説明

原子励起層形成方法、原子励起層形成装置および磁場計測システム

【課題】光ポンピングを利用した測定装置が備えるセルに封入された媒体の原子スピンの緩和を抑制する効果を、場所によって均一に、かつ長期間継続して得ること。
【解決手段】原子励起層形成装置は、光ポンピングを利用した測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面を覆う原子励起層を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原子励起層形成方法、原子励起層形成装置および磁場計測システムに関する。
【背景技術】
【0002】
光ポンピングを利用した測定装置においては、セルに封入された媒体の原子がセルの内壁面に衝突すると、媒体の原子の原子スピンが緩和されてしまい、この結果、測定対象の検出感度が低下してしまう。そこで、特許文献1には、セルの内壁面に衝突した媒体の原子スピンを強制的に復帰させる事により、媒体の原子の原子スピンが緩和されてしまうことを抑制することを目的として、内壁面に非磁性物質がコーティングされたセルを光ポンピング磁束計に用いることが記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2007−167616号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記技術では、コーティングの状態が場所によって均一でないと、媒体の原子の原子スピンの緩和を抑制する効果を、場所によって均一に得ることができない。また、コーティングが経年変化してしまうので、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができない。そこで、本発明は、上記課題を解決することで、光ポンピングを利用した測定装置が備えるセルの内部空間に封入された媒体の原子スピンの緩和を抑制する効果を、均一かつ長期間継続して得ることができる、原子励起層形成方法、原子励起層形成装置および磁場計測システムを提供するものである。
【課題を解決するための手段】
【0005】
上記課題を解決するため、本発明の第1の態様の原子励起層形成方法は、光ポンピングを利用した測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成することを特徴とする。係る構成によれば、セルの壁部の内部空間側の表面において、原子励起層形成用ビームの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、原子励起層形成用ビームの進行方向の全域に亘って得ることができる。また、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成するため、原子励起層形成用ビームを照射し続けることで、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。
【0006】
上記原子励起層形成方法において、前記内部空間の端面において、前記内部空間の端面を包含する面形状となる前記原子励起層形成用ビームを、前記内部空間の端面に対して照射してもよい。係る構成によれば、セルの壁部の内部空間側の表面において、セルの壁部の周方向の全域に亘って均一な原子励起層を形成することができる。したがって、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、セルの壁部の周方向の全域に亘って得ることができる。
【0007】
上記原子励起層形成方法において、前記測定装置が備える光ポンピングビーム照射装置が前記セルに照射する光ポンピングビームと同一の波長の前記原子励起層形成用ビームを、前記セルに対して照射してもよい。係る構成によれば、セルの壁部に衝突した媒体の原子を、生成した原子励起層で励起し、強制的に原子スピンを復帰することができる。また、原子励起層形成用ビームの照射源と、光ポンピングビームの照射源とで、構成部品を共用することができるため、原子励起層形成用ビームの照射源にかかるコストを削減することができる。
【0008】
また、本発明の第2の態様の原子励起層形成装置は、光ポンピングを利用した測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成することを特徴とする。係る構成によれば、セルの壁部の内部空間側の表面において、原子励起層形成用ビームの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、原子励起層形成用ビームの進行方向の全域に亘って得ることができる。また、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成するため、原子励起層形成用ビームを照射し続けることで、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。
【0009】
また、本発明の第3の態様の磁場計測システムは、光ポンピングを利用した測定装置と、前記測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成する原子励起層形成装置とを備えることを特徴とする。係る構成によれば、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、均一かつ長期間継続して得ることができるため、均一かつ長期間安定した検出感度で、測定対象を測定することができる。
【0010】
上記磁場計測システムにおいて、前記測定装置は、複数の前記セルを有し、当該磁場計測システムは、前記複数のセルのそれぞれに対して、前記原子励起層形成装置が設けられていてもよい。係る構成によれば、測定装置が備える複数のセルのそれぞれに対して、セルの壁部の内部空間側の表面において、原子励起層形成用ビームの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、測定装置が備える複数のセルのそれぞれに対して、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、原子励起層形成用ビームの進行方向の全域に亘って得ることができる。また、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成するため、測定装置が備える複数のセルのそれぞれに対して、原子励起層形成用ビームを照射し続けることで、測定装置が備える複数のセルのそれぞれに対して、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。
【0011】
上記磁場計測システムにおいて、前記測定装置は、複数の前記セルを有し、当該磁場計測システムは、前記原子励起層形成装置から出力された前記原子励起層形成用ビームを、複数の前記原子励起層形成用ビームに分岐し、前記複数のセルのそれぞれに対して、前記原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させる光スプリッターをさらに備えてもよい。係る構成によれば、測定装置が備える複数のセルのそれぞれに対して、セルの壁部の内部空間側の表面において、原子励起層形成用ビームの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、測定装置が備える複数のセルのそれぞれに対して、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、原子励起層形成用ビームの進行方向の全域に亘って得ることができる。また、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成するため、測定装置が備える複数のセルのそれぞれに対して、原子励起層形成用ビームを照射し続けることで、測定装置が備える複数のセルのそれぞれに対して、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。特に、原子励起層形成装置から出力された原子励起層形成用ビームを複数の原子励起層形成用ビームに分岐して、複数のセルに照射するので、複数のセルに照射される原子励起層形成用ビームのプロファイルのばらつきを容易に抑えることができる。また、複数のセルに照射される原子励起層形成用ビームのプロファイルを変更する場合、原子励起層形成装置から出力される原子励起層形成用ビームのプロファイルを変更すればよいため、複数のセルに照射される原子励起層形成用ビームのプロファイルを容易に変更することができる。
【図面の簡単な説明】
【0012】
【図1】第1実施例に係る磁場計測システム10の構成を示す。
【図2】原子励起層が形成された状態のセル210の断面を示す。
【図3】原子励起層が形成された状態のセル210の断面を示す。
【図4】第2実施例に係る磁場計測システム10の構成を示す。
【図5】第3実施例に係る磁場計測システム10の構成を示す。
【発明を実施するための形態】
【0013】
<第1実施例>
図1は、第1実施例に係る磁場計測システム10の構成を示す。磁場計測システム10は、測定対象の測定位置での磁場を計測する。たとえば、磁場計測システム10は、脳磁計、心磁計などの、数fT(フェムトテスラ)以下の非常に微弱な磁場を測定する生体計測システムに用いられる。磁場計測システム10は、光ポンピングを利用した測定装置である光ポンピング磁力計200を備える。光ポンピング磁力計200は、セル210、プローブ光照射装置220、光ポンピングビーム照射装置230、および検出装置240を有する。
【0014】
セル210は、内部空間を有する筒形状を有する。図1に示す例では、セル210は、円筒形状を有している。セル210の内部空間には、媒体の一例としてアルカリ金属ガスの一つであるセシウムガスが封入されている。
【0015】
光ポンピングビーム照射装置230は、セル210に対して光ポンピングビーム230Aを照射する。具体的には、光ポンピングビーム照射装置230は、セル210の内部空間に封入されている媒体の光ポンピングに適した波長の円偏光を、光ポンピングビーム230Aとしてx軸方向(セル210の中心軸方向)からセル210へ照射して、セル210の内部空間を通過させる。これにより、セル210の内部空間に封入されている媒体の原子が励起され、電子スピンの向きが揃えられる。
【0016】
プローブ光照射装置220は、セル210に対してプローブ光220Aを照射する。具体的には、プローブ光照射装置220は、セル210の内部空間に封入されている媒体の原子の電子スピンの向きが揃えられた状態で、直線偏光を、プローブ光220Aとしてy軸方向(x軸方向と直交する方向)からセル210へ照射して、セル210の内部空間を通過させる。セル210の内部空間を通過したプローブ光220Aは、測定対象の測定位置での磁場の強度に応じて、偏光面が回転される。
【0017】
検出装置240は、セル210から出射されたプローブ光220Aから、測定対象の測定位置における磁場の強度を検出する。たとえば、検出装置240は、偏光板によって、セル210から出射されたプローブ光220Aから特定の回転角度の偏光を透過する。そして、検出装置240は、フォトダイオードによって、偏光板を透過した偏光の強度を検出する。さらに、検出装置240は、検出した偏光の強度および回転角度に基づいて、セル210から出射されたプローブ光220Aの偏光回転角を算出する。そのうえ、検出装置240は、検出された偏光回転角に基づいて、測定対象の測定位置における磁場の強度を算出する。
【0018】
本実施形態の磁場計測システム10は、原子励起層形成装置100をさらに備える。原子励起層形成装置100は、セル210に対して、原子励起層形成用ビーム100Aを照射して、セル210の壁部(セル210の壁部のうちのx軸方向に延伸する壁部)の内部空間側の表面(以下、「内壁面」という)に沿って、セル210の壁部の内部空間に原子励起層形成用ビーム100Aを通過させることにより、セル210の内壁面に、セル210の内部空間に封入されている媒体の原子を励起する原子励起層を形成する。具体的には、原子励起層形成装置100は、光ポンピングビーム230Aの波長と同一の波長の原子励起層形成用ビーム100Aをx軸方向からセル210の内部空間の端面へ照射して、セル210の内壁面に沿って、セル210の内部空間に原子励起層形成用ビーム100Aを通過させる。これにより、原子励起層形成装置100は、セル210の内壁面を覆う原子励起層であって、セル210に封入されている媒体の原子を励起する原子励起層を、セル210の内壁面における原子励起層形成用ビーム100Aの進行方向の全域に亘って均一に形成する。
【0019】
原子励起層形成装置100は、セル210の内部空間の端面において、セル210の内部空間の端面を包含する面形状となる原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対して照射することで、セル210の内壁面において、セル210の壁部の周方向の全域に亘って均一な原子励起層を形成する。たとえば、原子励起層形成装置100は、セル210の内部空間の端面において、セル210の内部空間の端面の形状と同一の面形状となる原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対して照射する。図1に示す例では、セル210の内部空間の端面は円形状を有しているので、原子励起層形成装置100は、セル210の内部空間の端面において円形状となる原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対して照射する。このようにして、原子励起層形成装置100は、セル210の内壁面の全域に亘って、均一かつ経年変化の少ない原子励起層を効率的に形成する。
【0020】
セル210の内壁面が原子励起層で覆われることで、セル210の壁部へ衝突した媒体の原子は、セル210の壁部の手前にある原子励起層で励起され、強制的に原子スピンが復帰される。原子励起層形成装置100は、セル210の内壁面に対して、不均一かつ経年変化の多い物理的なコーティングを施さずに、均一かつ経年変化の少ない原子励起層を形成するため、媒体の原子の原子スピンの緩和を抑制する効果を、均一かつ長期間継続して得ることができる。
【0021】
図2は、原子励起層が形成された状態のセル210の壁部の断面を示す。図2では、原子励起層が形成された状態のセル210の壁部を、原子励起層形成用ビーム100Aの進行方向であるx軸方向から見たときの断面を示す。原子励起層形成装置100は、セル210の内部空間の端面において、セル210の内壁面の周方向の全域に亘って、原子励起層形成用ビーム100Aを照射する。これにより、図2に示すように、セル210の内壁面には、セル210の内壁面の周方向の全域に亘って、セル210の内壁面を覆う原子励起層210Aが形成される。
【0022】
図3は、原子励起層が形成された状態のセル210の壁部の断面を示す。図3では、原子励起層が形成された状態のセル210壁部を、原子励起層形成用ビーム100Aの進行方向と直交する方向から見たときの断面を示す。原子励起層形成装置100は、セル210の内壁面に沿ってセル210の内部空間を通過する条件を満たす原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対してx軸方向から照射する。たとえば、原子励起層形成装置100は、下記条件(1)および(2)を満たす原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対してx軸方向から照射する。(1)セル210の内部空間の端面(断面)と同一の面形状を有する。(2)セル210の内部空間の軸方向と進行方向が平行である。
【0023】
原子励起層形成装置100から照射された原子励起層形成用ビーム100Aは、セル210の内壁面に沿って、セル210の内部空間をx軸方向に通過する。これにより、図3に示すように、セル210の内壁面には、x軸方向(原子励起層形成用ビーム100Aの進行方向)の全域に亘って、セル210の内壁面を覆う原子励起層210Aが形成される。
【0024】
<第2実施例>
図4は、第2実施例に係る磁場計測システム10の構成を示す。図4に示す磁場計測システム10は、角筒形状のセル210が、プローブ光220Aの照射方向(y軸方向)に複数設けられており、複数のセル210のそれぞれに対して、光ポンピングビーム照射装置230と、原子励起層形成装置100とが設けられている点で、図1に示した磁場計測システム10と異なる。複数の原子励起層形成装置100のそれぞれは、第1実施例で説明した原子励起層形成装置100と同様に動作する。すなわち、複数の原子励起層形成装置100のそれぞれは、対応するセル210に原子励起層形成用ビーム100Aを照射することで、対応するセル210の内壁面に、原子励起層を形成する。
【0025】
第2実施例に係る磁場計測システム10によれば、複数のセル210のそれぞれに対して、セル210の内壁面において、セル210の内壁面の周方向の全域、および原子励起層形成用ビーム100Aの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、複数のセル210のそれぞれに対して、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、セル210の内壁面の周方向の全域、原子励起層形成用ビーム100Aの進行方向の全域に亘って得ることができる。また、複数のセル210のそれぞれに対して、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成する。このため、複数のセル210のそれぞれに対して、原子励起層形成用ビーム100Aを照射し続けることで、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。
【0026】
なお、第2実施例に係る磁場計測システム10においては、セル210が1軸(y軸)方向に複数設けられているが、セル210が2軸方向に複数設けられてもよい。たとえば、複数のセル210が、x軸方向から見て格子状に並べて設けられてもよい。これらの場合も、複数のセル210の位置に対応して、複数の原子励起層形成装置100、および複数の光ポンピングビーム照射装置230を設け、複数のセル210のそれぞれに対して、第1実施例で説明した原子励起層形成装置100が照射する原子励起層形成用ビーム100Aと同条件の原子励起層形成用ビーム100Aを照射することで、複数のセル210のそれぞれの内壁面に、原子励起層を形成することができる。
【0027】
<第3実施例>
図5は、第3実施例に係る磁場計測システム10の構成を示す。図5に示す磁場計測システム10は、複数の原子励起層形成装置100の代わりに、一の原子励起層形成装置100と、光スプリッター510とを備える点で、図4に示した磁場計測システム10と異なる。光スプリッター510は、原子励起層形成装置100から出力された原子励起層形成用ビーム100Aを、複数の原子励起層形成用ビーム100Aに分岐する。具体的には、光スプリッター510は、原子励起層形成装置100の位置に対応して設けられた入射口から入射された原子励起層形成用ビーム100Aを、セル210の数分の原子励起層形成用ビーム100Aに分岐する。複数の原子励起層形成用ビーム100Aのそれぞれは、対応するセル210の位置に対応して設けられた出射口から出射され、対応するセル210に対して照射される。
【0028】
光スプリッター510は、複数のセル210のそれぞれに対して、第1実施例で説明した原子励起層形成装置100と同様に、セル210の内壁面に沿ってセル210の内部空間を通過する条件を満たす原子励起層形成用ビーム100Aを、セル210の内部空間の端面に対してx軸方向から照射する。すなわち、光スプリッター510は、複数のセル210のそれぞれに対して、第1実施例で説明した原子励起層形成装置100が照射する原子励起層形成用ビーム100Aと同条件の原子励起層形成用ビーム100Aを照射することで、複数のセル210のそれぞれの内壁面に、原子励起層を形成する。
【0029】
第3実施例に係る磁場計測システム10によれば、複数のセル210のそれぞれに対して、セル210の内壁面において、セル210の内壁面の周方向の全域、および原子励起層形成用ビーム100Aの進行方向の全域に亘って均一な原子励起層を形成することができる。したがって、複数のセル210のそれぞれに対して、セルの内部空間に封入された媒体の原子の原子スピンの緩和を抑制する効果を、セル210の内壁面の周方向の全域、原子励起層形成用ビーム100Aの進行方向の全域に亘って得ることができる。また、複数のセル210のそれぞれに対して、経年変化の多い物理的なコーティングを施さずに、経年変化の少ない原子励起層を形成する。このため、複数のセル210のそれぞれに対して、原子励起層形成用ビーム100Aを照射し続けることで、媒体の原子の原子スピンの緩和を抑制する効果を、長期間継続して得ることができる。
【0030】
特に、第3実施例に係る磁場計測システム10によれば、一の原子励起層形成装置100から出力された原子励起層形成用ビーム100Aを複数の原子励起層形成用ビーム100Aに分岐して、複数のセル210に照射するので、複数のセル210に照射される原子励起層形成用ビーム100Aのプロファイルのばらつきを容易に抑えることができる。また、複数のセル210に照射される原子励起層形成用ビーム100Aのプロファイルを変更する場合、原子励起層形成装置100から出力される原子励起層形成用ビーム100Aのプロファイルを変更すればよいため、複数のセル210に照射される原子励起層形成用ビーム100Aのプロファイルを容易に変更することができる。
【0031】
図5に示す磁場計測システム10は、複数の光ポンピングビーム照射装置230の代わりに、一の光ポンピングビーム照射装置230と、光スプリッター520とを備える点でも、図4に示した磁場計測システム10と異なる。光スプリッター520は、光ポンピングビーム照射装置230から出力された光ポンピングビーム230Aを、複数の光ポンピングビーム230Aに分岐する。具体的には、光スプリッター520は、光ポンピングビーム照射装置230の位置に対応して設けられた入射口から入射された光ポンピングビーム230Aを、セル210の数分の光ポンピングビーム230Aに分岐する。複数の光ポンピングビーム230Aのそれぞれは、対応するセル210の位置に対応して設けられた出射口から出射され、対応するセル210に対して照射される。
【0032】
第3実施例に係る磁場計測システム10によれば、一の光ポンピングビーム照射装置230から出力された光ポンピングビーム230Aを複数の光ポンピングビーム230Aに分岐して、複数のセル210に照射するので、複数のセル210に照射される光ポンピングビーム230Aのプロファイルのばらつきを容易に抑えることができる。また、複数のセル210に照射される光ポンピングビーム230Aのプロファイルを変更する場合、光ポンピングビーム照射装置230から出力される光ポンピングビーム230Aのプロファイルを変更すればよいため、複数のセル210に照射される光ポンピングビーム230Aのプロファイルを容易に変更することができる。
【0033】
なお、第3実施例に係る磁場計測システム10においては、セル210が1軸(y軸)方向に複数設けられているが、セル210が2軸方向に複数設けられてもよい。たとえば、複数のセル210が、x軸方向から見て格子状に並べて設けられてもよい。これらの場合も、複数のセル210の位置に対応して、複数の原子励起層形成用ビーム100Aを照射する光スプリッター510、および複数の複数の光ポンピングビーム230Aを照射する光スプリッター520を設け、複数のセル210のそれぞれに対して、第1実施例で説明した原子励起層形成装置100が照射する原子励起層形成用ビーム100Aと同条件の原子励起層形成用ビーム100Aを照射することで、複数のセル210のそれぞれの内壁面に、原子励起層を形成することができる。
【0034】
第3実施例に係る磁場計測システム10において、原子励起層形成装置100および光スプリッター510を複数備え、複数の原子励起層形成装置100および光スプリッター510によって、複数のセル210のそれぞれに対して、原子励起層形成用ビーム100Aを照射してもよい。また、光ポンピングビーム照射装置230および光スプリッター520を複数備え、複数の光ポンピングビーム照射装置230および光スプリッター520によって、複数のセル210のそれぞれに対して、光ポンピングビーム230Aを照射してもよい。
【0035】
本実施形態の磁場計測システム10は、第1実施例−第3実施例で説明した構成に限らない。たとえば、原子励起層形成装置100と光ポンピングビーム照射装置230とは、図4に示すように、セル210を挟んで対向して設けられていてもよく、図1に示すように、セル210の一方の方向に設けられていてもよい。また、磁場計測システム10は、磁場を計測するシステムであれば、生体計測システムに限らず、これ以外のシステムにも用いてもよい。また、原子励起層形成装置100は、セル210に封入されている媒体の光ポンピングに適した波長の円偏光であれば、光ポンピングビーム230Aの波長と同一の波長の原子励起層形成用ビーム100Aをセル210へ照射してもよく、光ポンピングビーム230Aの波長と異なる波長の原子励起層形成用ビーム100Aをセル210へ照射してもよい。
【0036】
また、原子励起層形成装置100は、原子励起層形成用ビーム100Aの幅を調整することで、原子励起層の幅を調整することができる調整機構を有してもよい。これにより、たとえば、ユーザーは、原子励起層の幅を、光ポンピングセンサー感度が最も高くなるように、容易に調整することができる。
【0037】
また、セル210は、円筒形状および角筒形状に限らず、セル210の内壁面に沿って、セル210の内部空間に原子励起層形成用ビーム100Aを通過させることができるものであれば、これ以外の形状を有してもよい。また、原子励起層形成装置100は、セル210の内部空間の端面の形状に合わせて原子励起層形成用ビーム100Aの面形状を調整することができる調整機構を有していてもよい。また、セル210に封入される媒体には、セシウムガスに限らず、これ以外の、カリウムガス、ルビジウムガスなどのアルカリ金属ガスを用いてもよい。また、セル210に封入される媒体には、アルカリ金属ガスに限らず、これ以外の、希ガスなどの媒体を用いてもよい。また、原子励起層形成装置100は、セル210に封入されている媒体に合わせて原子励起層形成用ビーム100Aの波長を調整することができる調整機構を有していてもよい。
【符号の説明】
【0038】
10…磁場計測システム、100…原子励起層形成装置、100A…原子励起層形成用ビーム、200…光ポンピング磁力計、210…セル、210A…原子励起層、220…プローブ光照射装置、220A…プローブ光、230…光ポンピングビーム照射装置、230A…光ポンピングビーム、240…検出装置、510…光スプリッター、520…光スプリッター

【特許請求の範囲】
【請求項1】
光ポンピングを利用した測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成する
ことを特徴とする原子励起層形成方法。
【請求項2】
前記内部空間の端面において、前記内部空間の端面を包含する面形状となる前記原子励起層形成用ビームを、前記内部空間の端面に対して照射する
ことを特徴とする請求項1に記載の原子励起層形成方法。
【請求項3】
前記測定装置が備える光ポンピングビーム照射装置が前記セルに照射する光ポンピングビームと同一の波長の前記原子励起層形成用ビームを、前記セルに対して照射する
ことを特徴とする請求項1または2に記載の原子励起層形成方法。
【請求項4】
光ポンピングを利用した測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成する
ことを特徴とする原子励起層形成装置。
【請求項5】
光ポンピングを利用した測定装置と、
前記測定装置が備える内部空間を有するセルに対して、原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させることにより、前記セルの壁部の前記内部空間側の表面に、前記内部空間に封入されている媒体の原子を励起する原子励起層を形成する原子励起層形成装置と
を備えることを特徴とする磁場計測システム。
【請求項6】
前記測定装置は、
複数の前記セルを有し、
当該磁場計測システムは、
前記複数のセルのそれぞれに対して、前記原子励起層形成装置が設けられている
ことを特徴とする請求項5に記載の磁場計測システム。
【請求項7】
前記測定装置は、
複数の前記セルを有し、
当該磁場計測システムは、
前記原子励起層形成装置から出力された前記原子励起層形成用ビームを、複数の前記原子励起層形成用ビームに分岐し、前記複数のセルのそれぞれに対して、前記原子励起層形成用ビームを照射して、前記セルの壁部の前記内部空間側の表面に沿って、前記内部空間に前記原子励起層形成用ビームを通過させる光スプリッターをさらに備える
ことを特徴とする請求項5に記載の磁場計測システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−106950(P2011−106950A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−261968(P2009−261968)
【出願日】平成21年11月17日(2009.11.17)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】