説明

同軸小型蛍光分光分析装置

【課題】本発明は、測定波長を自在に設定可能であり、かつ、より小型化された装置外形を実現する新規な蛍光分光分析装置を提供することを目的とする。
【解決手段】アッベ数の小さい高分散ガラスを用いたレンズ系によって、色収差が大きく、かつ、球面収差が小さい光学系を構成する。上記光学系の光軸上に該光軸方向に移動可能なピンホールを設け、測定波長に固有の光軸上の集光位置にピンホールを移動させることにより、測定波長成分のみをピンホールを介して選択的に光検出系側に通過させる。上記分光機構を採用することにより、走査光学系と検出光学系とを同光軸上に構成することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光分光分析装置に関し、より詳細には、小型化された分光光学系および該光学系を含む蛍光分光分析装置に関する。
【背景技術】
【0002】
従来、試料の定性、定量などを行うことために分光法が用いられており、その中でも、蛍光物質を含有する試料を解析する場合、その蛍光物質の吸収バンドに合致した波長の励起光を試料に照射し、その結果、蛍光物質から発せられる蛍光を検出し定量化することによって試料の定性、定量などを行う手法が用いられており、そのための蛍光分光分析装置について種々開発がなされてきた。その中でも、同軸落射照明方式を採用する蛍光分光分析装置においては、励起光と蛍光とが同光軸上にあるため、検出対象が発する蛍光以外の光、たとえば反射光や散乱光などの影響を排除する必要があり、検出対象の波長の光線のみを取り出すために回析格子分光器やプリズム分光器、あるいは干渉フィルターなどを用いることが必要であった。しかしながら、回析格子分光器やプリズム分光器を用いた場合には、装置の大型化が避けられないという問題があり、また、干渉フィルターを用いた装置においても、測定波長が変更されるたびに複数の干渉フィルターを切り換えなければならず、またその測定可能な波長も固定的であるという問題があった。
【0003】
この点につき、特開2005−62023号公報(特許文献1)は、励起光と蛍光のそれぞれの光軸方向を異ならしめ、それぞれの光路を分離、遮光することによって、干渉フィルターを用いることなく、連続的な蛍光波長測定を可能にする蛍光測定装置を開示する。しかしながら、特許文献1に開示された発明の装置は、励起光と蛍光の光軸を異ならしめるために複雑な構成にならざるを得ず、また、依然として回析格子分光器を必要とするため、上述した装置の大型化の問題を何ら解決するものではない。
【0004】
一方、同軸落射式蛍光顕微鏡の中でも、試料を点状のプローブによってラスター走査する走査型の共焦点顕微鏡の開発が進んでおり、DNAチップの蛍光分光分析などに多く用いられている。共焦点顕微鏡においては、通常の顕微鏡と異なり、励起光は、対物レンズを通して該レンズの焦点に位置する試料のみを照射し、共焦点に配設されたピンホールによって、対物レンズの焦点位置以外から発光した蛍光や迷光を遮断することが可能とされている。図8を参照して、共焦点顕微鏡の機構について簡単に説明すると、図8に示す共焦点顕微鏡50においては、図示しない光源から励起光Bが矢印が示すように平行光線として照射され、ビームスプリッター52によって光路を90°曲げられたのち、対物レンズ54を透過して焦点fに収束し、サンプル設置部56上の図示しないサンプルの極小領域を照射する。照射されたサンプルから発せられた蛍光は、対物レンズ54を経てビームスプリッター52を透過したのち、干渉フィルター58によって所望の波長成分のみが選択的に透過され、透過した光は、集光レンズ60によって共焦点Fに集光する。このとき、散乱光などの迷光は、ピンホール形成部62の壁面によって反射、吸収されて光検出器64に到達することができず、共焦点Fに集光した光のみがピンホール形成部62のピンホールPを通過して光検出器64に導かれ、検出される。
【0005】
特開2002−277746号公報(特許文献2)および特開2005−189290号公報(特許文献3)は、上述した共焦点顕微鏡において、共焦点ピンホールを光軸に一致させるために、該ピンホールを光軸に対し直交するXY方向に移動させてその位置を調整する構成を開示する。しかしながら、特許文献2および3は、依然、干渉フィルターによる分光を要するものであり、連続的な蛍光波長測定を可能にするものではない。
【特許文献1】特開2005−62023号公報
【特許文献2】特開2002−277746号公報
【特許文献3】特開2005−189290号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、測定波長を自在に設定可能であり、かつ、より小型化された装置外形を実現する新規な蛍光分光分析装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
上述した技術的課題につき鋭意検討した結果、本発明者らは、近年開発が進むアッベ数の小さい高分散ガラスを用いたレンズ系によって、色収差が大きく、かつ、球面収差が小さい光学系を構成し、該光学系の光軸上に該光軸方向に移動可能なピンホールを設け、測定波長に固有の光軸上の集光位置にピンホールを移動させることによって、測定波長成分のみをピンホールを介して選択的に光検出系側に通過させることを見出し、本発明に至ったのである。
【0008】
すなわち、本発明によれば、分析対象に励起光を照射するための光源と、前記分析対象から発光した蛍光を平行光線にするための第1の光学系と、平行光線となった前記蛍光を共焦点に集束させるための第2の光学系と、開口部が形成されたピンホール形成部と、前記開口部を通過した前記蛍光を光検出器に集光するための第3の光学系とを備え、前記第1、第2、および第3の光学系は、共通の光軸を有し、前記第2の光学系は、前記第1の光学系と前記第3の光学系との間に配置され、50nmの波長の差がある2種の光線を、前記光軸上において0.5mm以上離間した位置に収束させる蛍光分光分析装置が提供される。
【0009】
本発明においては、前記光軸上であって前記ピンホール形成部と前記第3の光学系との間に、光を遮蔽する光軸遮蔽部をさらに備えることができ、また、前記第2の光学系は、アッベ数が25以下のレンズを含んで構成することができる。
【0010】
また、本発明においては、前記ピンホール形成部は、前記開口部が、前記光軸上であって前記第2の光学系と前記第3の光学系の間を移動自在に設けられることができ、あるいは、前記第2の光学系を、前記光軸上であって前記第1の光学系と前記ピンホール形成部の間を移動自在に設けることもできる。
【0011】
さらに、本発明においては、前記第2の光学系の前記共焦点における球面収差を直径100μm以下とすることが好ましい。
【発明の効果】
【0012】
上述したように、本発明によれば、測定波長を自在に設定可能であり、かつ、より小型化された装置外形を実現する新規な蛍光分光分析装置が提供される。
【発明を実施するための最良の形態】
【0013】
以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。
【0014】
図1は、本発明の蛍光分光分析装置10の概略図を示す。本発明の蛍光分光分析装置10は、筐体12によって外部からの光が遮断された空間内に、図の左からサンプル設置部14、対物レンズ16、ビームスプリッター18、高分散光学系20、ピンホール形成部22、光軸遮蔽部24、集光レンズ26、および光検出器28を含んで構成されており、対物レンズ16、高分散光学系20および集光レンズ26は、それぞれの光軸が同軸となるように配設されている。図中、一点鎖線がその共通光軸Kを示す。光軸遮蔽部24は、上述した光軸Kを通る光線が光検出器28に到達することを阻止する遮蔽物として機能するものであり、たとえば、フリントガラスなどの透過率が高く、屈折率の低い材質からなる平板ガラスの一部に黒色の蒸着物質を蒸着した遮蔽領域として形成することができる。光軸遮蔽部24は、光の吸収率が大きく、反射率の小さい材料によって形成されることが好ましい。光検出器28は、微弱な蛍光を検出することができるよう、光電子増倍管等の高感度の検知器を含んで構成することができ、集光レンズ26によって集光された蛍光は、光検出器28の光電子増倍管によって増幅されて検出される。
【0015】
本発明の蛍光分光分析装置10は、さらに、励起光発生部29を含んで構成されている。励起光発生部29は、励起光を平行光線として照射するものであり、励起光発生部29が照射する励起光Bは、ビームスプリッター18を経て対物レンズ16に入射するように構成されている。本発明における励起光発生部29は、キセノンランプ等を光源とする平行光線を形成する周知の光学系から構成することもでき、レーザー装置とビームエキスパンダによって構成することもできる。
【0016】
ビームスプリッター18は、光束を二つに分割するものであり、入射した光の一部を反射し、一部を透過させる機能を備えている。ビームスプリッター18に導入された励起光Bの一部は、矢印が示すように、ビームスプリッター18によって光路を変えられ、対物レンズ16に入射する。ビームスプリッター18は、励起光Bの光路を光軸Kに平行な方向に変更するように設置されている。対物レンズ16に入射した平行光線は、対物レンズ16を透過して、該レンズの焦点に収束する。サンプル設置部14は、対物レンズ16の焦点面近傍に配置可能に構成されており、対物レンズ16の焦点面にサンプルを配置することが可能に構成されている。したがって、対物レンズ16によって収束された励起光Bは、サンプル設置部14上の図示しないサンプルの極小領域を照射することができる。なお、本発明における励起光照射光学系は、サンプルの極小領域について励起光を照射しうる構成であればよく、上述した同軸落射照明方式に限定されるものではない。本発明においては、たとえば、サンプルにレーザー光を直接スポット照射することもでき、また、励起光をサンプルに対して裏側、あるいは、斜め方向から照射することもできる。
【0017】
励起光Bによって照射された図示しない極小領域のサンプルは、蛍光を発し、発せられた蛍光Cは、矢印が示すように第1の光学系である対物レンズ16を透過した後、再び、平行光線となってビームスプリッター18に入射し、その一部は透過して第2の光学系である高分散光学系20に導入される。高分散光学系20に入射した蛍光は、その後、ピンホール形成部22に形成されたピンホールPを通過し、第3の光学系である集光レンズ26を透過した後、光検出器28に収束することになるが、その機構について以下詳細に説明する。
【0018】
図2は、本発明の蛍光分光分析装置10における軸上色収差を利用した分光機構を概念的に示す図である。本発明における高分散光学系20は、高分散レンズを含む複数のレンズが組みあわされた光学系として構成される。本発明の高分散レンズは、光の色、すなわち光の波長による屈折率差の大きいレンズであり、たとえば、50nmの波長の差がある2種の光線が透過した際、それぞれの光線を、光軸上において0.5mm以上の距離をもって離間した位置に収束させることが可能なレンズであることが好ましく、より好ましくは、50nmの波長の差がある2種の光線が透過した際、それぞれの光線を、光軸上において1mm以上の距離をもって離間した位置に収束させることが可能なレンズであることが好ましい。本発明においては、高分散レンズのアッベ数は25以下であることが好ましく、より好ましくは、アッベ数が15〜20のレンズを用いることが好ましい。このような高分散レンズには、一般的なフリントガラス(アッベ数、20〜30)の他、S−NP(株式会社オハラ、アッベ数、18.9)を用いることができる。
【0019】
本発明における高分散光学系20は、上述した高分散レンズに適宜他のレンズ系を組み合わせることによって、軸上色収差を大きく残存させたまま、球面収差のみが小さくなるように修正された光学系として構成される。球面収差に関しては、集光効率に影響を与えない範囲でレンズの有効径を小さくすることその最適化を図ることができ、また、軸上色収差に関しては、できるだけ凸レンズまたは凹レンズのいずれか一方のレンズ系のみによって光学系を構成することによって、その収差を大きく維持することができることが知られており、上述した特性を備える高分散光学系20は、光学設計プログラムによって設計することができる。上述したように、本発明の蛍光分光分析装置10は、軸上色収差を大きく残存させたまま、球面収差のみが小さくなるように修正された高分散光学系20を含んで構成されている。本発明においては、波長の異なる各光線を、光軸K上の共焦点において、直径100μm以下の光束として収束させることが好ましく、より好ましくは、直径80μm以下の光束として収束させることが好ましく、さらに好ましくは、直径50μm以下の光束として収束させることが好ましい。すなわち、本発明においては、後述するピンポールの大きさをなるべく小さく設計しうるように、高分散光学系20の球面収差が直径100μm以下となるように設計することが、S/N比の向上のために好ましい。
【0020】
図2(a)に示すように、図示しないビームスプリッター18を透過して入射した平行光線のうち、赤色光のような長波長の蛍光Lは、高分散光学系20を透過して光軸K上の第1の共焦点F1に集光する。一方、緑色光のような短波長の蛍光Sが高分散光学系20を透過した場合、蛍光Sは、蛍光Lより大きく屈折するため、長波長の第1の共焦点F1よりも、距離lだけ物体側よりの光軸K上の第2の共焦点F2に集光する。すなわち、高分散光学系20においては、距離lの軸上色収差が生じている。本発明の蛍光分光分析装置10において、長波長の蛍光Lを観測する場合は、図2(a)に示すように、ピンホール形成部22に形成された開口部Pを共焦点F1の位置に合わせることによって蛍光Lを像側に通過させることができる。この際、迷光をはじめとする蛍光L以外の光のほとんどはピンホール形成部22の壁面によって、吸収、反射されて像側への進入を阻止される。ただし、蛍光L以外の光であっても光軸Kを通る光成分は、開口部Pを通過する。本発明においては、ピンホール形成部22は、金属板にエッチング加工を施すことによって形成することができる。また、ピンホール形成部22に形成される開口部Pの大きさは、高分散光学系20の球面収差に関連して、S/N比が大きく、かつ、光量損失が小さくなるように設計することが好ましい。本発明の蛍光分光分析装置10においては、開口部Pの大きさの最適化を図ることによって、たとえば、DNAチップなどの蛍光解析において必要な検出精度を提供するに充分な波長分解能が実現される。
【0021】
一方、本発明の蛍光分光分析装置10において、短波長の蛍光Sを観測する場合は、図2(b)に示すように、ピンホール形成部22に形成された開口部Pを共焦点F2の位置に合わせることによって蛍光Sを像側に通過させることができる。この際、迷光をはじめとする蛍光S以外の光のほとんどはピンホール形成部22の壁面によって、吸収、反射されて像側への進入を阻止される。ただし、蛍光S以外の光であっても光軸Kを通る光成分は、開口部Pを通過する。
【0022】
本発明においては、ピンホール形成部22が光軸方向に移動可能に設けられている。すなわち、開口部Pが、光軸K上であって高分散光学系20と集光レンズ26の間を移動自在となるようにピンホール形成部22が設けられており、光軸K上の所定の位置に収束する測定対象の蛍光を、選択的に開口部Pを介して像側に通過させることにより、測定波長成分のみを分光することができる。本発明の上述した新規な分光機構を用いることによって、蛍光分光分析装置における走査光学系と検出光学系とを同光軸上に構成することが可能となる。したがって、本発明によれば、回折格子等を用いた従来の蛍光分光分析装置に比較して、装置の外形をより小型化することが可能となり、加えて、分光のために別途の高価な光学素子を用いる必要がないため装置の製造コストの低減を図ることができる。また、本発明の分光機構によれば、従来の干渉フィルターを用いる蛍光分光分析装置とは異なり、その測定波長が限定されず、ピンホール形成部22の固定位置を適宜変えることによって連続的な蛍光波長測定が可能となる。
【0023】
なお、上述した軸上色収差を利用した分光機構は、ピンホール形成部22を光軸方向に前後に移動させるものに限定されるものではなく、図2(c)に示すように、ピンホール形成部22自体は固定したままで、高分散光学系20を光軸方向に前後に移動させる機構を含むものであり、さらに、ピンホール形成部22ならびに高分散光学系20の両方が移動可能な構成を排除するものではない。上述した分光機構が、本発明の蛍光分光分析装置10において具体的にどのように機能するかについて以下説明する。
【0024】
図3は、本発明の蛍光分光分析装置10における光路図を示す。図3(a)は、本発明の蛍光分光分析装置10において長波長の蛍光Lを観測する態様を示した図である。図示しない光源から入射した平行光線である励起光Bの一部は、ビームスプリッター18によって進路を変更され光軸Kに平行な光線となって対物レンズ16に入射し、対物レンズ16を透過した励起光Bは、対物レンズ16の焦点fに集光し、サンプル設置部14上の図示しない極小領域のサンプルを照射する。照射されたサンプルによって発せられた蛍光Lを含む光は、対物レンズ16およびビームスプリッター18を透過して高分散光学系20に入射する。
【0025】
高分散光学系20を透過した蛍光Lを含む光線成分のうち、蛍光Lは、共焦点F1に集光する。このとき、ピンホール形成部22は、開口部Pと共焦点F1とが合致する光軸K上の所定位置に配置されているため、共焦点F1において集光した蛍光Lは、開口部Pを通過して像側に発散される。一方、迷光は、ピンホール形成部22の壁面によって吸収、反射されて像側への進入を阻止される。また、対物レンズ16の焦点fからの発光成分のうち蛍光L以外の成分の共焦点は、共焦点F1と離間した位置となるため、それらの成分のほとんどは、同じくピンホール形成部22の壁面によって吸収、反射されて像側への進入を阻止される。しかし、上記成分のうち光軸Kを通る成分は、開口部Pを直進して通過する。
【0026】
開口部Pを通過した光成分のうち、光軸Kに沿って直進する成分は、光軸遮蔽部24によって吸収、反射されて集光レンズ26への入射を阻止される。集光レンズ26への入射を阻止される光成分には、光軸Kに沿って直進してきた蛍光Lの成分も含まれており、その分、観測対象である蛍光Lの光量が損失することになる。しかし、この損失量は、従来の干渉フィルターによる光損失量がおおよそ10〜40%であったことに鑑みれば、充分に許容しうるものであり、光軸遮蔽部24の遮蔽面積の最適化を図ることによって、従来の干渉フィルターを用いる場合よりも光量損失を低減することが可能となり、その結果、検出精度が向上する。蛍光Lの光成分のうち、光軸遮蔽部24によって吸収、反射されたもの以外の成分は集光レンズ26を透過して光検出器28に収束され、光電子増倍管によって増幅して検出される。
【0027】
図3(b)は、本発明の蛍光分光分析装置10において短波長の蛍光Sを観測する態を示した図である。図3(a)について上述したのと同様に、励起光Bによって発せられた蛍光Sを含む光は、対物レンズ16およびビームスプリッター18を透過して高分散光学系20に入射する。ここで、短波長の蛍光Sの観測モードにおいては、ピンホール形成部22が、開口部Pと蛍光Sの共焦点F2の位置が合致するように、図3(a)における位置から距離lだけ物体側に移動して固定されるため、上述したのと同様の機構により、蛍光S以外の光成分が集光レンズ26への入射を阻止される一方、蛍光Sの光成分のうち、光軸遮蔽部24によって吸収、反射されたもの以外の成分は、集光レンズ26を透過して光検出器28に収束され、光電子増倍管によって増幅して検出される。なお、図3においては、説明の便宜のため、蛍光Lの共焦点F1と蛍光Sの共焦点F2との離間距離、すなわち軸上色収差を大きく表現しているが、実際にはその収差は0.5〜2mm程度であるため、集光レンズ26の有効径におよぼす影響は非常に小さく無視できる。
【0028】
図4は、本発明の蛍光分光分析装置10を含む蛍光分光分析システム30の概略図を示す。サンプル設置部14はXYZ試料ステージ32に固定されており、XYZ試料ステージ32は、光軸方向に対し平行方向(Z方向)および光軸に対し垂直方向(XY方向)に移動することが可能とされている。XYZ試料ステージ32によって、サンプル設置部14が固定された光軸Kに対してXY方向に移動することで、サンプル設置部14上の図示しないサンプルが走査される。本発明においては、XYZ試料ステージ32を位置制御システム34含む電動ステージとすることができ、サンプル設置部上のサンプルと光軸Kの相対位置に関する情報は、分析制御用パソコン36の所定のメモリーに記憶され、専用のアプリケーションによって駆動制御される。
【0029】
一方、ピンホール形成部22は、ピンホール移動ステージ38に固定されており、ピンホール移動ステージ38よって矢印が示す方向、すなわち光軸K方向に平行に移動可能に構成されている。本発明においては、ピンホール移動ステージ38を位置制御システム40を含む電動ステージとすることができ、光軸K上におけるピンホール形成部22の位置情報は、分析制御用パソコン36の所定のメモリーに記憶され、専用のアプリケーションによって駆動制御される。
【0030】
また、光検出器28に入射した蛍光は、光電変換され、その電気信号がエレクトロメータ42に入力されて電圧として測定された測定結果は、分析制御用パソコン36にデジタル信号として入力される。分析制御用パソコン36には、さらに、図示しない励起光発生部29から波長をはじめとする励起光に関連する情報が入力されるように構成することができ、分析制御用パソコン36は、励起光に関連する情報に加え、上述したサンプルと光軸Kの相対位置に関する情報、光軸K上におけるピンホール形成部22の位置情報、およびエレクトロメータ42から入力された光量に関連する情報などをあわせて処理し、サンプルの蛍光分光分析を行なうように構成することができる。
【実施例】
【0031】
以下、本発明の蛍光分光分析装置10について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。図5は、本発明の蛍光分光分析装置10の分光光学系における光路図を示す。図5に示した光学系は、光学設計プログラム(OPTAS、株式会社オプト社製)によって設計されたものであり、両凸レンズである対物レンズ16と破線に囲まれた高分散光学系20とから構成されており、さらに高分散光学系20は、アッベ数が18.9のガラス(S−NPH2、株式会社オハラ)を用いて作製したレンズ20aとレンズ20bとから構成されている。図6は、対物レンズ16、レンズ20a、およびレンズ20bのスペックについて示す。なお、図5中、fは対物レンズ16の焦点面を、Fは光学系の共焦点面を示し、一点鎖線は光学系の光軸Kを示すものであり、図中の数値の単位はmmとして参照する。
【0032】
図7は、図5に示した光学系において、波長550nmの光と波長650nmの光の2種類の光について光線追跡を行なった結果を示す。なお、光線追跡は、光学設計プログラム(OPTAS、株式会社オプト社製)を用いて行なった。図7(a)は、波長550nmの光の共焦点面F1におけるスポットダイヤグラムを示す。波長550nmの光の共焦点面F1においては、波長550nmの光束は、極小領域(直径0.05mm)に収束しているが、波長650nmの光束は、おおよそ0.5mmの直径をもって共焦点面F1を通過することが示された。一方、図7(b)は、波長650nmの光の共焦点面F2におけるスポットダイヤグラムを示す。波長550nmの光の共焦点面F1から0.75mm像側に位置する波長650nmの光の共焦点面F2においては、波長650nmの光束は、極小領域(直径0.05mm)に収束しているが、波長550nmの光束は、おおよそ0.5mmの直径をもって共焦点面F2を通過することが示された。
【0033】
上述した実施例の結果より、図5に示した分光光学系を含む本発明の蛍光分光分析装置10は、おおよそ直径0.05mmの開口部Pが設けられたピンホール形成部22を光軸方向に0.75mm移動させることによって、波長550nmの光と波長650nmの光とを選択的に分光しうることが示された。
【産業上の利用可能性】
【0034】
以上、説明したように、本発明によれば、測定波長を自在に設定可能であり、かつ、より小型化された装置外形を実現する新規な蛍光分光分析装置が提供される。本発明の蛍光分光分析装置は、その小型化ならびに低価格化にあいまって、たとえば、DNAチップなどの蛍光解析等をはじめとする医療の研究分野における更なる活用が期待される。
【図面の簡単な説明】
【0035】
【図1】本発明の蛍光分光分析装置10の概略図。
【図2】本発明の蛍光分光分析装置10における軸上色収差を利用した分光機構を概念的に示す図。
【図3】本発明の蛍光分光分析装置10における光路図。
【図4】本発明の蛍光分光分析装置10を含む蛍光分光分析システム30の概略図。
【図5】本発明の蛍光分光分析装置10の分光光学系における光路図。
【図6】対物レンズ16、レンズ20a、レンズ20bのスペックについて示す図。
【図7】波長550nmの光の共焦点面F1ならびに波長650nmの光の共焦点面F2におけるスポットダイヤグラムを示す図。
【図8】従来の共焦点顕微鏡を示す図。
【符号の説明】
【0036】
10…蛍光分光分析装置、12…筐体、14…サンプル設置部、16…対物レンズ、18…ビームスプリッター、20…高分散光学系、22…ピンホール形成部、24…光軸遮蔽部、26…集光レンズ、28…光検出器、29…励起光発生部、30…蛍光分光分析システム、32…XYZ試料ステージ、34…位置制御システム、36…分析制御用パソコン、38…ピンホール移動ステージ、40…位置制御システム、42…エレクトロメータ、50…共焦点顕微鏡、52…ビームスプリッター、54…対物レンズ、56…サンプル設置部、58…干渉フィルター、60…集光レンズ、62…ピンホール形成部、64…光検出器

【特許請求の範囲】
【請求項1】
分析対象に励起光を照射するための光源と、
前記分析対象から発光した蛍光を平行光線にするための第1の光学系と、
平行光線となった前記蛍光を共焦点に集束させるための第2の光学系と、
開口部が形成されたピンホール形成部と、
前記開口部を通過した前記蛍光を光検出器に集光するための第3の光学系とを備え、
前記第1、第2、および第3の光学系は、共通の光軸を有し、
前記第2の光学系は、前記第1の光学系と前記第3の光学系との間に配置され、50nmの波長の差がある2種の光線を、前記光軸上において0.5mm以上離間した位置に収束させる
蛍光分光分析装置。
【請求項2】
前記光軸上であって前記ピンホール形成部と前記第3の光学系との間に、光を遮蔽する光軸遮蔽部をさらに備える、請求項1に記載の蛍光分光分析装置。
【請求項3】
前記第2の光学系は、アッベ数が25以下のレンズを含む、請求項1または2のいずれか1項に記載の蛍光分光分析装置。
【請求項4】
前記ピンホール形成部は、前記開口部が、前記光軸上であって前記第2の光学系と前記第3の光学系の間を移動自在に設けられる、請求項1〜3のいずれか1項に記載の蛍光分光分析装置。
【請求項5】
前記第2の光学系は、前記光軸上であって前記第1の光学系と前記ピンホール形成部の間を移動自在に設けられる、請求項1〜4のいずれか1項に記載の蛍光分光分析装置。
【請求項6】
前記第2の光学系は、前記共焦点における球面収差が直径100μm以下である、請求項1〜5のいずれか1項に記載の蛍光分光分析装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−271528(P2007−271528A)
【公開日】平成19年10月18日(2007.10.18)
【国際特許分類】
【出願番号】特願2006−99534(P2006−99534)
【出願日】平成18年3月31日(2006.3.31)
【出願人】(591060245)株式会社相馬光学 (14)
【出願人】(800000080)タマティーエルオー株式会社 (255)
【Fターム(参考)】