンチを囲繞し、電解質層の第二表面は第二密封層に接触し、第二電極は第二多孔導電ディスクに接触する。
【発明の効果】
【0011】
公知の金属/セラミック接合問題、及び、高い動作温度下での酸化問題を防止し、また、構造的完全性が維持され、湾曲や破裂が生じない。
【図面の簡単な説明】
【0012】
【図1】本発明の具体例による勾配相互接続部を製造する方法の断面図である。
【図2】本発明の具体例による勾配相互接続部を製造する方法の断面図である。
【図3】本発明の様々な具体例による勾配相互接続部の立体図である。
【図4】本発明の様々な具体例による勾配相互接続部の立体図である。
【図5】本発明の具体例によるSOFCを製造する方法の断面図である。
【図6】本発明の具体例によるSOFCを製造する方法の断面図である。
【図7】本発明のもう一つの具体例によるSOFCの断面図である。
【図8】本発明のもう一つの具体例によるSOFCを製造する方法の断面図である。
【図9】本発明のもう一つの具体例によるSOFCを製造する方法の断面図である。
【図10】本発明のもう一つの具体例によるSOFCの断面図である。
【図11】本発明の更にもう一つの具体例によるSOFCの断面図である。
【発明を実施するための形態】
【0013】
本発明のSOFC装置とその製造方法の様々な具体例は、図1〜図11を参照しながら説明する。
【0014】
図1と図2で、勾配相互接続部の製造方法が説明される。勾配相互接続部は本発明のSOFC装置に適用される。
【0015】
図1のように、グラファイト等の材料からなるモールド100が提供される。次に、複数の勾配サブレイヤー102、104、106、及び、108が提供され、下から上にモールド100中にスタックされる。モールド100中に提供された勾配サブレイヤーの数量は、図1の4個に限定されず、必要に応じて増減できる。
【0016】
具体例中、サブレイヤー102、104、106、及び、108を形成する材料は、テープキャスティング(tape-casting)、プラズマスプレイ(plasma spraying)、及び、スクリーンプリント(screen-printing)等の湿式処理方法を用いて、下から上に、モールド100中にスタックされる。勾配サブレイヤー102、104、106、及び、108を形成する材料は、様々な含量のセラミック材料、及び、ニッケルベースの超合金である。
【0017】
勾配サブレイヤー104、106、及び108中のセラミック材料の含量は、勾配サブレイヤー104から勾配サブレイヤー108に増加し、勾配サブレイヤー104、106、及び、108中のニッケルベースの超合金の含量は、勾配サブレイヤー108から勾配サブレイヤー104に増加する。勾配サブレイヤー102、104、106、及び 、108の形成中、材料の含量は適時変更し、後述する湿式処理の後、各勾配サブレイヤー中の有機材料を除去するために、乾燥や焼結等の追加のプロセスが実行される。
【0018】
次に、温度約1000℃〜1300℃、且つ、 窒素雰囲気下で、圧縮プロセス110が実行され、モールド100内の勾配サブレイヤー102、 104、106、及び、108を約30分間熱圧縮し、勾配サブレイヤー102、104、106、及び、108が接合され、勾配相互接続部(濃度勾配を有する相互接続部)140を形成する。勾配相互接続部140は、厚さTが約1〜4mmで形成される(図2で示される)。勾配相互接続部140中の勾配サブレイヤー108は、セラミック含量が50vol%以上で、ニッケルベースの超合金含量は50vol%以下である。勾配サブレイヤー102は、50〜100%のニッケルベースの超合金、30〜40vol%の鉄ベースの鋼鉄と0〜20vol%のセラミックからなる。
【0019】
勾配サブレイヤー108は、50vol%以上のセラミック含量で形成され、勾配サブレイヤー108は非導電で、他の勾配サブレイヤー106、104、及び、102は、50vol%以下のセラミック含量、或いは、0vol%のセラミック含量で形成される。勾配サブレイヤー106、104、及び 、102は導電サブレイヤーである。
【0020】
具体例中、勾配 サブレイヤー102、104、106、及び、108の製造に適するニッケルベースの超合金として、例えば、Inco625、Inco600、或いは、Inco601があり、勾配サブレイヤー102、104、及び、106の製造に適したセラミック材料は、例えば、SiC、TiN、及び、BNの導電セラミック、ナノAl2O3、イットリア安定化ジルコニア(たとえば、8Y-ZrO2及び3Y-ZrO2)、Bi2O3、MnO、バリウムアルミノケイ酸塩((barium aluminosilicate)(たとえば、BaAl2Si2O8)、ケイ酸塩ガラス(silicate glass )、或いは、二酸化チタン(titanium dioxide、TiO2)がある。鉄ベースの鋼鉄がニッケルベースの超合金に加えられて、熱応力作用を調整する。材料の組成は以下の通りである。
【0021】
Inco625は、61wt%のNi、21.5wt%のCr、2.5wt%のFe、0.2wt%のMn、0.2wt%のSi、9wt%のMo、及び、3.6wt%のNbからなる。
Inco600は、75wt%のNi、 15.5wt%のCr、8wt%のFe、0.5wt%のMn、0.2wt%のSiからなる。
Inco601は、60.5wt%のNi、23wt%のCr、14.1wt%のFe、0.5wt%のMn、0.2wt%のSi、1.4wt%のAlからなる。
イットリア安定化ジルコニアは、8wt%のY2O3-ZrO2 、或いは、3wt%のY2O3-ZrO2からなる。
バリウムアルミノケイ酸塩は、BaAl2Si2O8からなる。
ケイ酸塩ガラスは、0〜20wt%Li2O、 Na2O、 K2O、或いは、Ba2O3がドープされたBaAl2Si2O8からなる。
鉄ベースの鋼鉄は、純鉄、304SS、410SS、430SSからなる。
【0022】
図2中、勾配相互接続部140はモールド100から分離され、その後、機械プロセスが勾配相互接続部140上で実行される。例えば、回転、フライス、或いは、研磨などの機械プロセス180が勾配サブレイヤー108の表面170上で実行され、トレンチ185が勾配サブレイヤー108と106中に形成される。トレンチ185は、深さd1が約0.2〜0.8mmである。次に、回転、フライス、或いは、研磨などの他の機械プロセス190が勾配サブレイヤー102の表面160上で実行されて、勾配サブレイヤー102中にトレンチ195を形成する。トレンチ195は、深さd2が約0.2〜0.8mmである。次に、ドリル等の機械プロセス200が、トレンチ195により露出した勾配サブレイヤー102で実行されて、勾配サブレイヤー102、104、106と108を通過する相互接続トンネル205を形成する。相互接続トンネル205は、勾配サブレイヤー108中のトレンチ185と、勾配サブレイヤー102中のトレンチ195を接続する。
【0023】
この具体例中、トレンチ185は、勾配相互接続部140と陽極電極、或いは、陰極電極とを接続するための多孔導電ディスクを配置するための導電トレンチとなり、トレンチ195は酸素か水素等の反応ガスを保存するガスタンクとなる。相互接続トンネル205はトレンチ185と195間に提供されるガストンネルとなり、トレンチ195からの反応ガスが、トレンチ185中の多孔導電ディスクに運搬され、これにより、反応ガスがMEAの近くまで運搬されて、電気化学反応する。
【0024】
具体例中の相互接続トンネル205は、直径Dが2mm以下の単一トンネルとして描かれている。相互接続トンネル205は図2のものに制限されず、間隔を隔てた複数の相互接続トンネル205が勾配サブレイヤー102、104、106と108に提供されて、トレンチ195から、トレンチ185中に形成された多孔導電ディスクへのガス運搬量を増加させてもよい。
【0025】
図2で示されるように、トレンチ185は二つの勾配サブレイヤー108と106に形成され、トレンチ195は一つの勾配サブレイヤー102中に形成される。しかし、トレンチ185と195の形成は、図2のものに制限されず、トレンチ185と195の底部表面は、半分、一層、一層半、或いは、二層の勾配サブレイヤー内に形成することができ、これにより、導電性のある勾配サブレイヤーの表面を露出させることができる。
【0026】
図3は、図2で示される勾配相互接続部140の立体図である。勾配相互接続部140は直方体で示されるが、これに制限されない。勾配相互接続部140は、他の円柱形等の形状に形成することもできる。図3で示されるように、トレンチ185は、勾配サブレイヤー108と106に位置する円形トレンチで、勾配サブレイヤー106の表面により露出され、また、トレンチ185は、勾配サブレイヤー102、104、106と108を通過して形成される相互接続トンネル205を露出させる。トレンチ195は勾配サブレイヤー102に内蔵されるので、勾配サブレイヤー102中に位置するトレンチ195は図3で示されない。
【0027】
図4は、図2で示される勾配相互接続部140の他の立体図である。図4で示されるように、勾配相互接続部140は図3とほぼ同じである。図4中、勾配相互接続部140の勾配サブレイヤー102、104、106と108は、上下が逆さまで、勾配サブレイヤー102の表面160により露出するトレンチ195を表示する。
【0028】
この具体例中、トレンチ195は、勾配サブレイヤー102中に形成された円形トレンチとして示され、また、トレンチ195は、勾配サブレイヤー102、104、106と108を通過する相互接続トンネル205を露出させる。トレンチ185は勾配サブレイヤー108内に内蔵されるので、示されていない。更に、勾配相互接続部の大面積の製作において、トレンチ195の相対側に近接して、勾配サブレイヤー102中に、更に、接続トンネル196 (点線で示される) が形成される。
【0029】
図2〜図4で示されるように、勾配相互接続部140中のトレンチ185と195は円形トレンチとして示されるが、これに制限されない。トレンチ185と195は、方形等、その他の多角形に形成され、勾配相互接続部140は立方体に制限されず、円盤、或いは、円形インゴット等のほかの形状に形成してもよい。
【0030】
図5と図6は、SOFC装置を製造する方法の断面図である。
【0031】
図5中、まず、図2で示される勾配相互接続部140等の勾配相互接続部が提供される。勾配相互接続部140は互いに向かい合う表面170と160を有し、トレンチ185、195と相互接続トンネル205が勾配相互接続部内に設置される。相互接続トンネル205は、トレンチ185とトレンチ195を接続し、トレンチ195に保存される反応ガスをトレンチ185に運搬することを可能とする。次に、密封層270が勾配相互接続部140の表面170上に形成される。ここで、密封層270はトレンチ185を囲繞する。次に、多孔導電ディスク260が提供され、トレンチ185内に配置される。この具体例中、多孔導電ディスク260は導電パレットで、一部が勾配相互接続部140の表面170から突出する。次に、電解質層280と、電解質層280の互いに向かい合う表面282と284上にそれぞれ形成された電極層281、283と、を有する膜・電極一体構造 (MEA)285が提供される。この具体例中、MEAの表面282と電極層281は、トレンチ185、密封層270と多孔導電ディスク260に面している。
【0032】
一具体例中、表面282と284上に形成された電極層281と283は、多孔陰極層か多孔陽極層となる。電極層281と283の一つが陽極電極層として機能する場合、イットリア安定化ジルコニアとニッケルか銅からなる多孔膜が提供され、電極層281と283の一つが陰極電極層として機能する場合、(La,Sr)MnO3、(La,Sr)(Fe,Co)O3、(La,Sr)FeO3、(La,Sr)CoO3、或いは、La(Ni,Fe)O3等の導電酸化物と電解質材料からなる多孔膜が提供される。
【0033】
次に、遮断板250が提供され、勾配相互接続部140の表面160近くに設置される。次に、約1050〜1250℃で、圧縮プロセス290が約15〜60分行われて、MEA285、多孔導電ディスク260、密封層170、勾配相互接続部140、及び、遮断板250を接合し、これにより、図6で示されるような、固体酸化物型燃料電池 (SOFC)装置300を形成する。
【0034】
図6で示されるように、SOFC装置300が提供され、以下の構成要素からなる。第一勾配相互接続部(たとえば、勾配相互接続部140)は、互いに向かい合う第一表面 (たとえば、表面170)と第二表面 (たとえば、表面160)を有し、第一トレンチ (たとえば、トレンチ185)が第一勾配相互接続部の第一表面上に形成され、第二トレンチ (たとえば、トレンチ195)が第一勾配相互接続部の第二表面上に形成される。相互接続トンネル (たとえば、相互接続トンネル205)は、第一勾配相互接続部中に形成され、第一と第二トレンチを接続する。第一多孔導電ディスク (たとえば、多孔導電ディスク260)は、第一トレンチ中に配置され、一部が第一勾配相互接続部の第一表面上から突出する。第一密封層 (たとえば、密封層270) は、第一勾配相互接続部の第一表面上に位置し、第一トレンチを囲繞する。膜・電極一体構造 (MEA) (たとえば、MEA285)は、第一勾配相互接続部の第一表面上に位置し、MEAは、互いに向かい合う第一と第二表面を有する電解質層と、MEAの第一表面上に位置し、第一多孔導電ディスクと第一密封層に接触する第一電極と、からなる。
【0035】
具体例中、多孔導電ディスク260は、陰極側コネクタか陽極側コネクタとなる。陰極側コネクタを製造する適当な材料は、(La,Sr)MnO3、(La,Sr)(Fe,Co)O3、(La,Sr)FeO3、(La,Sr)CoO3、或いは、La(Ni,Fe)O3等の導電酸化物、及び、電解質で、陽極側コネクタを製造するのに適当な材料は、ニッケルか銅を含むイットリア安定化ジルコニアである。
【0036】
多孔導電ディスク260の製造は、まず、上述の電極を形成するための材料を砕いて粉末とし、これらの粉末を圧縮して、ペレットを形成し、ペレットはその後、トレンチ中に設置する。粗粉末は熱圧縮プロセスで緻密に出来ないので、多数の微細孔が形成され、電気化学反応させるために、反応ガスを電極まで流すことを可能とする。 粗粉砕プロセスは、まず、材料を900〜1250℃に加熱し、機械クラッシュ方法を実行して、焼結されにくい粗粉末を形成する。
【0037】
電解質層280の材料は、例えば、イットリア安定化ジルコニア(たとえば、8wt% Y2O3-ZrO2, 8Y-ZrO2)、希土類元素金属をドープした酸化セリウム(cerium oxide)(たとえば、(Ce,Gd)O2)、ストロンチウム(strontium)とマグネシウム(magnesium)をドープしたランタン酸化ガリウム(lanthanum gallium oxide)(たとえば、(La,Sr)(Ga,Mg)O3)、希土類元素金属、或いは、BaCeO3、SrCeO3、BaZrO3、及び、SrZrO3などのセラミック固体酸化物電解質をドープした灰チタン石(Perovskite)である。電解質層280は、厚さ約10 〜数100μm、直径が50mm以上に形成される。
【0038】
電解質層280の製造は、まず、材料の粉末を、厚さが1mm以下の薄いタブレットに圧縮し、薄いタブレットは、その後、温度約1500℃〜1600℃で、1〜6 時間焼結され、粗研磨(rough grinding)、 微粉砕(fine grinding)、 及び、研磨プロセス(polishing process)などの機械プロセスにより処理される。電極層281と283は、電解質層280一表面上(表面282)と別表面 (表面284) にコートされて、サンドウィッチ構造を形成する。テープキャスティングプロセス(tape casting process)も実行することができ、この場合には、電解質テープと、テープキャスティング方法により形成された電極層281および別の電極層283と、を結合することにより、サンドウィッチされた電解質層280を形成する。
【0039】
更に、この具体例中、密封層270は、セラミック材料、例えば、20vol%のMnOと20vol%のBi2O3の低融点の酸化物、10vol%のBaAl2Si2O8、15vol%のTi、及び、35vol%のニッケルベースの超合金等を含む。他の具体例中、密封層270内に、含有率10〜30vol%のセラミック材料、例えば、ナノアルミニウム酸化物、K2O、Na2O、B2O3、或いは、TiO2、或いは、それらの混合物がドープされたBaAl2Si2O8を添加することができ、これにより、密封層の焼結を強化する。密封層270に加えられる低融点のその他の酸化物は、例えば、ZnO、SnO2、In2O3、アルカリ金属酸化物、アルカリ土類金属酸化物(alkaline-earth metal oxide)、或いは、それらの混合物で、ニッケルベースの超金属は、例えば、Inco625、Inco600、或いは、Inco601である。
【0040】
具体例中、ガラス充填剤の公知の材料と比較すると、密封層270の3Y-ZrO2セラミック材料は好ましい靭性と強度を有し、低融点の酸化物の添加により、密封温度1200℃以下で、圧縮プロセスが実行できる。
【0041】
更に、この具体例中、トレンチ195を密封するために勾配相互接続部140の表面160上に位置する遮断板250が用いられ、遮断板250は50〜100 vol% のニッケルベースの超合金、30〜40 vol% の鉄ベースの鋼鉄、及び、0〜20 vol% のSiCのセラミックで形成され、これにより、勾配相互接続部140の金属を豊富に含む相である表面160と精確に接合する。
【0042】
図6で示されるSOFC装置300は、SOFC装置の陰極端か陽極端に位置する単一セルユニットとなる。陰極電解質層、陽極電解質層がコートされたMEA285、多孔導電ディスク260、及び、遮断板250がまず準備され、SOFC装置300の組み立て中に提供される。SOFC装置300の素子が先に製造されるので、SOFC装置は組み立てが簡単で、量産に適する。
【0043】
図5と図6で示されるSOFC装置の製造方法中、小面積のSOFC装置の製造状況が示されている。しかし、SOFC装置の製造方法は、勾配相互接続部140と遮断板250の表面積を拡大することにより、大面積のSOFC装置を製造することもできる。MEA285と多孔導電ディスク260等のほかの素子は小面積のものを参照にして製造すればよい。図7は、大面積で形成された勾配相互接続部140’と遮断板250’を有する改良されたSOFC装置300’を示す図である。SOFC装置 300’は、図6で示される3組の単一セルユニットからなる。
【0044】
図8と図9は、SOFC装置を製造する他の方法の断面図である。
【0045】
図8で、図2の勾配相互接続部140等の勾配相互接続部が提供される。勾配相互接続部140は、互いに向かい合う表面170と160を有し、トレンチ185、195と相互接続トンネル205がその中に配置される。相互接続トンネル205は、トレンチ185とトレンチ195を接続して、トレンチ195中に保存された反応ガスをトレンチ185に送ることを可能としている。次に、密封層270が勾配相互接続部140の表面170上に形成されて、ここで、密封層270がトレンチ185を囲繞する。次に、多孔導電ディスク260が提供され、トレンチ185中に配置される。この具体例中、多孔導電ディスク260は電気的導電インゴットで、一部が勾配相互接続部140上の表面170から突出する。次に、膜・電極一体構造 (MEA)285が提供され、電解質層280と、電解質層280の互いに向かい合う表面282と284上にそれぞれ形成される電極層281と283からなる。この具体例中、MEAの表面282と電極層281は、トレンチ185、密封層270、及び、多孔導電ディスク260に面する。
【0046】
次に、図2の勾配相互接続部140と類似の別の勾配相互接続部140’ が、MEA285中の電解質層280の表面282上に提供される。ここで、勾配相互接続部140’は互いに向かい合う表面170’と160’を有し、表面170’は、MEA285中の電解質層280の表面284と向かい合い、トレンチ185’、195’、及び、相互接続トンネル205’がその中に配置される。相互接続トンネル 205’はトレンチ185’とトレンチ195’を接続して、トレンチ 195’に保存される反応ガスをトレンチ185’に送ることを可能としている。次に、密封層270’が勾配相互接続部140’の表面170’上に形成され、トレンチ 185’を囲繞する。多孔導電ディスク260’が提供され、トレンチ185’中に位置する。
【0047】
この具体例中、多孔導電ディスク260’は電気的導電インゴットで、一部が勾配相互接続部140’の表面170’から突出し、遮断板250と遮断板250’が提供され、それぞれ、勾配相互接続部140の表面160と勾配相互接続部 140’の表面160’に近接して設置される。
【0048】
次に、約1050〜1250℃で、圧縮プロセス290が約15〜60分実行されて、遮断板250’、勾配相互接続部140’、多孔導電ディスク260’、密封層170’、 MEA285、多孔導電ディスク260、密封層170、勾配相互接続部140、及び、遮断板250を接合して、図9で示されるようなSOFC装置400を形成する。
【0049】
図9で示されるように、SOFC装置400は、以下の構成素子からなる。第一勾配相互接続部 (たとえば、勾配相互接続部140)は、互いに向かい合う第一表面 (たとえば、表面170)と第二表面 (たとえば、表面160)を有し、第一トレンチ (たとえば、トレンチ185)が第一勾配相互接続部の第一表面に形成され、第二トレンチ (たとえば、トレンチ195)が第一勾配相互接続部の第二表面上に形成される。相互接続トンネル (たとえば、相互接続トンネル 205)は、第一勾配相互接続部中に形成され、第一と第二トレンチを接続する。第一多孔導電ディスク (たとえば、多孔導電ディスク 260)は、第一トレンチ中に形成され、一部が第一勾配相互接続部の第一表面上から突出する。第一密封層 (たとえば、密封層 270)は、第一勾配相互接続部の第一表面上に形成され、第一トレンチを囲繞する。膜・電極一体構造 (たとえば、MEA285)は、第一勾配相互接続部の第一表面上に形成され、MEAは、互いに向かい合う第一表面(たとえば、表面282)と第二表面(たとえば、表面284)を有する電解質層 (たとえば、電解質層280)と、MEAの第一表面上に形成され、第一多孔導電ディスクと第一密封層と接触する第一電極と、からなる。第二勾配相互接続部 (たとえば、勾配相互接続部140’) は、電解質層の第二表面上に形成され、互いに向かい合う第三表面 (たとえば、表面170’) と第四表面 (たとえば、表面160’)を有し、第三トレンチ (たとえば、トレンチ185’)は第二勾配相互接続部の第三表面上に形成され、第四トレンチ (たとえば、トレンチ195’)は第二勾配相互接続部の第四表面上に形成される。第二相互接続トンネル (たとえば、相互接続トンネル205’)は、第一勾配相互接続部中に形成され、第三と第四トレンチを接続する。第二多孔導電ディスク (たとえば、多孔導電ディスク260’) は、第三トレンチ中に形成され、一部が第二勾配相互接続部の第三表面から突出する。第二密封層(たとえば、密封層 270’) は、第一勾配相互接続部の第三表面上に形成され、第三トレンチを囲繞し、電解質層の第二表面は第二密封層と接触し、第二電極は第二多孔導電相互接続ディスクと接触する。
【0050】
この具体例中、遮断板250’、勾配相互接続部140’、多孔導電ディスク260’、密封層170’の材料は、 図5と図6で示されるSOFC装置300に用いられる遮断板250、勾配相互接続部140、多孔導電ディスク260、密封層170と同じである。注意すべきことは、多孔導電ディスク260’と260がそれぞれ、陽極側コネクタ及び陰極側コネクタとして機能し、多孔導電ディスク260’と260は異なる材料で形成されることである。
【0051】
この具体例中、図9で示されるSOFC装置400は、セルユニットとして用いられ、MEA285の中央を境として、陽極側310と陰極側320に分けられる。MEA285、多孔導電ディスク260/260’、遮断板 250/250’ がまず準備され、その後、SOFC装置400の組み立て中に提供される。素子が先に準備されるので、SOFC装置400 は製造が容易で、大量生産に適する。
【0052】
図8と図9で示されるSOFC装置の製造方法中、小面積のSOFC装置400の製造状況が示されている。しかし、SOFC装置の製造方法は、勾配相互接続部140 と140’、多孔導電ディスク260と260’、密封層170と170’、及び、MEA285を重複して配置することにより、大面積のSOFC装置を製造することもできる。
【0053】
図10で示されるように、セルスタック構造を有する他の具体例のSOFC装置500が説明される。図9と同じ素子は、SOFC装置500中でも同じ符号で示される。更に、図10で示される接続トンネル196が勾配相互接続部140/140’のそれぞれの表面160上に形成され、接続トンネル196はその後、レーザー溶接(laser welding)によりガス供給パイプ(図示しない)に接続されて、セルスタック構造を形成する。更に、図11で示されるように、 図10中の3組のSOFC装置500を横向けに結合することにより形成されたもう一つの具体例によるSOFC装置600が示され、複数の接続トンネル196がレーザー溶接によりSOFC装置500間に提供され、ガス供給パイプに接続される。
【0054】
図6と図7、及び、図9〜図11で示されるSOFC装置は以下のような長所を有する。
【0055】
1. 勾配相互接続部140/140’は、勾配濃度変化があるニッケルベースの超合金とセラミック材料を用い、密封層270/270’の表面170/170’に接続される勾配相互接続部の一部は、セラミックが豊富に含有した組成で形成される (たとえば、セラミック含有率≧50vol%)。よって、セラミック/セラミック接合は、密封層270/270’中のセラミック密封材料とMEA285中のセラミック材料からなる電解質層280間に形成され、よって、相互接続板の金属材料とセラミック電解質中のセラミック材料間の湿潤特性の差異により生じる金属/セラミック接合問題が解決する。
【0056】
2. 勾配相互接続部140/140’は、ニッケルベースの超合金を用い、900℃の高い動作温度下での酸化問題を回避する。
【0057】
3. 勾配相互接続部140/140’は、勾配濃度変化があるニッケルベースの超合金、 鉄ベースの合金、及び、セラミック材料を用い、密封層270/270’の表面170/170’と接続する勾配相互接続部の一部は、セラミックが豊富に含有された組成物(セラミック含有率 が50vol%以上)により形成され、遮断板250/250’、或いは、表面160/160’と接続する勾配相互接続部は、セラミック含量が0〜20vol%の金属を豊富に含有した組成物により形成される。
よって、燃料電池機器の動作により誘発される温度サイクリングの後、密封層270/270’の表面に接続された勾配相互接続部のセラミックが豊富に含有された組成物と、近接したセラミック材料のMEA285との間で圧縮応力が生じ、遮断板250/250’、或いは、表面160/160’に接続された勾配相互接続部の金属を豊富に含有した組成物間で引張応力(tensile stress)が生じ、これにより、MEA285、密封層270/270’、勾配相互接続部の表面170/170’間のセラミック密封破裂や漏れを防止する。本発明のSOFC装置は、30回以上の、25〜800℃の温度サイクリングテスト後も、構造的完全性(structural integrity)が維持され、湾曲や破裂が生じない。
【0058】
4. 密封層270/270’中に用いられるセラミック密封材料は改善された強度と増加した破壊靱性(fracture toughness)を提供する。密封プロセスは高温1100〜1200℃なので、接合信頼度は、800℃の高温動作下でも持続する。
【0059】
5. 多孔導電ディスク 260/260’とMEA285の電解質層281と283は 、勾配相互接続部140/140’中に内蔵される。多孔導電ディスク260/260’は、電解質構造に適当な支持を提供し、金属が豊富に含まれた組成物の勾配相互接続部140/140’はMEAに適当な機械的保護を提供し、これにより、燃料電池機器の組み立て中の完全性を確保する。
【0060】
6. 本発明のSOFC装置中のMEA、勾配相互接続部、多孔導電ディスク、密封層等の素子は、個別に製造され、組み合われることにより、大集積と大面積のSOFC装置を形成する。
【実施例】
【0061】
例1:勾配相互接続部Aの製造
勾配相互接続部Aは Inco625をニッケルベースの超合金とし、ナノアルミニウム酸化物をセラミック材料とし、勾配相互接続部Aは五個の勾配サブレイヤーを有し、それぞれ、3cm×3cmの表面積を有する。各勾配サブレイヤーの組成は以下のようである。
第一勾配 サブレイヤー:45vol% Inco625と55vol% Al2O3;
第二勾配 サブレイヤー:55vol% Inco625と45vol% Al2O3;
第三勾配 サブレイヤー:70vol% Inco625と30vol% Al2O3;
第四勾配 サブレイヤー:85vol% Inco625と15vol% Al2O3;及び
第五勾配 サブレイヤー:100vol% Inco625。
【0062】
例2:勾配相互接続部Bの製造
勾配相互接続部Bは、Inco625 をニッケルベースの超合金とし、ナノアルミニウム酸化物をセラミック材料とし、勾配相互接続部Bは5個の勾配サブレイヤーを有し、それぞれ、3cm×3cmの表面積を有する。各勾配サブレイヤーの組成は以下のようである。
第一勾配サブレイヤー:55vol% 3Y-ZrO2、35vol% Inco625、及び、 10vol% Al2O3 + 10wt% Bi2O3 (3Y-ZrO2、Inco625、及び、Al2O3の量に基づく);
第二勾配サブレイヤー:20vol% 3Y-ZrO2、45vol% Inco625、26.5vol% 410SS、及び、5vol% SiC;
第三勾配サブレイヤー: 40vol% 3Y-ZrO2、40vol% Inco625、15vol% 410SS、及び、8.5vol% SiC;
第四勾配サブレイヤー:10vol% 3Y-ZrO2、50vol% Inco625、30vol% 410SS、及び、10vol% SiC;
第五勾配サブレイヤー:50vol% Inco625、40vol% 410SS、及び、10vol% SiC。
【0063】
勾配相互接続部 AとB中の第三勾配サブレイヤーと第二勾配サブレイヤー間の材料特性は著しく変化するので、このような非線形変化は、圧縮応力により形成される勾配相互接続部AとB中の金属を豊富に含有した端で引張応力、勾配相互接続部AとB中のセラミックを豊富に含有した端で圧縮応力を生じる。よって、熱応力により誘発されるセラミック材料のクラックが除去される。勾配相互接続部AとBのサブレイヤーは、アルゴン雰囲気、1200℃の条件で熱圧縮され、これにより、勾配相互接続部AとBを形成する。
【0064】
例3:電解質層の準備
8Y-ZrO2 固体酸化物の粉末 (Zirconia Sales (米国), Inc. (Marietta, Georgia,米国)により製造)が提供され、モールドにより圧縮されて、薄いディスクを形成する。得られた薄いディスクは、大気環境で、1550℃の温度で、3時間焼結される。焼結された薄いディスクは、その後、適当な機械プロセスと研磨により、薄くされ、艶出しされる。
【0065】
例4:陰極電極の製造
含量が50〜75wt%の(La,Sr)MnO3 、50〜25wt%の8Y-ZrO2を混合して得られるスラリー、ポリビニルアルコール結合剤を含む溶液が電解質層上にコートされ、その後、900〜1200℃で、二時間焼結されて、陰極電極を得る。高気孔率の陰極電極を得るため、(La,Sr)MnO3の粉末が、まず、900〜1250℃下で焼結され、その後、機械粉砕方法により処理され、更に、きめを粗くする。
【0066】
例5:陽極電極の製造
含量が50〜30wt%の8Y-ZrO2 、50〜70wt%の NiOを混合して得られるスラリー、ポリビニルアルコール結合剤を含む溶液が電解質層上にコートされ、その後、1200〜1400℃で、二時間焼結されて、陽極電極を得る。高気孔率の陰極電極を得るため、8Y-ZrO2の粉末が、まず、1000〜1350℃下で焼結され、その後、機械粉砕方法により処理され、更に、きめを粗くする。
【0067】
例6:密封層の製造
35vol%のInco625、20vol%のMnO、15vol%のBaAl2Si2O8、 15vol%のTi、及び、20vol%のBi2O3の組成の密封材料が、MEAに面する勾配相互接続部の表面上にコートされる。
【0068】
温度サイクリングテスト:
電極層でコートされた電解質層、密封層、及び、勾配相互接続部からなるスタック構造上に、大きな重量を掛けた状態で、1200℃で、30分間、圧縮プロセスが実行されて、単一のセルユニットを形成する。光学顕微鏡と電気顕微鏡により、単一セルユニットの素子間の界面にテストが実施されて、界面でクラックが生じないことが分かる。密封層が、勾配相互接続部により電解質層を緊密に接合する。
【0069】
次に、25〜800℃で、30回、熱疲労試験(thermal fatigue test)がスタック構造に実行される。熱疲労試験で、スタック構造は、五段階で、徐々に、高温の加熱炉に送られる。各段階で1分ほど停留し、第五段階は10分である。その後、スタック構造を出すときも、五段階で、それぞれ1分停留し、高温加熱炉から徐々に離れる。高温加熱炉により実行される30回の熱疲労試験を経ても、スタック構造の構造的完全性が維持される。スタック構造中の素子は、1250℃の製造プロセス中、熱応力に耐えることができ、800℃で実行される温度サイクリングテストで、界面での亀裂やガス漏れが発生しない。
【0070】
本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本発明の精神と領域を脱しない範囲内で各種の変動や潤色を加えることができ、従って本発明の保護範囲は、特許請求の範囲で指定した内容を基準とする。
【符号の説明】
【0071】
100〜モールド
102、104、106、108〜勾配サブレイヤー
110〜圧縮プロセス
140、140’〜 勾配相互接続部
160、160’、170、170’〜表面
180、190〜機械プロセス
185、185’、195、195’〜トレンチ
196〜接続トンネル
205、205’〜相互接続トンネル
250、250’〜遮断板
260、260’〜電極
270、270’〜密封層
280〜電解質層
281、283〜電極層
285〜膜・電極一体構造 (MEA)
282、284〜電解質層の表面
290〜圧縮プロセス
300、300’、400、500、600〜SOFC装置
310〜陰極側
320〜陽極側

【特許請求の範囲】
【請求項1】
勾配相互接続部を有する固体酸化物燃料電池(SOFC)装置であって、
互いに向かい合う第一、及び、第二表面を有し、第一トレンチが前記第一表面上に形成され、第二トレンチが前記第二表面上に形成され、相互接続トンネルが、その中に形成され、前記相互接続トンネルにより前記第一トレンチと前記第二トレンチとが接続されてなる第一勾配相互接続部と、
前記第一トレンチ中に位置し、一部が前記第一勾配相互接続部の前記第一表面から突出する第一多孔導電ディスクと、
前記第一勾配相互接続部の前記第一表面上に形成され、前記第一トレンチを囲繞する第一密封層と、
前記第一勾配相互接続部の前記第一表面上に形成され、互いに向かい合う第一、及び、第二表面を有する電解質層と、前記第一表面上に位置する第一電極と、前記第二表面上に位置する第二電極と、からなり、前記電解質層の前記第一表面は前記第一密封層と接触し、前記第一電極は前記第一多孔導電ディスクと接触する膜・電極一体構造(MEA)と、
からなることを特徴とするSOFC装置。
【請求項2】
前記第一勾配相互接続部は、ニッケルベースの超合金と鉄ベースの鋼鉄の金属材料とセラミック材料からなり、前記第一勾配相互接続部の前記金属材料の含量は、前記第一勾配相互接続部の前記第二表面から、前記第一勾配接続の前記第一表面に向かって減少し、前記第一勾配相互接続部中の前記セラミック材料の含量は、前記第一勾配相互接続部の前記第一表面から、前記第一勾配相互接続部の前記第二表面に向かって減少することを特徴とする請求項1に記載のSOFC装置。
【請求項3】
前記第一勾配相互接続部の前記第二表面に近接する部分における前記ニッケルベースの超合金の含量は50〜100vol%で、前記第一勾配相互接続部の前記第二表面に近接する部分における前記鉄ベースの鋼鉄の含量は30〜40vol%で、前記第一勾配相互接続部の前記第二表面に近接する部分における前記セラミック材料の含量は0〜20vol%で、前記第一勾配相互接続部の前記第一表面に近接する部分における前記ニッケルベースの超合金の含量は50%以下で、前記第一勾配相互接続部の前記第一表面に近接する部分における前記セラミック材料の含量は50%以上で、前記ニッケルベースの超合金は、Inco625、 Inco600、或いは、Inco601を含み、前記鉄ベースの鋼鉄は、純鉄、304SS、410SS、430SSを含み、前記第一密封層は、セラミック材料の含量が50vol%以上であり、かつ、15vol%以上の低融点の酸化物、金属Ti、及び、ニッケルベースの超合金等を含むことを特徴とする請求項2に記載のSOFC装置。
【請求項4】
前記電解質層は、イットリア安定化ジルコニア、希土類元素金属をドープした酸化セリウム、ストロンチウム及びマグネシウムをドープしたランタン酸化ガリウム、或いは、希土類元素金属をドープした灰チタン石からなり、前記第二トレンチは、酸素か水素を保存するのに用いられることを特徴とする請求項1に記載のSOFC装置。
【請求項5】
SOFC装置は、更に、
前記電解質層の前記第二表面に位置し、互いに向かい合う第三、及び、第四表面を有し、第三トレンチが前記第三表面上に形成され、第四トレンチが前記第四表面に形成され、第二相互接続トンネルが、その中に形成され、前記第二相互接続トンネルにより前記第三トレンチと前記第四トレンチとが接続されてなる第二勾配相互接続部と、
前記第三トレンチ中に位置し、一部が前記第二勾配相互接続部の前記第三表面から突出する第二多孔導電ディスクと、
前記第二勾配相互接続部の前記第三表面上に位置し、前記第三トレンチを囲繞し、前記電解質層の前記第二表面が接触し、前記第二電極が前記第二多孔導電ディスクに接触する第二密封層と、
からなることを特徴とする請求項1に記載のSOFC装置。
【請求項6】
前記第二勾配相互接続部は、ニッケルベースの超合金と鉄ベースの鋼鉄の金属材料とセラミック材料からなり、前記第二勾配相互接続部の前記金属材料の含量は、前記第二勾配相互接続部の前記第四表面から、前記第二勾配接続の前記第三表面に向かって減少し、前記第二勾配相互接続部中の前記セラミック材料の含量は、前記第二勾配相互接続部の前記第三表面から、前記第二勾配相互接続部の前記第四表面に向かって減少することを特徴とする請求項5に記載のSOFC装置。
【請求項7】
前記第二勾配相互接続部の前記第四表面に近接する部分における前記ニッケルベースの超合金の含量は50〜100vol%で、前記第二勾配相互接続部の前記第二表面に近接する部分における前記鉄ベースの鋼鉄の含量は30〜40vol%で、前記第二勾配相互接続部の前記第二表面に近接する部分における前記セラミック材料の含量は0〜20vol%で、前記第二勾配相互接続部の前記第三表面に近接する部分における前記ニッケルベースの超合金の含量は50%以下で、前記第二勾配相互接続部の前記第四表面に近接する部分における前記セラミック材料の含量は50%以上で、前記ニッケルベースの超合金は、Inco625、 Inco600、或いは、Inco601を含み、前記鉄ベースの鋼鉄は、純鉄、304SS、410SS、430SSを含み、前記第二密封層は、セラミック材料の含量が50vol%以上であり、かつ、15vol%以上の低融点の酸化物、金属Ti、及び、ニッケルベースの超合金等を含むことを特徴とする請求項6に記載のSOFC装置。
【請求項8】
更に、前記第一勾配相互接続部の前記第二表面上に形成され、前記第二トレンチを密封する第一遮断板、及び、前記第二勾配相互接続部の前記第四表面上に形成され、前記第四トレンチを密封する第二遮断板を有し、前記第一遮断板は、含量が50〜100vol%のニッケルベースの超合金、30〜40vol%の鉄ベースの鋼鉄、0〜20vol%のセラミックSiCからなり、前記第二遮断板は、含量が50〜100vol%のニッケルベースの超合金、30〜40vol%の鉄ベースの鋼鉄、0〜20vol%のセラミックSiCからなることを特徴とする請求項5に記載のSOFC装置。
【請求項9】
前記SOFC装置は、
前記第一勾配相互接続部を提供するステップと、
前記第一勾配相互接続部の前記第一表面上に、前記第一密封層を形成して、前記第一トレンチを囲繞するステップと、
前記第一トレンチ中に、一部が前記第一勾配相互接続部の前記第一表面から突出する前記第一多孔導電ディスクを提供、設置するステップと、
前記第一勾配相互接続部の前記第一表面上に、前記MEAを提供、設置するステップと、
前記第一勾配相互接続部の前記第二表面上に、前記第一遮断板を提供、設置するステップと、
不活性ガスの雰囲気下、約1050〜1250℃で、圧縮プロセスが行われて、前記MEA、前記第一多孔導電ディスク、前記第一勾配相互接続部、及び、前記第一遮断板を接合するステップと、
により製造されることを特徴とする請求項1に記載のSOFC装置。
【請求項10】
前記SOFC装置は、
前記第一勾配相互接続部を提供するステップと、
前記第一勾配相互接続部の前記第一表面上に、前記第一密封層を形成して、前記第一トレンチを囲繞するステップと、
前記第一トレンチ中に、一部が前記第一勾配相互接続部の前記第一表面から突出する前記第一多孔導電ディスクを提供、設置するステップと、
前記第一勾配相互接続部の前記第一表面上に、前記MEAを提供、設置するステップと、
前記第二勾配相互接続部を提供するステップと、
前記第二勾配相互接続部の前記第三表面上に、前記第三トレンチを囲繞する前記第二密封層を形成するステップと、
前記第三トレンチ中に、一部が前記第二勾配相互接続部の前記第三表面から突出し、前記MEAの前記第二電極と接触する前記第二多孔導電ディスクを提供、設置するステップと、
前記第一勾配相互接続部の前記第二表面上と前記第二勾配相互接続部の前記第四表面上に、それぞれ、前記第一、第二遮断板を提供、設置するステップと、
不活性ガスの雰囲気下、約1050〜1250℃で、圧縮プロセスが行われて、前記第二遮断板、前記第二勾配相互接続部、前記第二多孔導電ディスク、前記MEA、前記第一多孔導電ディスク、前記第一勾配相互接続部、及び、前記第一遮断板を接合するステップと、
により製造されることを特徴とする請求項5に記載のSOFC装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2010−267619(P2010−267619A)
【公開日】平成22年11月25日(2010.11.25)
【国際特許分類】
【出願番号】特願2010−111102(P2010−111102)
【出願日】平成22年5月13日(2010.5.13)
【出願人】(503378235)国立台湾科技大学 (32)
【Fターム(参考)】