説明

半導体試験装置およびリレーのオフ容量異常検出方法

【課題】半導体試験装置に設けられるリレーのオフ容量に異常を生じているか否かを検出することを目的とする。
【解決手段】本発明の半導体試験装置は、DUT2の試験を行うためのドライバ回路10、コンパレータ回路11を設けた試験部1を備える半導体試験装置であって、試験部1に設けられる複数のリレーのうち検査対象のリレーをオフにして電圧または電流を出力してリレーからの電圧を検出し、検出した電圧の時間的な変化に基づいて、リレーのオフ容量に異常を生じているか否かを検出する異常検出部36を備えている。これにより、ドライバ回路10やコンパレータ回路11の動作タイミングを校正する前に、リレーのオフ容量に異常を生じているか否かの検出を行うことができるようになる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は被試験デバイスの試験を行う半導体試験装置に関し、特にタイミングの調整を行う半導体試験装置および半導体試験装置に備えられるリレーのオフ容量を検出するリレーのオフ容量異常検出方法に関するものである。
【背景技術】
【0002】
被試験デバイス(DUT:Device Under Test)に所定の試験信号を印加して、被試験デバイスから出力される応答信号に基づいて良否判定を行う半導体試験装置が従来から用いられている。半導体試験装置は試験部としてのピンエレクトロニクスカードを備えており、ピンエレクトロニクスカードに接続したDUTの試験を行う。ピンエレクトロニクスカードには試験信号を印加するドライバ回路および応答信号の比較を行うコンパレータ回路が複数備えられている。
【0003】
各ドライバ回路は同一のタイミングで試験信号を印加し、各コンパレータ回路は同一のタイミングで応答信号の比較を行うようにしている。このために、タイミングを校正するタイミング校正装置を用いて動作タイミングの校正を行っている。この種の技術が特許文献1に開示されている。
【0004】
特許文献1の技術の概略について図4を用いて説明する。この半導体試験装置は主に試験部101を備えて構成しており、試験部101にDUT102が接続されている。試験部101はN(Nは自然数)個のドライバ回路111とM(Mは自然数)個のコンパレータ回路112とタイミング校正装置113とDC計測ユニット114とを備えて構成している。
【0005】
ドライバ回路111はDUT102に試験信号を印加する試験回路であり、コンパレータ回路112はDUT102が出力した応答信号を所定の基準値と比較する試験回路である。この例では、ドライバ回路111はコンパレータ回路112よりも多く構成している(N>M)。
【0006】
タイミング校正装置113はタイミング校正を行う対象となる試験回路(ドライバ回路111またはコンパレータ回路112)との間でタイミング校正信号の授受を行う。この授受の時間を各試験回路で統一させることで、試験回路のタイミング校正を行う。DC計測ユニット114は各試験回路に電圧または電流を出力して、各試験回路の出力電圧や出力インピーダンス、リーク電流等に異常があるか否かを検出する自己診断を行う。
【0007】
タイミング校正装置113と試験回路との間は校正経路115により接続されており、校正経路115は1つの経路から複数の経路に分岐するトーナメント構造になっている。そして、各校正経路115には校正系リレー116が設けられており、校正経路115および校正系リレー116によりリレートーナメント116Tが構成される。
【0008】
DC計測ユニット114と試験回路との間はフォース線117およびセンス線118により接続される。フォース線117は電圧または電流を試験回路に出力する経路であり、センス線118は試験回路から電圧を入力する経路になる。
【0009】
各フォース線117にはフォースリレー119が設けられ、各センス線118にはセンスリレー120が設けられる。これにより、DC計測ユニット114と試験回路とを接続して自己診断を行っている。また、試験回路とDUT102との間の経路は試験信号を印加するためのテスト経路121を構成しており、当該テスト経路121には経路をオンまたはオフにするテストリレー122が設けられている。そして、各リレーのオンまたはオフを制御するためのリレー制御部123を設けるようにしている。
【0010】
そして、特許文献1の技術では、DC計測ユニット114と校正用信号経路とを接続可能な割り込み用の信号経路と制御リレーとを設けている。これにより、基板面積や部品コストを増大させることなく、DUT102を接続したまま自己診断機能が実現されるようにしている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2008−203073号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
タイミング校正装置113は校正対象の試験回路とタイミング校正信号の授受を行って、タイミング校正装置113にタイミング校正信号が入力されるまでの時間を検出する。そして、全ての試験回路について当該時間を検出して、検出した時間の間に生じている誤差をなくすようにしてタイミング校正を行っている。
【0013】
試験回路とタイミング校正装置113との間をタイミング校正信号が伝送するために、タイミング校正信号の経路に接続される経路の校正系リレー116やテストリレー122はオフの状態になっている。これらのリレーはオフ容量を有しており、当該オフ容量に異常を生じている場合には、タイミング校正信号に影響を与え、結果としてタイミング校正を正確に行うことができなくなる。
【0014】
リレーのオフ容量に異常を生じる要因としては、リレーの実装間違いや経時的にオフ容量が変化する等の種々の要因があるが、いずれにしろリレーのオフ容量が過剰に大きくなる異常を生じると、タイミング校正信号の波形に波形なまり(劣化)を生じる。これにより、タイミング校正信号の波形の立ち上がり(または立ち下り)が本来的な波形のものより緩やかになる(鈍化する)。
【0015】
タイミング校正装置113はタイミング校正信号の電圧を検出しており、入力電圧が所定の閾値に到達したときにタイミング校正信号の入力を検出する。従って、タイミング校正信号に波形なまりを生じると、本来的に検出される時間に対して誤差を生じる。この時間的な誤差を要因として、試験回路のタイミング校正を正確に行うことができなくなる。
【0016】
そこで、本発明は、半導体試験装置に設けられるリレーのオフ容量に異常を生じているか否かを検出することを目的とする。
【課題を解決するための手段】
【0017】
以上の課題を解決するため、本発明の第1の半導体試験装置は、被試験デバイスの試験を行うための試験回路を設けた試験部を備える半導体試験装置であって、前記試験部に設けられる複数のリレーのうち検査対象のリレーをオフにして電圧または電流を出力して前記リレーからの電圧を検出し、検出した電圧の時間的な変化に基づいて、前記リレーのオフ容量に異常を生じているか否かを検出する異常検出部を備えたこと を特徴とする。
【0018】
この半導体試験装置によれば、リレーに出力した電流または電圧を検出して、検出電圧の時間的な変化を検出している。これにより、オフ容量に異常を生じている場合と正常な場合とで時間的な電圧の変化が異なることから、リレーのオフ容量に異常を生じているか否かを検出することができるようになる。
【0019】
本発明の第2の半導体試験装置は、第1の半導体試験装置であって、前記異常検出部は、検出した電圧が第1の閾値からこの第1の閾値よりも高い第2の閾値に到達するまでの時間を実測時間として計測する時間計測部と、前記オフ容量に異常を生じていないときの前記第1の閾値から前記第2の閾値に到達するまでの時間を基準時間として、前記時間計測部が計測する実測時間と前記基準時間との間の時間差に基づいて、前記異常を生じているか否かの判定を行う処理部と、を備えていることを特徴とする。
【0020】
この半導体試験装置によれば、実測時間と基準時間とを比較することで、検出電圧の時間的な変化を認識することができる。これにより、リレーのオフ容量に異常を生じているか否かを検出することができるようになる。
【0021】
本発明の第3の半導体試験装置は、第2の半導体試験装置であって、前記処理部は、前記検査対象のリレーと前記異常検出部との間の経路の理想的な経路容量、前記検査対象のリレーのオフ容量がないときの前記到達時間および前記時間差に基づいて、前記検査対象のリレーのオフ容量を検出していることを特徴とする。
【0022】
この半導体試験装置によれば、検査対象のリレーのオフ容量を検出することができる。これにより、検出したリレーのオフ容量に基づいてオフ容量に異常を生じているか否かを検出できるため、より直接的な検査が可能になる。
【0023】
本発明の第4の半導体試験装置は、第3の半導体試験装置であって、前記試験回路のうちタイミング校正の対象となる試験回路との間でタイミング校正信号の授受を行い、このタイミング校正信号の授受の時間に基づいて、前記試験回路の動作タイミングを校正するタイミング校正部を備え、このタイミング校正部は、前記試験回路と前記タイミング校正部との間の経路に接続されるオフ状態のリレーのオフ容量の合成容量、前記経路の理想的な経路容量および前記合成容量がゼロのときの前記タイミング校正信号が検出されるまでの時間に基づいて、前記合成容量に基づくタイミング校正の誤差を検出し、前記試験回路のタイミング校正を行うときに前記誤差を調整してタイミング校正を行うことを特徴とする。
【0024】
この半導体試験装置によれば、タイミング校正信号の経路に接続される経路に設けたリレーのオフ容量に基づいて、オフ容量がタイミング校正信号に与える影響を加味したタイミング校正が可能になる。これにより、リレーのオフ容量による影響を排除したタイミング校正を行うことが可能になる。
【0025】
本発明の第5のリレーのオフ容量異常検出方法は、被試験デバイスの試験を行うための試験部に設けたリレーのオフ容量の異常を検出するリレーのオフ容量異常検出方法であって、前記リレーのうち検査対象のリレーをオフにした状態で、このリレーに電流または電圧を印加して、前記リレーからの電圧を検出し、検出した電圧の時間的な変化に基づいて、前記リレーのオフ容量に異常を生じているか否かを検出することを特徴とする。
【発明の効果】
【0026】
本発明は、オフ容量を検出する対象に対して電流または電圧を印加して電圧を検出し、検出電圧の時間的な変化を検出することで、リレーのオフ容量に異常を生じているか否かを検出することが可能になる。
【図面の簡単な説明】
【0027】
【図1】実施形態の半導体試験装置の構成図である。
【図2】DC計測ユニットの構成図である。
【図3】電圧の波形を示した図である。
【図4】従来の半導体試験装置の構成図である。
【発明を実施するための形態】
【0028】
以下、図面を参照して本発明の実施形態について説明する。図1は本発明の半導体試験装置の構成を示している。半導体試験装置は試験部1を備えて構成しており、試験部1に試験対象であるDUT(被試験デバイス:Device Under Test)2を接続している。試験部1はDUT2の良否判定を行う試験部として機能しており、例えばピンエレクトロニクスカードを適用できる。なお、DUT2は試験部1に複数個接続されていてもよく、半導体試験装置に試験部1を複数個備えるようにしてもよい。
【0029】
試験部1はドライバ回路10とコンパレータ回路11とタイミング校正装置12とDC計測ユニット13とリレー制御部14とを備えて構成している。ドライバ回路10は所定のタイミング(ラッチタイミング)で試験信号をDUT2に印加する試験回路であり、コンパレータ回路11は所定のタイミングでDUT2が出力した応答信号を基準値と比較して良否判定を行う試験回路である。
【0030】
ドライバ回路10はN(Nは自然数)個を備えており、コンパレータ回路11はM(Mは自然数:M<N)個を備えている。従って、ドライバ回路10の個数はコンパレータ回路11の個数よりも多くしている。勿論、同数であってもよく、コンパレータ回路11の個数の方を多くしてもよい。
【0031】
コンパレータ回路11の入力端は全てドライバ回路10の出力端に接続している。一方、「N−M」個のドライバ回路10はコンパレータ回路11と接続していないため、当該ドライバ回路10は単独で構成されている。なお、ドライバ回路10とコンパレータ回路11とを接続せずに、全てを単独で構成するようにしてもよい。
【0032】
タイミング校正装置12はドライバ回路10およびコンパレータ回路11のタイミング校正を行うタイミング校正部である。タイミング校正装置12は校正対象となる試験回路(ドライバ回路10またはコンパレータ回路11)との間でタイミング校正信号の授受を行う。
【0033】
タイミング校正装置12は試験回路が出力したタイミング校正信号を入力するまでの時間を検出する(または、タイミング校正装置12と試験回路との間でタイミング校正信号が往復する時間を検出してもよい)。全ての試験回路との間でタイミング校正信号の授受を行い、各試験回路についての時間検出を行う。そして、各試験回路について検出した時間が異なる場合には、試験回路の動作タイミングを校正するタイミング校正を行う。
【0034】
タイミング校正装置12に接続されるタイミング校正信号の経路となる校正経路15は複数本に分岐する。そして、分岐した各校正経路15がそれぞれ複数本分岐した構成となっている。つまり、分岐の段数が複数段になったトーナメント構造になっている。最終的にN本の校正経路15に分岐されて、N個のドライバ回路10に接続される。
【0035】
1本の校正経路15をN本に分岐させる(1段で分岐させる)こともできるが、複数段に分けたトーナメント構造とすることで、タイミング校正装置12から各試験回路までの経路長の等長化を図っている。これにより、タイミング校正信号の伝送特性に与える影響を抑制している。
【0036】
トーナメント構造の校正経路15には校正系リレー16を設けており、これによりリレートーナメント17が構成される。校正系リレー16をオンまたはオフにすることにより、タイミング校正装置12と特定の1つの試験回路とを接続するようにしている。
【0037】
DC計測ユニット13は各試験回路に対して電圧または電流を入力して、試験回路からの電圧を検出する。これにより、出力電圧や出力インピーダンスの異常、リーク電流の検出等の回路異常を生じているか否かの自己診断を行う。このために、電圧または電流を出力するフォース線18および電圧を入力するセンス線19を設けている。また、センス線19には抵抗20を設けている。
【0038】
フォース線18およびセンス線19はN本に分岐する。そして、1本のフォース線18および1本のセンス線19が1本のテスト経路21に合流する。テスト経路21はN本を設けており、ドライバ回路10とDUT2との間を接続する。テスト経路21にはテスト経路21をオンまたはオフに切り替えるテストリレー22が設けられており、DUT2の間を接続または非接続に切り替える。
【0039】
分岐後のフォース線18にはフォースリレー23が設けられ、分岐後のセンス線19にはセンスリレー24が設けられている。従って、フォースリレー23およびセンスリレー24はN個が設けられる。
【0040】
図2は異常検出部としてのDC計測ユニット13の構成を示しており、出力制御部31と電流電圧出力部32と電圧検出部33とサンプリング部34と時間計測部35と処理部36とデータ記憶部37とを備えて構成している。出力制御部31は電圧または電流を出力するように電流電圧出力部32を制御している。電流電圧出力部32はフォース線18に接続されており、フォース線18に電圧または電流を出力する。
【0041】
フォース線18を介して検査対象に入力された電圧または電流は、センス線19を介して電圧検出部33に入力される。電圧検出部33はセンス線から入力する電圧を検出しており、検出した電圧をサンプリング部34に入力する。サンプリング部34は入力した電圧を時間軸方向に所定の分解能で電圧値を検出するサンプリングを行う。これにより、経時的な電圧の変化を認識する。
【0042】
時間計測部35はサンプリング部34が検出している電圧値に基づいて時間の計測を行っている。時間計測の開始は検出電圧が閾値VL(第1の閾値)になった時点から開始し、閾値VLより高い閾値VH(第2の閾値)に到達した時点で時間計測を終了する。このときに時間計測部35が計測した時間を実測時間T1として、実測時間T1のデータを処理部36に出力する。
【0043】
処理部36はデータ記憶部37から基準時間T2を読み出して、基準時間T2と実測時間T1とを比較することで、リレーのオフ容量に異常を生じているか否かを検出している。基準時間T2は各リレーのオフ容量が正常である場合における検出電圧が閾値VLからVHに到達するまでの時間である。処理部36は実測時間T1と基準時間T2とを比較することで、異常検出を行っている。
【0044】
基準時間T2はリレーのオフ容量が正常である場合の時間であり、仕様や設計等から得られる既知の情報になる。従って、データ記憶部37に各リレーのそれぞれについて基準時間T2を記憶させることができる。なお、各基準時間T2はオフ容量に異常を生じていない条件下で実測して得るようにしてもよい。
【0045】
リレー制御部14は各リレーのオン・オフ制御を行っており、個別的に制御している。リレー制御部14の制御により、タイミング校正信号やDC計測ユニット13からの電圧や電流等の経路が決定される。
【0046】
次に、動作について説明する。タイミング校正装置12は校正対象となる試験回路(ドライバ回路10Aとする)とタイミング校正信号の授受を行うことにより、タイミング校正を行う。このとき、タイミング校正信号はドライバ回路10Aとタイミング校正装置12との間の経路を伝達する。
【0047】
ドライバ回路10Aからタイミング校正装置12にタイミング校正信号を伝送させるために、タイミング校正信号の経路上の校正系リレー16はオンになっているが、タイミング校正信号の経路に接続される経路のリレーはオフに制御している。これにより、タイミング校正信号に特定の経路を伝送させることができる。
【0048】
タイミング校正信号の経路に接続される経路のリレーとしては校正系リレー16およびテストリレー22がある。これらのリレーをオフにしている。このとき、オフ状態の各リレーにはオフ容量が存在しており、当該オフ容量はタイミング校正信号に対して影響を及ぼす。
【0049】
リレーのオフ容量が大きい場合には、タイミング校正信号の波形になまりを生じさせる。タイミング校正装置12はタイミング校正信号を電圧で検出しており、所定の電圧に到達したときにタイミング校正信号の入力を検出する。よって、波形なまりを生じると、オフ容量が正常な場合と比較して、タイミング校正信号の検出タイミングに誤差を生じる。この誤差によりタイミング校正の正確性を確保できなくなる。
【0050】
従って、タイミング校正信号の経路に接続されるリレーのオフ容量に異常を生じているか否かの検査を事前に行う。検査対象となるのは、タイミング校正信号に影響を与えるリレーである。従って、タイミング校正信号の経路に接続される経路のリレーとして、校正系リレー16およびテストリレー22が検査対象になる。
【0051】
これら全てのリレーについてオフ容量の異常検出を行う。このオフ容量の異常検出は異常検出部としてのDC計測ユニット13が行う。以下、検査対象を校正系リレー16のうちの1つ(校正系リレー16A)として説明する。
【0052】
最初に、リレー制御部14はDC計測ユニット13と校正系リレー16Aとが接続され、他は接続されないように各種のリレー制御を行う。従って、DC計測ユニット13と校正系リレー16Aとを接続する経路(タイミング校正信号が伝送される経路)に接続される経路のリレー(校正系リレー16およびテストリレー22)はオフにされる。
【0053】
この状態で、DC計測ユニット13の出力制御部31は電流電圧出力部32から所定の電圧VFを出力させる。出力された電圧VFはフォース線18からテスト経路21を介して、校正系リレー16Aに入力される。なお、このときに、試験回路に電圧VFが入力されないように、試験回路をハイインピーダンス状態等に設定しておく。
【0054】
検査対象の校正系リレー16Aはオフ状態となるように制御している。これにより、校正系リレー16Aに入力された電圧VFはそのままテスト経路21およびセンス線19を介して、DC計測ユニット13に入力される。この電圧VFは電圧検出部33で検出され、サンプリング部34により所定時間ごとに電圧値がサンプリングされる。
【0055】
電圧検出部33で検出される電圧は0ボルトから経時的に上昇する。時間計測部35は電圧が閾値VLから閾値VHになるまでの時間を実測時間T1として計測している。この実測時間T1のデータは処理部36に出力される。処理部36は校正系リレー16Aに対応する基準時間T2をデータ記憶部37から読み出して、実測時間T1と基準時間T2との比較を行う。
【0056】
図3の実線は校正系リレー16Aのオフ容量が理想状態のときの電圧の変化を示しており、同図の破線は校正系リレー16Aのオフ容量が異常なときの電圧の変化を示している。なお、同図の時間軸(t)方向に並列している複数の矢印はサンプリングの分解能を示している。同図に示すように、オフ容量に異常を生じている場合には波形なまりを生じており、波形の立ち上がりが鈍化する。これにより、閾値VLからVHに到達するまでの実測時間T1は基準時間T2よりも遅くなる。
【0057】
処理部36は実測時間T1と基準時間T2との間の時間差を求める。そして、この時間差が許容範囲内であれば、校正系リレー16Aのオフ容量は正常であると判定し、許容範囲外であれば、オフ容量に異常を生じていると判定する。これにより、オフ容量に異常を生じているか否かが検出される。
【0058】
従って、検査対象の校正系リレー16Aのオフ容量に異常を生じているか否かを検出することができる。タイミング校正信号に影響を与える全てのリレーについてオフ容量に異常を生じているか否かの検査を行い、全てが正常であることが認識されたときには、タイミング校正の正確性が保証される。一方、異常を生じている場合には、タイミング校正の正確性が保証されないことが認識されるようになる。
【0059】
ここでは、実測時間T1と基準時間T2との時間差に基づいてオフ容量の異常検出を行っているが、この時間差は電圧検出部33が検出する電圧の時間的な変化を示している。つまり、閾値VLとVHとは固定されていることから、検出電圧の時間的な変化は実測時間T1と基準時間T2とによって示されることになる。
【0060】
従って、検出電圧の時間的な変化を認識できればよく、例えば電圧検出部33が検出する時間を固定して、当該時間の中における電圧の上昇度を検出することによっても検出電圧の時間的な変化を認識することはできる。これによっても、オフ容量の異常検出が可能になる。
【0061】
次に、変形例1について説明する。この変形例では、検査対象の校正系リレー16Aのオフ容量(CX1とする)を求めるようにしている。前述したように、DC計測ユニット13から電圧(電圧値VF)を出力させて、校正系リレー16Aから戻ってきた電圧を検出する。これにより、実測時間T1を得る。
【0062】
そして、DC計測ユニット13と校正系リレー16Aとの間の経路の理想的な容量(経路容量)をCX2、当該経路の抵抗をRXとする。また、校正系リレー16Aのオフ容量をゼロとしたときの閾値VLからVHに到達するまでの時間を理想時間T3とする。このとき、校正系リレー16Aのオフ容量がゼロであれば、以下の式1が成立する。
「VH=VF×(1−exp(−T3/(CX2×RX)))」(式1)
【0063】
一方、校正系リレー16Aにはオフ容量CX1を生じている。このオフ容量を要因として、理想時間T3からΔtxの時間分の遅延を生じる。従って、式1は以下の式2になる。
「VH=VF×(1−exp(−(T3+Δtx)/((CX2+CX1)×RX)))」(式2)
【0064】
なお、式1および式2では、簡単のため閾値VLが0ボルトであるものとしている。式1および式2から「CX1=Δtx×CX2/T3」(式3)が得られる。Δtxは理想時間T3と実測時間T1との差分(Δtx=T1−T3)であり、理想時間T3は既知として得られ、実測時間T1は計測して得られることから、Δtxは得られる。
【0065】
また、理想的な経路容量CX2および理想時間T3は理想値であり、設計や仕様等から得られるものである。よって、Δtx、CX2、T3の全ての値を得ることができるため、校正系リレー16Aの経路容量を求めることができる。
【0066】
オフ容量CX1はゼロでなくてもよく、所定の許容範囲内であれば、タイミング校正の正確性を損なうことはない。よって、処理部36は得られたオフ容量CX1が許容範囲内であるか否かを判定し、許容範囲外のときにオフ容量の異常を検出するようにしている。
【0067】
前述した実施形態では、実測時間T1と基準時間T2とに基づいてオフ容量の異常検出を行ったが、本変形例ではオフ容量CX1を直接的に求めている。検出するのはオフ容量CX1が異常であるか否かであり、前述したように実測時間T1と基準時間T2とに基づいて行う場合と比較して直接的に異常検出を行うことができる。
【0068】
なお、ここでは、DC計測ユニット13から電圧を印加してオフ容量を得ているが、電流(電流値IF)を印加してもよい。この場合には以下の式4および式5が成立する。
「VH=(IF×T3)/CX2」(式4)
「VH=(IF×(T3+Δtx))/(CX1+CX2)」(式5)
【0069】
以上の式4および式5から「CX1=Δtx×CX2/T3」(式6)が得られる。この式6は式3と同じであり、これによりオフ容量CX1を得ることができる。
【0070】
次に、変形例2について説明する。タイミング校正信号に影響を与える校正系リレー16およびテストリレー22のオフ容量に異常を生じていることが検出されたときには、その対処を行うが、対処方法はオフ容量CX1の値によって変えている。
【0071】
オフ容量CX1の値が過剰に大きい場合には、リレーの交換を行う。これにより、オフ容量が正常なリレーを用いてタイミング校正が可能になる。一方、リレーのオフ容量は異常であるものの、その値がそれほど大きくない場合には、リレーの交換を行うのではなく、タイミング校正装置12が行うタイミング校正の時間を調整する。これにより、リレー交換の作業を要することなく正確なタイミング校正が可能になる。
【0072】
タイミング校正の時間を調整する場合には、調整時間を得ることが必要になる。この調整時間をΔtyとする。また、タイミング校正の対象となる試験回路をドライバ回路10Aとする。従って、リレー制御部14はドライバ回路10Aとタイミング校正装置12との間を接続し、他を接続しないようにリレー制御を行う。
【0073】
ドライバ回路10Aからタイミング校正装置12に電圧値VDのタイミング校正信号が出力される。タイミング校正装置12はDC計測ユニット13とほぼ同等の機構が備えられており、ドライバ回路10Aから出力されたタイミング校正信号の電圧を検出する。タイミング校正装置12で検出されるタイミング校正信号の電圧は0ボルトから徐々に上昇する。そして、タイミング校正装置12は所定電圧(VTとする)を検出したときに、タイミング校正信号の入力を検出する。
【0074】
リレー制御部14はタイミング校正信号の経路に接続される経路のリレー(校正系リレー16やテストリレー22)をオフにしており、これによりドライバ回路10Aからのタイミング校正信号がタイミング校正装置12に入力される。よって、これらのリレーのオフ容量がタイミング校正信号に影響を与える。
【0075】
リレーのオフ容量はリレーに対して並列接続されている状態になる。よって、タイミング校正信号の経路に接続される経路のリレーのオフ容量は、タイミング校正信号の経路を基準にしたときに、各オフ容量が並列接続された状態になる。従って、各リレーのそれぞれのオフ容量をcy1、cy2、・・・とすると、その合成容量CY1は「CY1=cy1+cy2+・・・」となる。
【0076】
また、ドライバ回路10Aとタイミング校正装置12との間の理想的な経路容量をCY2とし、経路抵抗をRYとする。そして、合成容量CY1をゼロとしたときに、ドライバ回路10Aからタイミング校正装置12にタイミング校正信号が入力されるまでの間の時間を理想時間T4とすると、以下の式7が成立する。
「VT=VD×(1−exp(−T4/(CY2×RY)))」(式7)
【0077】
一方、タイミング校正信号の経路に接続されるオフ状態の各リレーのオフ容量がタイミング校正信号に波形なまりを生じさせる。これにより、タイミング校正装置12がタイミング校正信号の入力を検出するまでの時間に誤差を生じる。この誤差が調整時間Δtyになる。このとき、式7は以下の式8になる。
「VT=VD×(1−exp(―(T4+Δty)/((CY2+CY1)×RY)))」(式8)
【0078】
以上の式7および式8から「Δty=CY1×T4/CY2」(式9)が得られる。T4はオフ容量の合成容量CY1がゼロのときの理想時間であり、既知の値として得ることができる。CY2も理想的な経路容量であるため、既知の値として得ることができる。
【0079】
一方、CY1は各リレーのオフ容量の合成容量である。各リレーのオフ容量cy1、cy2、・・・は変形例1で得られたCX1になる。よって、各リレーについてのオフ容量cy1、cy2、・・・も認識できているため、合成容量CY1を得ることもできる。よって、式9は以下の式10になる。
「Δty=(cy1+cy2+・・・)×T4/CY2」(式10)
【0080】
従って、調整時間Δtyを得ることができる。タイミング校正装置12は試験回路の動作タイミングに所定の遅延時間を与えることで、タイミング校正を行う。このときに、所定の遅延時間に調整時間Δtyを加味することで、リレーのオフ容量の影響を加味した正確なタイミング校正を行うことが可能になる。
【0081】
なお、本変形例では、タイミング校正信号の経路に接続されるオフ容量に異常を生じており、且つリレーの交換を必要としない場合に、調整時間Δtyを求めて、タイミング校正の時間調整を行っている。この調整時間Δtyはオフ容量が正常な場合にも適用することができる。
【0082】
つまり、リレーには所定のオフ容量が存在しているが、当該オフ容量には前述した許容範囲が設定されている。従って、当該許容範囲内であっても、調整時間Δtyを調整することで、より高精度なタイミング調整が可能になる。また、調整時間Δtyを大きくすることが可能である場合には、リレーの交換を必要とする程度に大きな時間差を生じたとしても、調整時間Δtyによりタイミング校正を行ってもよい。
【符号の説明】
【0083】
1 試験部
2 DUT
10 ドライバ回路
11 コンパレータ回路
12 タイミング校正装置
13 DC計測ユニット
14 リレー制御部
15 校正経路
16 校正系リレー
17 リレートーナメント
18 フォース線
19 センス線
21 テスト経路
22 テストリレー
31 出力制御部
32 電流電圧出力部
33 電圧検出部
34 サンプリング部
35 時間計測部
36 処理部
37 データ記憶部

【特許請求の範囲】
【請求項1】
被試験デバイスの試験を行うための試験回路を設けた試験部を備える半導体試験装置であって、
前記試験部に設けられる複数のリレーのうち検査対象のリレーをオフにして電圧または電流を出力して前記リレーからの電圧を検出し、検出した電圧の時間的な変化に基づいて、前記リレーのオフ容量に異常を生じているか否かを検出する異常検出部を備えたこと
を特徴とする半導体試験装置。
【請求項2】
前記異常検出部は、
検出した電圧が第1の閾値からこの第1の閾値よりも高い第2の閾値に到達するまでの時間を実測時間として計測する時間計測部と、
前記オフ容量に異常を生じていないときの前記第1の閾値から前記第2の閾値に到達するまでの時間を基準時間として、前記時間計測部が計測する実測時間と前記基準時間との間の時間差に基づいて、前記異常を生じているか否かの判定を行う処理部と、
を備えていることを特徴とする請求項1記載の半導体試験装置。
【請求項3】
前記処理部は、前記検査対象のリレーと前記異常検出部との間の経路の理想的な経路容量、前記検査対象のリレーのオフ容量がないときの前記到達時間および前記時間差に基づいて、前記検査対象のリレーのオフ容量を検出していること
を特徴とする請求項2記載の半導体試験装置。
【請求項4】
前記試験回路のうちタイミング校正の対象となる試験回路との間でタイミング校正信号の授受を行い、このタイミング校正信号の授受の時間に基づいて、前記試験回路の動作タイミングを校正するタイミング校正部を備え、
このタイミング校正部は、前記試験回路と前記タイミング校正部との間の経路に接続されるオフ状態のリレーのオフ容量の合成容量、前記経路の理想的な経路容量および前記合成容量がゼロのときの前記タイミング校正信号が検出されるまでの時間に基づいて、前記合成容量に基づくタイミング校正の誤差を検出し、前記試験回路のタイミング校正を行うときに前記誤差を調整してタイミング校正を行うこと
を特徴とする請求項3記載の半導体試験装置。
【請求項5】
被試験デバイスの試験を行うための試験部に設けたリレーのオフ容量の異常を検出するリレーのオフ容量異常検出方法であって、
前記リレーのうち検査対象のリレーをオフにした状態で、このリレーに電流または電圧を印加して、前記リレーからの電圧を検出し、
検出した電圧の時間的な変化に基づいて、前記リレーのオフ容量に異常を生じているか否かを検出すること
を特徴とするリレーのオフ容量異常検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate