説明

受信されるSPS信号における曖昧さを減らすためのシステムおよび/または方法

【課題】衛星ナビゲーションシステムにおけるSV(宇宙船)から受信される信号に関連する曖昧さを解決するためのシステムおよび方法を提供する。
【解決手段】基準位置において第1の宇宙船(SV)から獲得される第1の信号から導き出される第1の擬似距離仮説を、基準位置から第1のSVまでの第1の距離と、基準位置から第2のSVまでの第2の距離との推定される差に少なくとも部分的に基づいて、基準位置において第2のSVから受信される第2の信号から導き出される1つまたは複数の第2の擬似距離仮説に関連付け、関連付けられた第1の擬似距離仮説に少なくとも部分的に基づいて、第1の信号を変調するデータ信号のビットエッジの位相の曖昧さを減らす。

【発明の詳細な説明】
【関連出願】
【0001】
本出願は、2006年8月23日に出願した、「FAST BIT EDGE DETECTION ON LEGACY GPS USING NEW GNSS SIGNALS」という名称の米国特許仮出願第60/839,854号の利益を主張する。前述した出願の全体は、参照により本明細書に組み込まれる。
【技術分野】
【0002】
本明細書で開示される主題は、ジオロケーション衛星から受信された信号に基づいて、位置を特定することに関する。
【背景技術】
【0003】
(情報)
SPS(衛星測位システム)は、エンティティが、少なくとも部分的に衛星から受信された信号に基づいて、地球上のエンティティの位置を特定することを可能にする地球軌道衛星のシステムを、通常、備える。そのようなSPS衛星は、通常、一定の数のチップの繰り返されるPN(擬似ランダム雑音)符号でマークを付けられた信号を送信する。例えば、GPSまたはGalileoなどのGNSS(Global Navigation Satellite System)の群における衛星は、その群における他の衛星によって送信されたPN符号とは区別可能なPN符号でマークが付けられた信号を送信することができる。
【0004】
受信機において位置を推定するのに、ナビゲーションシステムは、少なくとも部分的に衛星から受信された信号の中のPN符号の検出に基づく、よく知られた技術を使用して、受信機から「見える」衛星までの擬似距離測定値を算出することができる。衛星までのそのような擬似距離は、受信機において受信信号を獲得するプロセス中に、その衛星に関連するPN符号でマークが付けられた受信信号の中で検出される符号位相に少なくとも部分的に基づいて算出することができる。受信信号を獲得するのに、ナビゲーションシステムは、通常、受信信号を、衛星に関連する、ローカルで生成されたPN符号と互いに関係付ける。例えば、そのようなナビゲーションシステムは、通常、そのような受信信号を、そのようなローカルで生成されたPN符号の複数の符号偏移バージョンおよび/または時間偏移バージョンと互いに関係付ける。最も高い信号電力を有する相関結果をもたらす、或る特定の時間偏移バージョンおよび/または符号偏移バージョンの検出が、前述したとおり擬似距離を測定する際に使用するための獲得された信号に関連する符号位相を示すことが可能である。
【0005】
GNSS衛星から受信された信号の符号位相が検出されると、受信機は、複数の擬似距離仮説を形成することができる。さらなる情報を使用して、受信機は、そのような擬似距離仮説を排除して、事実上、真の擬似距離測定値に関連する曖昧さを減らすことができる。周期的に繰り返されるPN符号列を使用して符号化されることに加えて、GNSS衛星によって送信される信号は、例えば、データ信号および/または知られている一連の値などの、さらなる情報によって変調されることも可能である。GNSS衛星から受信された信号の中で、そのようなさらなる情報を検出することによって、受信機は、受信信号に関連する擬似距離仮説を排除することができる。
【0006】
図1Aは、無線通信システムにおける加入者局100が、加入者局100の見通し線にある衛星102a、102b、102c、102dからの伝送を受信し、これらの伝送の4つ以上から時間測定値を導き出す、SPSシステムの応用例を示す。加入者局100は、そのような測定値を、これらの測定値から局の位置を特定するPDE(位置特定エンティティ)104に供給することができる。代替として、加入者局100が、この情報から、自らの位置を特定してもよい。
【0007】
加入者局100は、或る特定の衛星からの伝送を、この衛星に関するPN符号を、受信信号と互いに関係付けることによって探索することができる。受信信号は、雑音がある状態で、局100における受信機の見通し線の範囲に入っている1つまたは複数の衛星からの伝送の複合(composite)を、通常、備える。互いに関係付けることは、符号位相探索窓WCPとして知られる符号位相仮説の範囲、およびドップラー探索窓WDOPPとして知られるドップラー周波数仮説の範囲にわたって実行されることが可能である。前述したとおり、そのような符号位相仮説は、通常、或る範囲のPN符号偏移として表される。また、ドップラー周波数仮説は、通常、ドップラー周波数ビンとして表される。
【0008】
互いに関係付けることは、通常、NとMの積として表現されることが可能な積分時間「I」にわたって実行され、ただし、Nは、コヒーレント積分時間であり、Mは、非コヒーレントに組み合わされるコヒーレント積分の数である。或る特定のPN符号に関して、相関値は、通常、対応するPN符号偏移およびドップラービンに関連付けられて、2次元の相関関数を定義する。この相関関数のピークが、探し出されて、所定の雑音しきい値と比較される。このしきい値は、衛星伝送を誤って検出する確率である、誤り警報確率が、所定の値以下であるように選択される。衛星に関する時間測定値は、このしきい値と等しい、またはこのしきい値を超える符号位相次元に沿った最も早期の非サイドローブのピークの位置から、通常、導き出される。加入者局に関するドップラー測定値は、このしきい値と等しい、またはこのしきい値を超えるドップラー周波数次元に沿った最も早期の非サイドローブのピークの位置から導き出されることが可能である。
【0009】
獲得されたGNSS信号に関連する擬似距離仮説の曖昧さを解決することは、電力リソースおよび処理リソースを消費する。電力リソースおよび処理リソースのそのような消費は、移動電話機や他のデバイスなどのポータブル製品において、通常、クリティカルな設計上の制約である。
【0010】
限定的でなく、網羅的でないフィーチャが、以下の図に関連して説明され、同様の符号は、様々な図のすべてにわたって、同様の部分を参照する。
【発明の概要】
【0011】
一態様では、第1のSVから受信機において受信される第1のSPS信号が、データ信号によって変調される。本明細書で例示される1つの特定のフィーチャにおいて、システムおよび方法は、受信機において受信された第2のSPS信号の中の情報に少なくとも部分的に基づいて、データ信号の中のビットエッジの曖昧さを減らすことに向けられる。しかし、これは、単に、本明細書で説明される或る特定の例による1つの特定のフィーチャに過ぎないこと、および主張される主題は、これに関して限定されないことを理解されたい。
【図面の簡単な説明】
【0012】
【図1A】一態様によるSPS(衛星測位システム)の概略図。
【図1B】一態様による、受信されたGNSS信号の擬似距離仮説を示すタイミング図。
【図2】一態様による、SV(宇宙船)までの擬似距離を測定することによって、受信機において位置を特定することができるシステムの概略図。
【図3】一態様による、SVから獲得された信号の曖昧さを減らすためのプロセスを示す流れ図。
【図4】一態様による、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図5A】代替のフィーチャによる、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図5B】代替のフィーチャによる、第2のSPS信号の獲得の際に第1のSPS信号を変調するデータ信号のビットエッジの検出の使用を示すタイミング図。
【図6A】代替のフィーチャによる、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図6B】代替のフィーチャによる、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図6C】代替のフィーチャによる、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図6D】代替のフィーチャによる、異なるSVから獲得された信号から導き出された擬似距離仮説の関連付けを示すタイミング図。
【図7】一態様による、宇宙船から送信された信号の検出のために探索されるべき2次元領域の概略図。
【図8】一態様による、セグメント境界において現れる欠落したピークを回避する、探索窓内の所定の数のチップによる重複を示す図。
【図9】一態様による、信号を処理して、位置ロケーションを特定するためのシステムの概略図。
【図10】一態様による加入者局の概略図。
【発明を実施するための形態】
【0013】
本明細書全体にわたって「一例」、「1つのフィーチャ」、「或る例」、または「1つのフィーチャ」について述べていることは、そのフィーチャおよび/またはその例に関連して説明される或る特定のフィーチャ、構造、または特徴が、主張される主題の少なくとも1つのフィーチャおよび/または例に含まれることを意味する。このため、本明細書全体にわたる様々な箇所における「一例において」、「或る例」、「1つのフィーチャにおいて」、または「或るフィーチャ」という句の出現は、必ずしもすべて、同一のフィーチャおよび/または同一の例を指すわけではない。さらに、それらの特定のフィーチャ、構造、または特性は、1つまたは複数の例および/またはフィーチャにおいて組み合わされることが可能である。
【0014】
本明細書で説明される方法は、特定のフィーチャおよび/または例によるアプリケーションに依存して、様々な手段によって実施されることが可能である。例えば、そのような方法は、ハードウェアにおいて、ファームウェアにおいて、ソフトウェアにおいて、さらに/または以上の組み合わせにおいて実施されることが可能である。例えば、ハードウェア実施形態では、処理装置が、1つまたは複数のASIC(特定用途向け集積回路)、DSP(ディジタル信号プロセッサ)、DSPD(ディジタル信号処理デバイス)、PLD(プログラミング可能なロジックデバイス)、FPGA(フィールドプログラマブルゲートアレー)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明される機能を実行するように設計された他のデバイスユニット、および/または以上の組み合わせの内部で実施されることが可能である。
【0015】
本明細書で言及される「命令」は、1つまたは複数の論理的動作を表す表現に関する。例えば、命令は、1つまたは複数のデータオブジェクトに対して1つまたは複数の動作を実行するためにマシンによって解釈可能であることによって、「マシン可読」であることが可能である。しかし、これは、単に命令の例に過ぎず、主張される主題は、これに関して限定されない。別の例において、本明細書で言及される命令は、符号化されたコマンドを含むコマンドセットを有する処理回路によって実行可能である、符号化されたコマンドと関係することが可能である。そのような命令は、処理回路によって理解される機械語の形態で符号化されることが可能である。この場合も、これらは、単に命令の例に過ぎず、主張される主題は、これに関して限定されない。
【0016】
本明細書で言及される「記憶媒体」は、1つまたは複数のマシンが認識することができる表現を保持することができる媒体と関係する。例えば、記憶媒体は、マシン可読命令および/またはマシン可読情報を格納するための1つまたは複数の記憶媒体を備えることが可能である。そのような記憶装置は、例えば、磁気記憶媒体、光記憶媒体、または半導体記憶媒体を含む、いくつかの媒体タイプのいずれか1つを備えることが可能である。また、そのような記憶装置は、任意のタイプの長期、短期、揮発性、または不揮発性のメモリデバイスを備えることも可能である。しかし、これらは、単に記憶媒体の例に過ぎず、主張される主題は、これらに関して限定されない。
【0017】
特に明記しない限り、以下の説明から明らかなとおり、本明細書全体にわたって、「処理すること」、「算出すること」、「計算すること」、「選択すること」、「形成すること」、「可能にすること」、「阻止すること」、「探し出すこと」、「終了すること」、「識別すること」、「開始すること」、「検出すること」、「獲得すること」、「ホストすること」、「保持すること」、「表現すること」、「推定すること」、「減らすこと」、「関連付けること」、「受信すること」、「送信すること」、「特定すること」、および/または以上に類する用語などの用語を利用する説明は、コンピュータプラットフォームのプロセッサ、メモリ、レジスタ、および/または他の情報記憶装置、送信装置、受信装置、および/または表示装置の内部の物理的な電子的量および/または磁気的量、および/または他の物理的量として表されたデータを操作し、さらに/または変換する、コンピュータ、または類似した電子コンピューティングデバイスなどの、コンピューティングプラットフォームによって実行されることが可能なアクションおよび/またはプロセスを指すものと理解される。そのようなアクションおよび/またはプロセスは、例えば、記憶媒体の中に格納されたマシン可読命令の制御下でコンピューティングプラットフォームによって実行されることが可能である。そのようなマシン可読命令は、コンピューティングプラットフォームの一部として含められた(例えば、処理回路の一部として含められた、またはそのような処理回路の外部の)記憶媒体の中に格納されたソフトウェアまたはファームウェアを備えることが可能である。さらに、特に明記しない限り、流れ図を参照して、またはそれ以外で、本明細書で説明されるプロセスは、全体として、または部分的にそのようなコンピューティングプラットフォームによって実行され、さらに/または制御されることも可能である。
【0018】
本明細書で言及される「SV」(宇宙船)は、地球の表明上の受信機に信号を送信することができる物体と関係する。1つの特定の例では、そのようなSVは、静止衛星を備えることが可能である。代替として、SVは、或る軌道を回り、地上の静止した位置に対して移動する衛星を備えることが可能である。しかし、これらは、単にSVの例に過ぎず、主張される主題は、これらに関して限定されない。
【0019】
本明細書で言及される「位置」は、基準点に照らした物体または物の所在に関連する情報と関係する。この場合、例えば、そのような位置は、緯度と経度などの地理的座標として表されることが可能である。別の例では、そのような位置は、地球中心のXYZ座標として表されることが可能である。さらに別の例では、そのような位置は、通りのアドレス、自治体または他の政府管轄区域、郵便番号コード、および/または以上に類するものによって表されることが可能である。しかし、これらは、単に、位置が、特定の例により、どのように表されることが可能であるかの例に過ぎず、主張される主題は、これらに関して限定されない。
【0020】
本明細書で説明される位置特定および/または位置推定技術は、WWAN(無線ワイドエリアネットワーク)、WLAN(無線ローカルエリアネットワーク)、WPAN(無線パーソナルエリアネットワーク)などの、様々な無線通信網のために使用されることが可能である。「ネットワーク」と「システム」という用語は、本明細書では互換的に使用される可能性がある。WWANは、CDMA(符号分割多元接続)網、TDMA(時間分割多元接続)網、FDMA(周波数分割多元接続)網、OFDMA(直交周波数分割多元接続)網、SC−FDMA(シングルキャリア周波数分割多元接続)網などであることが可能である。CDMA網は、いくつかの無線技術を挙げると、cdma2000、W−CDMA(広帯域CDMA)などの1つまたは複数のRAT(無線アクセス技術)を実施することが可能である。この場合、cdma2000には、IS−95標準、IS−2000標準、およびIS−856標準に準拠して実施される技術が含まれることが可能である。TDMA網は、GSM(登録商標)(Global System for Mobile Communications)、D−AMPS(Digital Advanced Mobile Phone System)、または他の何らかのRATを実施することが可能である。GSMおよびW−CDMAは、「3GPP」(3rd Generation Partnership Project)という名称のコンソーシアムからの文書の中で説明されている。cdma2000は、「3GPP2」(3rd Generation Partnership Project 2)という名称のコンソーシアムからの文書の中で説明されている。3GPP文書および3GPP2文書は、公開されている。WLANは、IEEE802.11x網を備えることが可能であり、WPANは、Bluetooth(登録商標)網、例えば、IEEE802.15xを備えることが可能である。また、本明細書で説明される、そのような位置特定技術は、WWAN、WLAN、および/またはWPANの任意の組み合わせのために使用されることが可能である。
【0021】
或る例によれば、デバイスおよび/またはシステムは、SVから受信された信号に少なくとも部分的に基づいて、デバイスおよび/またはシステムの位置を推定することができる。特に、そのようなデバイスおよび/またはシステムは、関連するSVとナビゲーション衛星受信機との間の距離の近似値を備える「擬似距離」測定値を獲得することができる。或る特定の例では、そのような擬似距離は、SPS(衛星測位システム)の一環として、1つまたは複数のSVからの信号を処理することができる受信機において算出されることが可能である。そのようなSPSは、例えば、いくつかを挙げると、GPS(Global Positioning System)、Galileo、Glonassを備えることが可能であり、あるいは将来に開発される任意のSPSを備えることが可能である。位置を特定するのに、衛星ナビゲーション受信機は、3つ以上の衛星までの擬似距離測定値、ならびに送信する時点における、これらの衛星の位置を獲得することができる。SVの軌道パラメータを知っていると、これらの位置は、任意の時点に関して計算されることが可能である。次に、擬似距離測定値が、信号がSVから受信機まで伝わる時間に光の速度を掛けた値に少なくとも部分的に基づいて、算出されることが可能である。本明細書で説明される技術は、特定の例による特定の例示として、GPSタイプおよび/またはGalileoタイプのSPSにおける位置特定の実施形態として提供されることが可能であるが、これらの技術は、他のタイプのSPSに適用されることも可能であること、および主張される主題は、これに関して限定されないことを理解されたい。
【0022】
本明細書で使用される技術は、例えば、前述したSPSを含め、いくつかのSPSのいずれのSPSで使用されることも可能である。さらに、そのような技術は、擬似衛星、または衛星と擬似衛星の組み合わせを利用する位置特定システムで使用されることが可能である。擬似衛星は、GPS時間と同期されることが可能な、L帯(または他の周波数)のキャリア信号上で変調されたPN符号、または他の測距符号(例えば、GPSセルラー信号またはCDMAセルラー信号)をブロードキャストする地上ベースの送信機を備えることが可能である。そのような信号機は、遠隔受信機によって識別させるように独自のPN符号を割り当てることが可能である。擬似衛星は、軌道衛星からのGPS信号が、トンネル内、鉱山内、建物内、ビルの谷間において、または他の閉ざされた区域においてなど、利用できない可能性がある状況において、有用である。擬似衛星の別の実施形態は、無線ビーコンとして知られている。本明細書で使用される「衛星」という用語は、擬似衛星、擬似衛星の均等物、および、場合により、その他を含むことを意図している。本明細書で使用される「SPS信号」という用語は、擬似衛星、または擬似衛星の均等物からのSPS様の信号を含むことを意図している。
【0023】
本明細書で言及されるGNSS(Global Navigation Satellite System)は、一般的なシグナリングフォーマットに準拠して、同期されたナビゲーション信号を送信するSVを備えたSPSと関係する。そのようなGNSSは、例えば、群における複数のSVから、地球の表面の広大な部分上の複数の位置にナビゲーション信号を同時に送信する、同期された軌道にあるSVの群を備えることが可能である。或る特定のGNSS群のメンバであるSVは、通常、その特定のGNSSフォーマットに固有のフォーマットでナビゲーション信号を送信する。したがって、第1のGNSSにおけるSVによって送信されたナビゲーション信号を獲得するための技術は、第2のGNSSにおけるSVによって送信されたナビゲーション信号を獲得するために変更されることが可能である。或る特定の例では、主張される主題は、これに関して限定されないものの、GPS、Galileo、およびGlonassはそれぞれ、名前が挙げられる残りの2つのSPSとは異なるGNSSを代表することを理解されたい。しかし、これらは、単に異なるGNSSに関連するSPSの例に過ぎず、主張される主題は、これに関して限定されない。
【0024】
1つのフィーチャによれば、ナビゲーション受信機は、或る特定のSVまでの擬似距離測定値を、周期的に繰り返されるPN符号列で符号化された、その特定のSVからの信号の獲得に少なくとも部分的に基づいて、獲得することができる。そのような信号の獲得は、時間、およびPN符号列の中の関連するポイントを基準とする「符号位相」を検出することを備えることが可能である。例えば、1つの特定のフィーチャにおいて、そのような符号位相は、ローカルで生成されたクロック信号、およびPN符号列の中の或る特定のチップを基準とすることが可能である。しかし、これは、単に、符号位相がどのように表されることが可能であるかの例に過ぎず、主張される主題は、これに関して限定されない。
【0025】
或る例によれば、符号位相の検出は、PN符号間隔において、いくつかの曖昧な候補擬似距離、つまり、擬似距離仮説をもたらす可能性がある。したがって、ナビゲーション受信機は、SVまでの擬似距離測定値を、検出された符号位相、および曖昧さの解決に少なくとも部分的に基づいて、獲得して、SVまでの「真の」擬似距離測定値として、これらの擬似距離仮説の1つを選択することができる。前述したとおり、ナビゲーション受信機は、複数のSVから獲得された擬似距離測定値に少なくとも部分的に基づいて、受信機の位置を推定することができる。
【0026】
或る例によれば、主張される主題は、これに関して限定されないが、SVから送信される信号は、所定の期間にわたる、所定の順序の1つまたは複数のデータ信号で変調されることが可能である。例えば、GPS信号フォーマットにおいて、SVは、ミリ秒間隔で繰り返される、知られているPN符号列で符号化された信号を送信することが可能である。さらに、そのような信号は、例えば、所定の20ミリ秒間隔で変化することが可能なデータ信号で変調されることが可能である。或る特定の例によれば、主張される主題は、これに関して限定されないものの、そのようなデータ信号と、繰り返されるPN符号列とが、SVからの送信のために無線周波数キャリア信号によってミキシングされるのに先立って、モジュロ2和演算において組み合わされることが可能である。
【0027】
図1Bは、或る例による、GPS群におけるSVからの或る基準位置において受信された信号の中のデータ信号154の上に重ね合わされた擬似距離仮説152を示すタイミング図である。この場合、データ信号154の中のビット間隔は、20ミリ秒長であることが可能であり、繰り返される1.0ミリ秒のPN符号列の中の符号位相の検出に少なくとも部分的に基づいて、決定される、20の擬似距離仮説152にわたることが可能である。20ミリ秒ビット間隔内の擬似距離仮説156の1つを選択することによって、受信機は、20ミリ秒データビット間隔の間の境界、つまり、データ信号154の中の一連のビットを区分化する「ビットエッジ」を特定することができる。
【0028】
或る例によれば、主張される主題は、これに関して限定されないものの、受信機は、別のSVから受信された信号に少なくとも部分的に基づいて、1つのSVから受信された信号を変調するデータ信号の中のビット間隔間のビットエッジおよび/またはビット境界を検出することができる。この場合、第1の信号の擬似距離仮説は、第2の信号の擬似距離仮説に関連することが可能である。第1の信号の擬似距離仮説と、第2の信号の擬似距離仮説との間の関連付けなどに少なくとも部分的に基づいて、受信機は、真の擬似距離に関して、変調された信号の中のビットエッジの整列および/または位相の曖昧さを解決することができる。しかし、これは、単に例に過ぎず、主張される主題は、これに関して限定されない。
【0029】
図2は、或る例による、SVまでの擬似距離を測定することによって受信機において位置を特定することができるシステムの概略図を示す。地球の表面168上の基準位置中心166における受信機が、SV1およびSV2を見ることができ、SV1およびSV2から信号を受信することができる。基準位置中心166は、例えば、約10km半径の円によって規定される基準位置領域164内にあることが知られていることが可能である。しかし、これは、単に、或る特定の態様による、推定される位置の不確かさが、どのように表されることが可能であるかの例に過ぎず、主張される主題は、これに関して限定されないことを理解されたい。一例では、領域164は、知られている位置におけるセルラー無線通信網の或る特定のセルのサービスエリアを備えることが可能である。
【0030】
或る例によれば、基準位置領域164における受信機が、例えば、衛星通信網または地上無線通信網における無線通信リンクを介して、例えば、サーバ(図示せず)などの他のデバイスと通信することが可能である。1つの特定の例では、そのようなサーバは、受信機によって、SVから受信された信号を処理する、さらに/または擬似距離測定値を獲得するのに使用される情報を備えたAA(獲得支援)メッセージを、受信機に送信することが可能である。代替として、そのようなAAメッセージは、受信機のメモリの中にローカルで格納された情報から提供されることが可能である。この場合、そのようなローカルで格納された情報は、いくつかの例だけを挙げると、リムーバブルメモリデバイスからローカルメモリに格納される、さらに/またはサーバから受信された以前のAAメッセージから導き出されることが可能である。或る特定の例では、AAメッセージは、例えば、SV1およびSV2の位置を示す情報、基準位置中心166の位置の推定値、推定される位置に関連する不確かさ、現在時刻の推定値、および/または以上に類する情報などの情報を備えることが可能である。SV1およびSV2の位置を示すそのような情報は、暦表(ephemeris)情報および/または暦(almanac)情報を備えることが可能である。後述されるとおり、特定の例によれば、受信機は、そのような暦表および/または暦、およびおおよその時間推定などに少なくとも部分的に基づいて、SV1およびSV2の位置を推定することができる。SVの、そのような推定される位置は、例えば、基準方向からの推定される方位角、基準位置中心166における地球の水平線からの仰角、および/または地球中心のXYZ座標を備えることが可能である。
【0031】
或る例によれば、SV1およびSV2は、同一のGNSS群のメンバであっても、異なるGNSS群のメンバであってもよい。後段で示される特定の例では、SV1は、GPS群のメンバであることが可能である一方で、SV2は、Galileo群のメンバであることが可能である。しかし、これは、単に、受信機が、異なるGNSS群に属するSVからの信号をどのように受信することができるかの例に過ぎず、主張される主題は、これに関して限定されないことを理解されたい。
【0032】
図3は、或る例による、SVから受信された信号の曖昧さを減らすためのプロセス200の流れ図である。この場合、基準位置領域における受信機が、第1のSV(例えば、SV1)からの、第1の周期的に繰り返されるPN符号で符号化された第1の信号を受信すること、および第2のSV(例えば、SV2)からの、第2の周期的に繰り返されるPN符号で符号化された第2の信号を受信することができる。ブロック202で第1の信号を獲得するのに、そのような受信機は、受信された信号の中のドップラー周波数および符号位相を検出することができる。符号位相のそのような検出は、例えば、後段で例示されるとおり、ローカルで生成された符号列の符号偏移バージョンおよび/または時間偏移バージョンを、受信された第1の信号と互いに関係付けることを備えることが可能である。受信される信号が、例えば、Galileo SVから送信される一例では、そのような符号位相は、PN符号列の4.0ミリ秒反復周期内に検出されることが可能である。代替として、受信される信号が、GPS SVから送信される場合、そのような符号位相は、PN符号列の1.0ミリ秒反復周期内に検出されることが可能である。しかし、これは、単に、或る特定のGNSSのSVからの信号が、どのように獲得されることが可能であるかの例に過ぎず、主張される主題は、これに関して限定されない。
【0033】
1つの特定の代替では、第1のSV、および第2のSVが、GPS群を形成することが可能である一方で、この2つのSVの少なくとも1つは、L1C信号を送信することができる。Galileo SVからのナビゲーション信号と同様に、L1Cナビゲーション信号は、4.0ミリ秒の周期的に繰り返されるPN符号列で符号化された信号を備えることが可能である。したがって、本明細書で説明される特定の例は、Galileo群およびGPS群からのSVの使用と関係することが可能であるが、そのような技術は、SVの少なくとも1つが、L1C信号を送信することができる、2つのGPS SVを使用する他の例に適用されることも可能であることを理解されたい。この場合も、これらは、単に、基準位置領域における受信機においてSPSから受信されることが可能な特定の信号の例に過ぎず、主張される主題は、これに関して限定されない。
【0034】
ブロック204が、ブロック202に関連して前述した技術を使用して、第2のSVから受信される第2の信号を獲得することができる。しかし、受信される第2の信号は、第1の信号を送信するために使用されるGNSSフォーマットのフォーマットとは異なるGNSSフォーマットに準拠して送信されることが可能であることを理解されたい。この場合、例えば、第1の受信信号は、GPS群におけるSVから送信されることが可能であるのに対して、第2の受信信号は、Galileo群におけるSVから送信されることが可能である。代替として、第1の受信信号が、Galileo群から送信されることが可能であるのに対して、第2の受信信号は、GPS群におけるSVから送信されることが可能である。しかし、これらは、単に、受信機が、異なるGNSSの群に属するSVから、どのように信号を受信することができるかの例に過ぎず、主張される主題は、これに関して限定されないことを理解されたい。
【0035】
SVから信号を獲得すると(例えば、ブロック202および204に関連して前段で例示されるとおり)、受信機は、符号位相検出から擬似距離仮説を決定することができる。SVが、例えば、GPSフォーマットに準拠して信号を送信する或る特定の例では、受信機は、受信機において獲得された信号の中で検出された周期的に繰り返されるPN符号列の位相に少なくとも部分的に基づいて、1.0ミリ秒間隔で、さらに/または約3.0×10メートルのインクリメントで擬似距離仮説を決定することができる。SVが、例えば、Galileoフォーマットに準拠して信号を送信する別の例では、擬似距離仮説は、受信機において獲得された信号の中で検出された周期的に繰り返されるPN符号列の位相に少なくとも部分的に基づいて、4.0ミリ秒間隔で、さらに/または約1.2×10メートルのインクリメントで決定されることが可能である。SVによって送信された信号の中のPN符号列の位相を検出する際に、受信機は、例えば、AAメッセージの中で受信機に供給される情報を使用することができる。しかし、これは、単に、受信機が、SVから送信された信号の周期的PN符号列の位相を、どのように検出することができるかの例に過ぎず、主張される主題は、これに関して限定されない。
【0036】
或る例によれば、ブロック206が、第1のSV(SV1)から受信された信号の擬似距離仮説を、第2のSV(SV2)から受信された信号の擬似距離仮説と関連付けることができる。図4に示されるとおり、或る特定の例によれば、GPS群における第1のSVから、基準位置領域において受信された信号の擬似距離仮説254が、基準位置中心から第1のSVまでの距離と、基準位置中心から第2のSVまでの距離との推定される差に少なくとも部分的に基づいて、Galileo群における第2のSVから、基準位置領域において受信された信号の擬似距離仮説256に関連付けられる。この場合、基準位置から第1のSVまでの距離は、基準位置から第2のSVまでの距離とは異なる可能性があることに注目されたい。或る特定の例では、AAメッセージの中で受信機(例えば、基準位置領域164における)に供給される情報が、基準位置中心から第1のSVまでの距離と、基準位置中心から第2のSVまでの距離との、そのような差を推定するために使用されることが可能である。
【0037】
実際の差Lが、基準位置から第1のSVまでの距離と、基準位置から第2のSVまでの距離との差を(例えば、時間単位で)規定することが可能である。この場合、実際の差Lは、以下のとおり表現されることが可能である。すなわち、
L = T−T
ただし、
=所与の時刻に基準位置で測定されたSV1からの信号の伝搬遅延であり、さらに
=同一の所与の時刻に基準位置で測定されたSV2からの信号の伝搬遅延である。
【0038】
擬似距離仮説254を擬似距離仮説256に関連付けるのに、これに応じて、受信機は、基準位置中心から第1のSVまでの距離と、基準位置中心から第2のSVまでの距離との差Lの推定値を(例えば、時間単位で)、以下のとおりの式(1)に従って算出することができる。すなわち、
E[L] = E[T−T] … (1)
の測定値に関連する誤差と、Tの測定値に関連する誤差とは、実質的に無関係であると考えられることが可能であるので、式E[T−T]は、式E[T]−E[T]によって近似されることが可能である。この場合、或る特定の例では、式E[T]−E[T]の値は、或る特定の時刻に関して、AAメッセージを介して受信機に知られており、さらに/または利用可能である可能性がある。代替として、受信機は、或る特定の時刻に関する式E[T]−E[T]のそのような値を、そのようなAAメッセージの中で受信された情報から導き出してもよい。
【0039】
式(1)による、関連する擬似距離仮説254、256から、に適用される差Lの推定値、E[L]は、以下のとおり、受信機クロック誤差τを相殺する式に縮められることが可能である。すなわち、
E[L] = E[T]−E[T
= (RSV2/c−τ) −(RSV1/c−τ)
= (RSV2 − RSV1)c
ただし、
c=光の速度、
τ=受信機クロック偏り誤差、
SV1=基準位置中心からSV1までの距離の推定値であり、さらに
SV2=基準位置中心からSV2までの距離の推定値である。
【0040】
この場合、差推定E[L]の値は、直線的長さまたは時間の単位で表現されることが可能であること、およびE[L]の値に関するそのような表現の単位の間の変換は、適切な単位で表現された光の速度によってもたらされることが可能であることに注目されたい。したがって、差推定E[L]のそのような値は、主張される主題を逸脱することなく、時間または直線的長さの単位で互換的に表現されることが可能であることを理解されたい。
【0041】
或る例によれば、ブロック206は、基準位置中心166からSV1までの距離(「RSV1」)と、基準位置中心166からSV2までの距離(「RSV2」)との推定差を計算することが可能である。この場合、ブロック206は、例えば、基準位置中心166に関する地球中心のXYZ座標の推定値に加えて、地球中心のXYZ座標におけるSV1およびSV2の位置の推定値を示す、1つまたは複数のAAメッセージからのAA情報を獲得することが可能である。そのような地球中心のXYZ座標を使用して、ブロック206は、RSV1およびRSV2に関するユークリッド距離を計算することができる。
【0042】
図4は、t=0で始まり、t=20ミリ秒で終わる20ミリ秒の継続時間にわたる擬似距離仮説の関連付けを示すタイミング図である。したがって、この特定の例では、GPS信号を変調するデータ信号のビットエッジは、t=0とt=20ミリ秒の間の何らかの時点で出現することが可能である。この場合、例えば、GPS SVから基準位置領域において受信された信号から導き出される擬似距離仮説254が、1.0ミリ秒のインクリメントで決定されることが可能である一方で、例えば、Galileo SVから基準位置領域において受信された信号から導き出される擬似距離仮説256が、4.0ミリ秒のインクリメントで決定されることが可能である。図4に関連して、さらに図5Aないし図6Cに関連して例示される特定の例では、第1のSVから送信されるGalileo信号は、第2のSVから受信されるGPS信号を変調するデータ信号と同期されることが可能であることを理解されたい。或る特定の例では、擬似距離仮説256が、式(1)において前段で算出される差推定E[L]によって擬似距離仮説254の特定の擬似距離仮説252に関連付けられることが可能である。
【0043】
或る例によれば、主張される主題は、これに関して限定されないものの、差推定E[L]の精度は、基準位置領域の推定値に関連する不確かさの量または度合い(例えば、XYZ地球中心の座標で表現される)に少なくとも部分的に基づく。図4において、差推定E[L]の値は、0.5ミリ秒未満の片側の不確かさを有して、約0.6ミリ秒であることが示されている。したがって、擬似距離仮説250が、擬似距離仮説250から0.6+/−0.5ミリ秒だけ分離された擬似距離仮説252に一意に関連する。したがって、差推定E[L]が、0.5ミリ秒以内まで正確であることが知られている場合、擬似距離仮説254のなかからの特定の擬似距離仮説252が、図4に示されるとおり、特定の単一の擬似距離仮説250に関連付けられることが可能である。この場合、ブロック208で、残りの関連付けられていない擬似距離仮説254は、データビット間隔内で真の擬似距離に関してGPSデータ信号のビットエッジの位相および/または整列を特定するための仮説として排除されることが可能である。図4に示されるとおり、或る特定の例によれば、20の擬似距離仮説254のうち、擬似距離仮説250に関連付けられた5つの擬似距離仮説252が、残る。したがって、真の擬似距離に関してビットエッジの位相および/または整列を検出するために、20の擬似距離仮説を処理するのではなく、例えば、この5つの残っている擬似距離仮説252が、例えば、この残っている5つの擬似距離仮説252に関連付けられた相関メトリックに適用される尤度関数を使用して、処理されるだけでよい。この場合、隣接する擬似距離仮説の分離を1.0ミリ秒から4.0ミリ秒まで増加させることによって、そのような尤度関数は、この残っている5つの擬似距離仮説252の間のそのような曖昧さを、より迅速に、さらに/またはより少ない処理リソースしか使用せずに、またはより低い入力信号強度で、解決することができる。
【0044】
図4において前段に例示される例では、差推定E[L]の0.5ミリ秒未満の片側の不確かさが、擬似距離仮説250を単一の擬似距離仮説252に関連付けることを許す。しかし、他の例では、差推定E[L]の0.5ミリ秒未満の片側の不確かさは、0.5ミリ秒を超えて、2つ以上の擬似距離仮説の関連付けをもたらす可能性がある。この場合、そのような尤度関数が、これらのさらなる曖昧さを解決するために適用されることも可能である。
【0045】
代替の例では、受信機は、Galileo信号上のパイロットチャネルを復号することによって、獲得されたGPS信号の中のビットエッジの位相および/または整列を検出するための擬似距離仮説を排除することができる。この場合、Galileo信号のそのようなパイロットチャネルは、100ミリ秒のデータ列が、25の連続する4.0ミリ秒のエポック(epoch)および/または繰り返されるPN符号列に重なり合う、100ミリ秒周期で繰り返される、知られているデータ列で符号化されることが可能である。Galileo信号の獲得の際の4.0ミリ秒PN符号列における符号位相の検出により、真の擬似距離に関して、100ミリ秒のデータ列の整列に関する25の仮説がもたらされることが可能である。25の仮説のなかから選択するのに、受信機は、例えば、100ミリ秒のデータ列の少なくとも一部分の可能な25までの4.0ミリ秒偏移を、結果が所定のしきい値を超えるまで、受信されたGalileo信号と順次に互いに関係付けることによって、100ミリ秒のデータ列の位相整列を決定することができる。結果が所定のしきい値を超えると、受信機は、25の整列仮説のなかから100ミリ秒のデータ列に対する、検出された符号位相の関連する整列を選択することができる。
【0046】
図5Aに示されるとおり、或る特定の例によれば、100ミリ秒のデータ列に対する、検出された符号位相の整列が、決定されると、20ミリ秒のデータビット間隔にわたるGPS信号の擬似距離仮説280が、式(1)に従って算出された差推定E[L]によって、単一の擬似距離仮説286を含む100ミリ秒のデータ列の20ミリ秒のセグメントに関連付けられることが可能である。この場合も、例示の目的で、そのような差推定の片側の不確かさは、0.5ミリ秒未満として示される。この場合、擬似距離仮説280のなかの単一の擬似距離仮説284が、単一の擬似距離仮説286に関連付けられる。したがって、受信されたGPS信号の真の擬似距離に関するビットエッジの整列が、受信されたデータ信号の中で明確に検出されることが可能である。しかし、この場合も、他の例において、差推定E[L]における0.5ミリ秒の、そのような片側の不確かさは、0.5ミリ秒を超えて、2つ以上の擬似距離仮説の関連付けをもたらす可能性がある。この場合も、尤度関数は、これらのさらなる曖昧さを解決するために適用されることも可能である。
【0047】
別の特定の例では、基準位置においてGPS SVから受信される信号を変調するデータ信号のビットエッジの検出が、Galileo SVから受信される信号の獲得に役立つ可能性がある。図5Bに示されるとおり、獲得されたGPS信号290は、1.0ミリ秒の繰り返されるPN符号列を備え、前段で示されるとおり、20.0ミリ秒のビット間隔を有するデータ信号292によって変調される。この場合、データ信号292のそのような20.0ミリ秒のビット間隔のいずれか1つが、受信されたGalileo信号294の連続する5つの4.0ミリ秒の繰り返されるPN符号列に関連することが可能であることに注意されたい。したがって、データ信号292のビットエッジを検出することによって、獲得されたGPS信号における擬似距離仮説296が、差推定E[L]によって、受信されたGalileo信号294の諸部分に関連付けられることが可能である。したがって、Galileo信号を獲得する際、符号位相探索範囲は、差推定E[L]によって、獲得されたGPS信号292の中で検出された擬似距離296に関連付けられた、受信されたGalileo信号の中のインスタンスを中心とすることが可能である。その場合、そのような符号位相探索は、差推定E[L]に関連する不確かさ(或る特定の例に従って、後段で示される式(3)に従って算出されることが可能な)によって境界されることが可能である。
【0048】
或る例によれば、基準位置においてSVから受信されたナビゲーション信号のタイミングの不確かさは、以下の構成要素から算出されることが可能である。すなわち、受信機におけるクロックのタイミングの不確かさ、基準位置に対するSVの位置、およびナビゲーション信号が受信される基準位置の不確かさである。この場合、基準位置においてSVから受信されるナビゲーション信号のタイミングの片側の不確かさ、SV_Tuncは、以下のとおり、式(2)に従って表現されることが可能である。すなわち、
SV_Tunc = Clock_Tunc +
[(Punc/c)*cos(SV_el)] … (2)
ただし、
Clock_Tunc=時間単位の受信機におけるクロックのタイミングの不確かさ
Punc=長さ単位の、基準位置からの受信機の位置の片側の不確かさ
c=光の速度、および
SV_el=基準位置におけるSVの仰角
或る例によれば、いくつかの条件下で、基準位置における第1のSVからのGalileo信号の獲得、および基準位置で受信されたGalileo信号のタイミングの正確な知識が、第2のSVから受信されるGPS信号の獲得に役立つ可能性がある。この場合も、前述したとおり、第1のSVから送信されるGalileo信号が、第2のSVから受信されるGPS信号を変調するデータ信号と同期されることが可能であることを理解されたい。さらに、受信されるGPS信号の中のデータ信号の20ミリ秒周期が、受信されるGalileo信号の連続する5つの4.0ミリ秒エポックと一致することに注意されたい。したがって、前述の式(2)において算出される、基準位置においてGalileo SVから受信されるナビゲーション信号のタイミングの十分な精度を得ることによって、ナビゲーション受信機は、受信されるGalileo信号の或る特定の4.0ミリ秒エポック(5つのそのような4.0ミリ秒エポックのうちの)の始め、または立ち上がりエッジを、基準位置において受信されるGPS信号におけるビットエッジに関連付けることができる。例えば、十分な精度まで知られている、基準位置において受信される、受信されたGalileo信号のそのような4.0ミリ秒エポックが、式(1)に従って前段で算出されるとおり、差推定E[L]によって、基準位置において受信されるGPS信号のデータ信号の中のビットエッジに関連付けられることが可能である。Galileo信号のタイミングは、基準位置において十分な精度で受信されるので、4.0ミリ秒エポックの立ち上がりエッジが、知られている位相(該当する場合)および差推定E[L]によって、基準位置において受信されるGPS信号の中のビットエッジに関連付けられることが可能である。
【0049】
図6Aに示されるとおり、基準位置領域において第1のSVから受信されるGalileo信号308は、t=1.0ミリ秒、5.0ミリ秒、9.0ミリ秒、13.0ミリ秒、17.0ミリ秒、21.0ミリ秒、25.0ミリ秒、29.0ミリ秒、33.0ミリ秒、および37.0ミリ秒で始まる4.0ミリ秒エポックを備えることが可能である。基準位置領域において第2のSVから受信されるGPS信号は、t=1.0ミリ秒、2.0ミリ秒、3.0ミリ秒、4.0ミリ秒、5.0ミリ秒、6.0ミリ秒、7.0ミリ秒、8.0ミリ秒などにおける1.0ミリ秒エポックを備える、繰り返されるPRN符号310によって変調される。例えば、式(2)に従って算出される、基準位置領域において受信されるGalileo信号のタイミングの片側の不確かさが、2.0ミリ秒以内であるという条件付きで、受信機は、両側の不確かさ領域μ内にある、4.0ミリ秒エポックの或る立ち上がりエッジ304を、Galileo SVからの或る特定のデータエポックの伝送の開始に関連付けることができる。或る特定のデータエポックの伝送のそのような開始は、例えば、週の始め、データフレームの始め、データセグメントの始めに行われることが可能である。Galileoからのデータ信号の伝送は、GPSからのデータ信号の伝送と同期されることが可能であるので、受信機は、4.0ミリ秒のGalileoエポックの或る特定の立ち上がりエッジ304を、GPSデータ信号302の或る特定のビットエッジ306に関連付けることができる。この場合、例えば、式(1)に従って算出される差推定E[L]を使用して、差推定E[L]の精度に少なくとも部分的に基づいて、或る精度でビットエッジ306のインスタンスが推定されることが可能であることに注意されたい。
【0050】
前述したとおり、或る不確かな領域μが、式(2)に従って算出される片側の不確かさ領域から導き出されることが可能である。或る例によれば、さらなる不確かさ領域Uが、差推定E[L]に関連する不確かさを表すことが可能である。図6Aの特定の例を再び参照すると、そのような不確かさ領域Uが、片側で0.5ミリ秒未満である場合、GPS信号上の或る特定の1.0ミリ秒PRNエポックの立ち上がりエッジに関連付けられるビットエッジの位相および/または整列が、一意に特定されることが可能である。不確かさ領域Uが、片側で0.5ミリ秒より大きい場合、GPS SVのビットエッジなどの正確な位相および/または整列は、依然として、多少、曖昧なままである可能性がある。或る特定の例では、SV1およびSV2に関する差推定E[L]のそのような片側の不確かさが、以下のとおり、式(3)に従って算出されることが可能である。すなわち、
U = 1/c*Punc*[{cos(E2)*cos(A2) −
cos(E1)*cos(A1)}+ {cos(E2)*sin(A2) −
cos(E1)*sin(A1)}]1/2 … (3)
ただし、
c=光の速度
A1=基準位置からSV1への推定される方位角
A2=基準位置からSV2への推定される方位角
E1=基準位置からSV1への推定される仰角
E2=基準位置からSV2への推定される仰角、および
Punc=長さ単位の基準位置における片側の不確かさ
前段で示されるとおり、基準位置において受信されるGPS信号を変調するデータ信号のビットエッジの位置を推定することによって、受信されるGPS信号が、PDI(予備検出積分)を使用して、より高い感度で獲得されることが可能である。例えば、ビットエッジ306とビットエッジ312の間で、データ信号302は、変化しない。したがって、PDIは、前述したとおり、基準位置領域において獲得されるGalileo信号に少なくとも部分的に基づく、ビットエッジ306の推定値と、ビットエッジ312の推定値との間で、受信されるGPS信号の一部分にわたって、より高い感度で実行されることが可能である。
【0051】
代替のフィーチャに従って、基準位置領域において受信されるGPSデータ信号のビットエッジの位相および/または整列を特定する際に、受信機は、基準位置において受信されるGalileo信号からさらなる情報を獲得して、受信されるGalileo信号のタイミングのさらなる初期の不確かさを許すことが可能である。特に、Galileo SVからの信号の中の周期的に繰り返されるPN符号列の中のチップは、4.0ミリ秒エポック上で送信されるPN符号列が、交互する4.0ミリ秒エポック上で「1」または「0」でビタビ符号化される場合、「データチャネル」としてレート1/2ビタビ符号化されることが可能であることに注意されたい。
【0052】
前段で示される例では、基準位置領域において受信されるGPS信号を変調するデータ信号のビットエッジは、基準位置領域におけるGalileo信号の獲得、ならびに片側の不確かさが、2.0ミリ秒を超えず、差推定E[L]の片側の不確かさが、0.5ミリ秒を超えないGalileo信号のタイミングの知識から得られる。しかし、代替のフィーチャでは、基準位置において受信されるGalileo信号のデータチャネルのビタビ復号は、Galileo信号のタイミングの、式(2)に従って算出される片側の不確かさが、4.0ミリ秒という高さである、基準位置において受信されるGPS信号の中のビットエッジの検出を可能にすることができる。この場合、受信されるGPS信号のデータ信号は、Galileo信号のビタビ符号化された4.0ミリ秒エポックと同期される。図6Bを参照すると、受信されるGPS信号と、受信されるGalileo信号とは、同期されることが可能であるので、(受信されるGPS信号の)データ信号322の中のビットエッジ326は、例えば、「0」から「1」への、受信されるGalileo信号のビタビ符号における或る特定の遷移と同期されていることが分かる可能性がある。さらに、十分な精度で、受信されるGalileo信号のタイミングの知識を有して、受信機は、「0」から「1」への、そのような特定の遷移が、8.0ミリ秒の不確かさ領域μ内にあることを特定することができる。したがって、次に、受信機は、遷移324が、Galileo SVからの或る特定のデータエポックの伝送の開始に関連することを推測することができる。この場合も、伝送のそのような開始は、週の始め、データフレームの始め、データセグメントの始めなどを備えることが可能である。Galileoからのデータ信号の伝送は、GPSからのデータ信号の伝送と同期されることが可能であるので、受信機は、8.0ミリ秒のGalileoエポックの或る特定の立ち上がりエッジ324を、差推定E[L]によって、GPS信号を変調するデータ信号322の或る特定のビットエッジ326に関連付けることができ、差推定E[L]の片側の不確かさUは、0.5ミリ秒を超えない。したがって、前段で示されるとおり、PDIが、前述したとおり、基準位置において獲得されるGalileo信号に少なくとも部分的に基づく、ビットエッジ3
26の推定値とビットエッジ332の推定値の間で、より高い感度で獲得するために、受信されるGPS信号の一部分にわたって実行されることが可能である。
【0053】
例示の目的で、図6Bは、ビタビ符号化されたデータチャネルのデータチャネル330が、交互する4.0ミリ秒エポックにおいて値「1」と「0」を有することを示す。しかし、そのような値は、連続する4.0ミリ秒エポック上で、必ずしも交替しない可能性があること、および主張される主題は、これに関して限定されないことを理解されたい。
【0054】
さらに別の代替のフィーチャでは、GPS受信機が、基準位置において受信されるGPSデータ信号のビットエッジの位相および/または整列を特定する際に、基準位置において獲得されるGalileo信号のパイロットチャネルから抽出された情報を使用することができる。図6Cに示されるとおり、Galileo信号のパイロットチャネル406が、繰り返されるPRN列404の連続する25の4.0ミリ秒エポックに重なり合う100ミリ秒周期上で繰り返される、知られているデータ列で符号化されることが可能である。この場合、受信されるGPS信号のデータ信号402は、パイロットチャネル406と同期されることが可能である。また、基準位置において受信されるパイロットチャネル406の100ミリ秒周期が、データ信号402の連続する5つの20ミリ秒周期に関連付けられることが可能であることにも注目されたい。50ミリ秒未満の受信されるGalileo信号のタイミングの、式(2)に従って算出される片側の不確かさ(または100ミリ秒未満の不確かさ領域)を得ることにより、復号されたパイロットチャネルの100ミリ秒周期のインスタンスを、週の始め、データフレームの始め、データセグメントの始めなどにおける伝送の開始などの、Galileo SVからの或る特定のデータエポックの伝送の開始に関連付けることが可能になる。パイロットチャネル406の伝送は、データ信号402の伝送と同期されることが可能であるので、受信機は、パイロットチャネル406の100.0ミリ秒エポックの或る特定の立ち上がりエッジ408を、受信されるGPS信号のデータ信号402の中の或る特定のビットエッジ412に関連付けることができる。したがって、受信されるGalileo信号の中の検出されたパイロットチャネルの100ミリ秒周期における知れているインスタンスが、式(1)に従って算出された差推定E[L]によって、受信されるGPS信号のビットエッジに関連付けられることが可能であり、差推定E[L]の片側の不確かさUは、0.5ミリ秒を超えない。この場合、受信されるGPS信号の中のビットエッジの特定とともに、PDIが、ビットエッジの推定値の間で、より高い感度でGPS信号を獲得するために、受信されるGPS信号の一部分にわたって実行されることが可能である。
【0055】
或る例によれば、主張される主題は、これに関して限定されないものの、基準位置において受信されるGPS信号の中のビットエッジの検出を使用して、基準位置において受信されるGalileo信号のビタビ符号化境界が特定されることが可能である。前段で示されるとおり、受信されるGPS信号のデータ信号の中の或る特定のビットエッジが、例えば、「0」から「1」への、受信されるGalileo信号のビタビ符号における遷移と同期される、または「1」から「0」への遷移と同期されることが知られていることが可能である。このため、10ミリ秒未満の、受信されるGPS信号のタイミングの、式(2)に従って算出された片側の不確かさで、受信されるGPS信号のデータ信号の中の、この検出される特定のビットエッジは、GPS SVからGalileo SVまでの推定E[L]の差の不確かさが、2.0ミリ秒未満である場合、前述の式(1)に従って算出される差推定E[L]によって、受信されるGalileo信号のデータチャネルの中の、そのような遷移(ビタビ復号境界)に関連付けられることが可能であることに注目されたい。差の不確かさは、前述の式(3)に従って算出される。例えば、図6Dに示されるとおり、10ミリ秒未満の、受信されるGPS信号のタイミングの片側の不確かさで、基準位置において受信されるGPS信号482を変調するデータ信号472の中のビットエッジ476の検出により、基準位置において受信される、ビタビ符号化されたGalileo信号478に対する正確な時間基準がもたらされる。したがって、示される4.0ミリ秒未満の両側の不確かさμで、Galileo信号478の中のビタビ符号化境界484の遷移が、一意に特定されることが可能である。
【0056】
或る例によれば、受信機(例えば、AAメッセージの中で示される)に見えるSVが、SVに関して探索されるべき符号位相仮説およびドップラー周波数仮説の2次元領域を規定する、或る特定の探索窓パラメータセットに関連付けられることが可能である。図7に示される一実施形態では、SVに関する探索窓パラメータは、符号位相探索窓サイズ、WIN_SIZECP、符号位相窓中心、WIN_CENTCP、ドップラー探索窓サイズ、WIN_SIZEDOPP、およびドップラー窓中心、WIN_CENTDOPPを備える。位置が特定されることが求められるエンティティが、IS−801準拠の無線通信システムにおける加入者局である事例において、これらのパラメータは、PDEによって加入者局に供給されるAAメッセージによって示されることが可能である。
【0057】
図7に示されるSVに関する2次元の探索空間は、符号位相軸を水平軸として示し、ドップラー周波数軸を垂直軸として示すが、この割り当ては、恣意的であり、逆にすることも可能である。符号位相探索窓の中心は、WIN_CENTCPとして参照され、符号位相探索窓のサイズは、WIN_SIZECPとして参照される。ドップラー周波数探索窓の中心は、WIN_CENTDOPPとして参照され、ドップラー周波数探索窓のサイズは、WIN_SIZEDOPPとして参照される。
【0058】
第1のSVからの第1の信号の獲得に続いて、或る例によれば、第2のSVから第2の信号を獲得するためのWIN_CENTCPおよびWIN_SIZECPが、獲得された第1の信号の中で検出される符号位相、受信機位置の推定値、および或る特定の時刻tに関して第1のSVおよび第2のSVに関する位置を記述する情報に少なくとも部分的に基づいて、特定されることが可能である。この場合、第2の信号を獲得するための探索空間は、或る範囲のドップラー周波数、および或る範囲の符号位相によってそれぞれが特徴付けられる、複数のセグメント1202a、1202b、1202cに区分化されることが可能である。
【0059】
或る例によれば、セグメントを特徴付ける符号位相の範囲は、単一回のチャネル走査(pass)を介して、そのセグメントを探索する相関器のチャネルの容量と等しいことが可能である。例えば、チャネル容量が、32チップである1つの特定の例において、セグメントを特徴付ける符号位相の範囲も同様に、32チップであることが可能であるが、他の例も可能であることを認識されたい。
【0060】
セグメントは、図8に示されるとおり、セグメント境界において出現する欠落したピークを回避するように、所定の数のチップだけ重なり合うようにされることが可能である。この場合、セグメント1202aの末端は、Δチップだけ、セグメント1202bの前端と重なり合い、セグメント1202b末端も同様に、Δチップだけ、セグメント1202cの前端と重なり合う。この重なり合いによるオーバーヘッドのため、セグメントによって表される符号位相の有効範囲は、チャネル容量未満であることが可能である。例えば、重なり合いが4チップである事例において、セグメントによって表される符号位相の有効範囲は、28チップであることが可能である。
【0061】
或る特定の例による、SVから周期的に繰り返される信号を獲得するためのシステムが、図9に示される。しかし、これは、単に、或る特定の例による、そのような信号を獲得することができるシステムの例に過ぎず、主張される主題を逸脱することなく、他のシステムが使用されることも可能である。図9に示されるとおり、或る特定の例によれば、そのようなシステムは、プロセッサ1302、メモリ1304、および相関器1306を含むコンピューティングプラットフォームを備えることが可能である。相関器1306は、直接に、またはメモリ1304を介して、プロセッサ1302によって処理されるべき、受信機(図示せず)によって供給される信号から、相関関数をもたらすように適合されることが可能である。相関器1306は、ハードウェアで、ソフトウェアで、またはハードウェアとソフトウェアの組み合わせで実施されることが可能である。しかし、これらは、相関器が、特定の態様により、どのように実施されることが可能であるかの例に過ぎず、主張される主題は、これらに関して限定されない。
【0062】
或る例によれば、メモリ1304は、コンピューティングプラットフォームの少なくとも一部分を提供するようにプロセッサ1302によってアクセス可能であり、実行可能であるマシン可読命令を格納することが可能である。この場合、そのようなマシン可読命令と連携するプロセッサ1302が、図3に関連して前段で示されるプロセス200のすべて、または部分を実行するように適合されることが可能である。或る特定の例では、主張される主題は、これらに関して限定されないものの、プロセッサ1302は、前段で示されるとおり、位置特定信号を探索するよう、相関器1306に指示し、相関器1306によって生成された相関関数から測定値を導き出すことができる。
【0063】
図10に戻ると、無線トランシーバ1406が、RF搬送波上に、音声またはデータなどのベースバンド情報でRF搬送波信号を変調するように、さらに変調されたRF搬送波を復調して、そのようなベースバンド情報を得るように適合されることが可能である。アンテナ1410が、無線通信リンクを介して、変調されたRF搬送波を送信し、無線通信リンクを介して、変調されたRF搬送波を受信するように適合されることが可能である。
【0064】
ベースバンドプロセッサ1408が、無線通信リンクを介して伝送するために、CPU1402からトランシーバ1406にベースバンド情報を供給するように適合されることが可能である。この場合、CPU1402は、そのようなベースバンド情報を、ユーザインターフェース1416内の入力デバイスから獲得することができる。また、ベースバンドプロセッサ1408は、ユーザインターフェース1416内の出力デバイスを介して伝送するために、トランシーバ1406からCPU1402にベースバンド情報を供給するように適合されることも可能である。
【0065】
ユーザインターフェース1416は、音声またはデータなどのユーザ情報を入力するため、または出力するための複数のデバイスを備えることが可能である。そのようなデバイスには、例えば、キーボード、ディスプレイスクリーン、マイクロホン、およびスピーカが含まれることが可能である。
【0066】
SPS Rx(SPS受信機)1412が、SVからの伝送を受信し、復調して、復調された情報を相関器1418に供給するように適合されることが可能である。相関器1418は、受信機1412によって供給される情報から、相関関数を導き出すように適合されることが可能である。例えば、所与のPN符号に関して、相関器1418は、前段で示されるとおり、符号位相探索窓を開始する或る範囲の符号位相にわたって、さらに、或る範囲のドップラー周波数仮説にわたって定義された相関関数をもたらすことが可能である。このため、個別の相関は、定義されたコヒーレント積分パラメータおよび非コヒーレント積分パラメータに従って実行されることが可能である。
【0067】
また、相関器1418は、トランシーバ1406によって供給されるパイロット信号と関係する情報から、パイロット関連の相関関数を導き出すように適合されることも可能である。この情報は、加入者局によって、無線通信サービスを獲得するのに使用されることが可能である。
【0068】
チャネル復号器1420が、ベースバンドプロセッサ1408から受信されたチャネルシンボルを復号して、基礎をなすソースビットにするように適合されることが可能である。チャネルシンボルが、畳み込み符号化されたシンボルを備える一例では、そのようなチャネル復号器は、ビタビ復号器を備えることが可能である。チャネルシンボルが、畳み込み符号の直列の連結、または並列の連結を備える第2の例では、チャネル復号器1420は、ターボ復号器を備えることが可能である。
【0069】
メモリ1404が、説明された、または示唆されたプロセス、実施例、実施形態、または実施形態の例の1つまたは複数を実行するように実行可能であるマシン可読命令を格納するように適合されることが可能である。CPU1402が、そのようなマシン可読命令にアクセスし、そのようなマシン可読命令を実行するように適合されることが可能である。これらのマシン可読命令の実行を介して、CPU1402は、ブロック204および220で、特定の探索モードを使用するドウェル(dwell)を実行し、相関器1418によってもたらされるGPS相関関数を分析し、GPS相関関数のピークから測定値を導き出し、位置の推定値が十分に正確であるかどうかを判定するよう、相関器1418に指示することができる。
【0070】
或る特定の例では、加入者局におけるCPU1402が、前段で示されるとおり、SVから受信される信号に少なくとも部分的に基づいて、加入者局の位置を推定することができる。また、CPU1402は、特定の例に従って前段で示されるとおり、受信される第1の信号の中で検出される符号位相に少なくとも部分的に基づいて、受信される第2の信号を獲得するための符号探索範囲を決定するように適合されることも可能である。しかし、これらは、単に、特定の態様による、擬似距離測定値に少なくとも部分的に基づいて、位置を推定するため、そのような擬似距離測定値の定量的評価を算出するため、および擬似距離測定値の精度を向上させるプロセスを終了するためのシステムの例に過ぎず、主張される主題は、これらに関して限定されないことを理解されたい。
【0071】
現在、例示的なフィーチャと考えられているものが例示され、説明されてきたが、主張される主題を逸脱することなく、他の様々な変形が行われることが可能であり、均等物が代用されることが可能であることが、当業者には理解されよう。さらに、本明細書で説明される中心的概念を逸脱することなく、主張される主題の教示に或る特定の状況を適合させる多くの変形が、行われることも可能である。したがって、主張される主題は、開示される特定の例に限定されず、そのような主張される主題は、添付の特許請求の範囲、および均等の範囲に含まれるすべての態様も含むことが可能であることが意図されている。

【特許請求の範囲】
【請求項1】
基準位置において第1の宇宙船(SV)から獲得される第1の信号から導き出される第1の擬似距離仮説を、前記基準位置から前記第1のSVまでの第1の距離と、前記基準位置から第2のSVまでの第2の距離との推定される差に少なくとも部分的に基づいて、前記基準位置において前記第2のSVから受信される第2の信号から導き出される1つまたは複数の第2の擬似距離仮説に関連付け、
前記関連付けられた第1の擬似距離仮説に少なくとも部分的に基づいて、前記第1の信号を変調するデータ信号のビットエッジの位相の曖昧さを減らすことを備える方法。
【請求項2】
前記第1のSVの位置および前記第2のSVの位置に少なくとも部分的に基づいて、前記推定される差を算出することをさらに備える請求項1に記載の方法。
【請求項3】
獲得支援メッセージから得られる前記第1のSVの位置および前記第2のSVの位置を示す情報を受信することをさらに備える請求項2に記載の方法。
【請求項4】
前記第2の信号は、繰り返されるデータ列で符号化される方法であって、
前記受信される第2の信号の少なくとも一部分から、前記繰り返されるデータ列を復号し、
前記復号されたデータ列に少なくとも部分的に基づいて、前記第2の擬似距離仮説の少なくともいくつかを排除することをさらに備える請求項1に記載の方法。
【請求項5】
前記曖昧さを前記減らすことは、
前記関連付けられた第1の擬似距離仮説を、前記排除することの後に残っている任意の第2の擬似距離仮説に関連付けられた第1の擬似距離仮説に限定することをさらに備える請求項4に記載の方法。
【請求項6】
前記第2の信号は、知られているデータ列で符号化される方法であって、
前記第2のSVまでの真の擬似距離に関して、前記知られているデータ列の位相整列を検出することをさらに備え、前記関連付けることは、前記第2のSVまでの前記真の擬似距離を、前記第1の擬似距離仮説に関連付けることをさらに備える請求項1に記載の方法。
【請求項7】
第1のSVはGPS群における衛星を備え、前記第2のSVはGalileo群における衛星を備える請求項1に記載の方法。
【請求項8】
基準位置から第1のSV(宇宙船)までの複数の第1の擬似距離仮説を、前記基準位置において受信される、データ信号によって変調された第1の信号の中で検出される第1の符号位相に少なくとも部分的に基づいて特定し、
前記データ信号に関する前記第1の擬似距離仮説のなかの真の擬似距離に関連する曖昧さを、前記基準位置において第2のSVから受信される第2の信号の中で検出される第2の符号位相に少なくとも部分的に基づいて減らすことを備える方法。
【請求項9】
前記第2の信号は、周期的に繰り返されるランダムな符号列で符号化され、
前記曖昧さを前記減らすことは、
前記基準位置から前記第2のSVまでの1つまたは複数の第2の擬似距離仮説を、前記第2の符号位相に少なくとも部分的に基づいて特定し、
前記第1の仮説を前記第2の仮説に関連付けることをさらに備える請求項8に記載の方法。
【請求項10】
前記第1の仮説を前記第2の仮説に前記関連付けることは、前記第1の基準位置から前記第1のSVまでの距離と、前記基準位置から前記第2のSVまでの距離との差の推定値に少なくとも部分的に基づいて、前記第1の仮説を前記第2の仮説に関連付けることをさらに備える請求項9に記載の方法。
【請求項11】
前記推定値は、前記SVの位置に少なくとも部分的に基づく請求項10に記載の方法。
【請求項12】
前記第2の信号は、情報で変調され、前記曖昧さを前記減らすことは、前記情報に少なくとも部分的に基づいて、前記位相変化に関連する仮説を排除することをさらに備える請求項9に記載の方法。
【請求項13】
前記情報信号は、周期的に繰り返されるデータ列を備える請求項12に記載の方法。
【請求項14】
前記情報信号は、Galileoパイロットチャネルを備える請求項13に記載の方法。
【請求項15】
前記第1の信号は第1のGNSSに従って送信され、第2の信号は前記第1のGNSSとは異なる第2のGNSSに従って送信される請求項8に記載の方法。
【請求項16】
前記第1のSVはGPS群に属し、前記第2のSVはGalileo群に属する請求項15に記載の方法。
【請求項17】
第1の衛星測位システムから第1のSV(宇宙船)信号を受信し、
前記受信される第1のSV信号の中の情報に少なくとも部分的に基づいて、第2の衛星測位システムから受信される第2のSV信号を変調するデータ信号のビットエッジ曖昧さを減らすことを備える方法。
【請求項18】
前記情報は、前記第1のSV信号の中で検出される符号位相を備える請求項17に記載の方法。
【請求項19】
前記ビットエッジ曖昧さを前記減らすことは、
前記符号位相に少なくとも部分的に基づいて、1つまたは複数の第1の擬似距離仮説を特定し、
前記1つまたは複数の第1の擬似距離仮説を、前記第2のSV信号に関連する複数の第2の擬似距離仮説に関連付けることをさらに備える請求項18に記載の方法。
【請求項20】
コンピューティングプラットフォームによって実行された場合に、
基準位置において第1のSV(宇宙船)から獲得される第1の信号から導き出される第1の擬似距離仮説を、前記基準位置から前記第1のSVまでの第1の距離と、前記基準位置から第2のSVまでの第2の距離との推定される差に少なくとも部分的に基づいて、前記基準位置において前記第2のSVから受信される第2の信号から導き出される1つまたは複数の第2の擬似距離仮説に関連付け、さらに
前記関連付けられた第1の擬似距離仮説に少なくとも部分的に基づいて、前記第1の信号を変調するデータ信号のビットエッジの位相の曖昧さを減らすことを前記コンピューティングプラットフォームに行わせるよう適合させて格納されたマシン可読命令を備える記憶媒体を備える物品。
【請求項21】
コンピューティングプラットフォームによって実行された場合に、
基準位置から前記第1のSV(宇宙船)までの複数の第1の擬似距離仮説を、前記基準位置において受信される、データ信号によって変調された第1の信号の中で検出される第1の符号位相に少なくとも部分的に基づいて特定し、さらに
前記データ信号に関する前記第1の擬似距離仮説のなかの真の擬似距離仮説に関連する曖昧さを、前記基準位置において第2のSVから受信される第2の信号の中で検出される第2の符号位相に少なくとも部分的に基づいて減らすことを前記コンピューティングプラットフォームに行わせるよう適合させて格納されたマシン可読命令を備える記憶媒体を備える物品。
【請求項22】
コンピューティングプラットフォームによって実行された場合に、
第1の衛星測位システムから受信される第1のSV(宇宙船)信号に少なくとも部分的に基づいて、情報を獲得し、さらに
前記受信される第1のSV信号の中の情報に少なくとも部分的に基づいて、第2の衛星測位システムから受信される第2のSV信号を変調するデータ信号のビットエッジ曖昧さを減らすことを前記コンピューティングプラットフォームに行わせるよう適合させて格納されたマシン可読命令を備える記憶媒体を備える物品。
【請求項23】
第1のSV(宇宙船)の位置、および第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを受信する受信機を備える加入者装置であって、
前記情報に少なくとも部分的に基づいて、基準位置から前記第1のSVまでの第1の距離と、前記基準位置から前記第2のSVまでの第2の距離との差を推定し、
前記推定される差に少なくとも部分的に基づいて、基準位置において前記第1のSVから獲得される第1の信号から導き出される第1の擬似距離仮説を、前記基準位置において前記第2のSVから獲得される第2の信号から導き出される1つまたは複数の第2の擬似距離仮説に関連付け、さらに
前記関連付けられる第1の擬似距離仮説に少なくとも部分的に基づいて、前記第1の信号を変調するデータ信号のビットエッジの位相の曖昧さを減らすように適合される加入者装置。
【請求項24】
地上無線通信リンクを介して前記AAメッセージを受信するようにさらに適合される請求項23に記載の加入者装置。
【請求項25】
第1のSV(宇宙船)の位置、および第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを受信する受信機を備える加入者装置であって、
データ信号によって変調された前記第1の信号の中で検出される第1の符号位相に少なくとも部分的に基づいて、複数の第1の擬似距離仮説を特定し、さらに
前記情報、および前記第2の信号の中で検出される第2の符号位相に少なくとも部分的に基づいて、前記データ信号に関する前記第1の擬似距離仮説のなかの真の擬似距離に関連する曖昧さを減らすように適合される加入者装置。
【請求項26】
地上無線通信リンクを介して前記AAメッセージを受信するようにさらに適合される請求項25に記載の加入者装置。
【請求項27】
第1のSV(宇宙船)の位置、および第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを受信する受信機を備える加入者装置であって、
前記第1のSV信号、および前記第2のSV信号を受信し、さらに
前記受信される第1のSV信号、および前記位置を示す前記情報に少なくとも部分的に基づいて、前記第2の受信されるSV信号を変調するデータ信号のビットエッジ曖昧さを減らすように適合される加入者装置。
【請求項28】
地上無線通信リンクを介して前記AAメッセージを受信するようにさらに適合される請求項27に記載の加入者装置。
【請求項29】
PDE(位置特定エンティティ)と、
第1のSV(宇宙船)の位置、および第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを、地上無線通信リンクを介して前記PDEから受信し、
前記情報に少なくとも部分的に基づいて、基準位置から前記第1のSVまでの第1の距離と、前記基準位置から前記第2のSVまでの第2の距離との差を推定し、
前記推定される差に少なくとも部分的に基づいて、基準位置において前記第1のSVから獲得される第1の信号から導き出される第1の擬似距離仮説を、前記基準位置において前記第2のSVから受信される第2の信号から導き出される1つまたは複数の第2の擬似距離仮説に関連付け、さらに
前記関連付けられる第1の擬似距離仮説に少なくとも部分的に基づいて、前記第1の信号を変調するデータ信号のビットエッジに関して、前記第1のSVまでの真の擬似距離の整列の曖昧さを減らすように適合された加入者装置とを備えるシステム。
【請求項30】
PDE(位置特定エンティティ)と、
第1のSV(宇宙船)の位置、および第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを、地上無線通信リンクを介して前記PDEから受信し、
前記基準位置において受信される、データ信号によって変調されている第1の信号の中で検出される第1の符号位相に少なくとも部分的に基づいて、前記基準位置から前記第1のSV(宇宙船)までの複数の第1の擬似距離仮説を特定し、さらに
前記基準位置において第2のSVから受信される第2の信号の中で検出される第2の符号位相に少なくとも部分的に基づいて、前記データ信号に関する前記第1の擬似距離仮説のなかの真の擬似距離の整列に関連する曖昧さを減らすように適合された加入者装置とを備えるシステム。
【請求項31】
PDE(位置特定エンティティ)と、
第1のSPS(衛星測位システム)からである第1のSV(宇宙船)の位置、および第2のSPSからである第2のSVの位置を示す情報を備えるAA(獲得支援)メッセージを、地上無線通信リンクを介して前記PDEから受信し、
前記第1のSVから第1のSV信号を受信するとともに、前記第2のSVから第2のSV信号を受信し、さらに、
前記受信される第1のSV信号の中の情報、および前記第1のSVの前記位置、および前記第2のSVの前記位置を示す前記情報に少なくとも部分的に基づいて、前記受信される第2のSV信号を変調するデータ信号のビットエッジ曖昧さを減らすように適合された加入者装置とを備えるシステム。
【請求項32】
基準位置において第1のナビゲーション信号を獲得すること、
前記基準位置において受信される第2のナビゲーション信号を変調するデータ信号のビットエッジのタイミングを推定すること、および
前記ビットエッジの前記推定されるタイミングに少なくとも部分的に基づいて、前記第2のナビゲーション信号の間隔にわたって前記第2のナビゲーション信号を獲得するように予備検出積分を実行することを備える方法。
【請求項33】
前記第1のナビゲーション信号は、第1のSV(宇宙船)によって送信され、前記第2のナビゲーション信号は、第2のSVによって送信され、前記ビットエッジは、前記第1のナビゲーション信号の知られているインスタンスと同期され、前記ビットエッジの前記タイミングを前記推定することは、前記基準位置から前記第1のSVまでの第1の距離と、前記基準位置から第2のSVまでの第2の距離との推定される差に少なくとも部分的に基づいて、前記知られているインスタンスを、前記ビットエッジに関連付けることをさらに備える請求項32に記載の方法。
【請求項34】
前記ビットエッジの前記タイミングを前記推定することは、
前記第1のナビゲーション信号を変調する交互するビタビ符号化された信号を復号すること、および
前記復号された交互するビタビ符号化された信号の遷移を、前記ビットエッジに関連付けることをさらに備える請求項32に記載の方法。
【請求項35】
前記ビットエッジの前記タイミングを前記推定することは、
前記第1のナビゲーション信号を変調する、繰り返されるデータ列を復号すること、および
前記第2の信号の中の前記ビットエッジを、前記復号されたデータ列のインスタンスに関連付けることをさらに備える請求項32に記載の方法。
【請求項36】
前記第1のナビゲーション信号は、Galileo群のメンバであるSV(宇宙船)から送信され、前記第2のナビゲーション信号は、GPS群のメンバであるSVから送信される請求項32に記載の方法。
【請求項37】
基準位置において受信される第1のナビゲーション信号を変調するデータ信号のビットエッジのタイミングを特定すること、および
前記ビットエッジの前記タイミングに少なくとも部分的に基づいて、前記基準位置において受信される第2のナビゲーション信号を変調する、交互するビタビ符号化された信号の中の遷移のタイミングを特定することを備える方法。
【請求項38】
前記第1のナビゲーション信号は、第1のSV(宇宙船)によって送信され、前記第2のナビゲーション信号は、第2のSVによって送信され、前記遷移の前記タイミングを前記特定することは、前記基準位置から前記第1のSVまでの第1の距離と、前記基準位置から第2のSVまでの第2の距離との推定される差に少なくとも部分的に基づいて、前記ビットエッジの前記タイミングを、前記遷移の前記タイミングに関連付けることをさらに備える請求項37に記載の方法。
【請求項39】
前記第1のSVは、GPS群のメンバであり、前記第2のSVは、Galileo群のメンバである請求項38に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−198220(P2012−198220A)
【公開日】平成24年10月18日(2012.10.18)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−104802(P2012−104802)
【出願日】平成24年5月1日(2012.5.1)
【分割の表示】特願2009−525787(P2009−525787)の分割
【原出願日】平成19年8月23日(2007.8.23)
【出願人】(595020643)クゥアルコム・インコーポレイテッド (7,166)
【氏名又は名称原語表記】QUALCOMM INCORPORATED
【Fターム(参考)】