説明

回転部材の変位測定装置及び荷重測定装置

【課題】外輪3とハブ4との間に加わる荷重を、変位センサ等、荷重測定専用の部品を使用せずに、しかも取付け誤差に拘らず正確に測定できる構造を実現する。
【解決手段】上記ハブ4に、特性を円周方向に関して交互に且つ等間隔に変化させたエンコーダ12を、このハブ4と同心に支持固定する。上記外輪3に支持したセンサ13の検出部を、このエンコーダ12の被検出面に近接対向させる。この被検出面に設けた第一、第二両被検出部の幅寸法は、検出すべき荷重が作用する方向に連続的に変化する。この荷重の変化に伴って、上記センサ13の出力信号が変化するパターンが変わるので、このパターンを観察する事により、上記荷重を求める。このパターンの変化を表す信号をフィルタリング処理して、上記取付け誤差等に基づく変動を除去する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明に係る回転部材の変位測定装置及び荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に加わる荷重の大きさを測定して、車両の安定運行の確保に利用する。或は、各種工作機械の主軸を支持する為の転がり軸受ユニットに組み込んで、この主軸に加わる荷重や、熱膨張等による変位を測定し、工具の送り速度等を適切に調節する為に利用する。
【背景技術】
【0002】
例えば、車両の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、車両の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等の車両の走行状態安定化装置が広く使用されている。これらABSやTCS等の走行状態安定化装置によれば、制動時や加速時に於ける車両の走行状態を安定させる事はできるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。
【0003】
即ち、上記ABSやTCS等の従来の走行状態安定化装置の場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている為、これらブレーキやエンジンの制御が一瞬とは言え遅れる。言い換えれば、厳しい条件下での性能向上を図るべく、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。
【0004】
この様な問題に対応すべく、上記フィードフォワード制御等を行なう為には、懸架装置に対して車輪を支持する為の転がり軸受ユニットに、この車輪に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方を測定する為の荷重測定装置を組み込む事が考えられる。この様な場合に使用可能な荷重測定装置付車輪支持用転がり軸受ユニットとして従来から、特許文献1〜4に記載されたものが知られている。
【0005】
このうちの特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサにより、回転しない外輪と、この外輪の内径側で回転するハブとの径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。
【0006】
又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。
【0007】
又、特許文献3には、外輪の円周方向4個所位置に支持した変位センサユニットとハブに外嵌固定した断面L字形の被検出リングとにより、上記4個所位置での、上記外輪に対する上記ハブの、ラジアル方向及びスラスト方向の変位を検出し、各部の検出値に基づいて、このハブに加わる荷重の方向及びその大きさを求める構造が記載されている。
【0008】
更に、特許文献4には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、この公転速度から、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。
【0009】
前述の特許文献1に記載された従来構造の第1例の場合、変位センサにより外輪とハブとの径方向に関する変位を測定する事で、転がり軸受ユニットに加わる荷重を測定する。但し、この径方向に関する変位量は僅かである為、この荷重を精度良く求める為には、上記変位センサとして、高精度のものを使用する必要がある。高精度の非接触式センサは高価である為、荷重測定装置付転がり軸受ユニット全体としてコストが嵩む事が避けられない。
【0010】
又、特許文献2に記載された従来構造の第2例の場合、ナックルに対し外輪を支持固定する為のボルトと同数だけ、荷重センサを設ける必要がある。この為、荷重センサ自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献3に記載された構造は、外輪の周方向4個所位置にセンサを設置する為、上記特許文献1に記載された構造よりも更にコストが嵩む。更に、特許文献4に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある。
又、特許文献1〜4の何れに記載された構造及び方法も、転がり軸受ユニットに加わる荷重を測定する為に専用の機構を設けている。この為、コスト並びに重量が嵩む事が避けられない。
【0011】
更に、本発明に関連する技術として、特許文献5には、被検出面にN極とS極とを交互に配置したエンコーダを使用する事により、このエンコーダを支持した内輪の芯振れを検出する構造が記載されている。但し、上記特許文献5には、上記エンコーダを利用して、転がり軸受ユニットに加わる荷重を求める技術に関しては、この様な技術を示唆する記述を含めても記載されていない。
【0012】
これに対して本発明者等は、転がり軸受ユニットを構成するハブに装着したエンコーダの回転に伴って変化するセンサの出力信号の変化のパターンに基づいて、この転がり軸受ユニットに加わる荷重の方向及び大きさを求める構造に就いて発明した(特願2005−147642号)。この先発明に係る荷重測定装置付転がり軸受ユニットの場合には、ハブ等の回転側軌道輪の一部にエンコーダを、この回転側軌道輪と同心に支持固定すると共に、回転しない部分に支持したセンサの検出部を、上記エンコーダの被検出面に対向させている。又、この被検出面の幅方向は、求めるべき荷重の作用方向に一致させている。更に、この被検出面の特性は、円周方向に関して交互に変化させると共に、この特性が円周方向に関して変化するピッチ若しくは位相を、上記被検出面の幅方向に関して連続的に変化させている。上記回転側軌道輪に荷重が加わると、上記センサの検出部が対向している、上記エンコーダの被検出面の幅方向位置が変化し、このセンサの出力信号が変動するパターンが変化する。このパターンが変化する程度と上記荷重の大きさとの間には相関関係がある為、このパターンを観察する事により、この荷重の大きさを求められる。
【0013】
ところで、例えば車輪支持用転がり軸受ユニットの場合、自動車の走行安定性確保の為、その剛性は相当に高い。従って、荷重に基づいて発生する静止側軌道輪と回転側軌道輪との相対変位の量は、この荷重がラジアル荷重にしろ、アキシアル荷重にしろ、僅かである。例えば、車輪支持用転がり軸受ユニットに10kN程度のアキシアル荷重が作用した場合に、上記静止側軌道輪と上記回転側軌道輪とが軸方向に相対変位する量(長さ)は、数十μm乃至数百μm程度に過ぎない。更に、10kN程度のラジアル荷重が加わった場合には、上記静止側軌道輪と上記回転側軌道輪とが径方向に相対変位する量は、数十μm程度に過ぎない。
【0014】
以上の説明から明らかな通り、上記アキシアル荷重を、自動車の走行安定性確保の為に実用可能な精度で求める為には、(車輪支持用転がり軸受ユニットの剛性等に応じて)数μm乃至数十μm程度の軸方向変位を、上記センサの検出信号に基づいて求めなければならない。更に、上記ラジアル荷重に関しては、(車輪支持用転がり軸受ユニットの剛性等に応じて)数μm程度若しくはそれ以下の径方向変位を、上記センサの検出信号に基づいて求めなければならない。この様な微小量の変位を求める為には、エンコーダの被検出面の特性が変化する境界線(被検出面に形成した凹部と凸部との境界、或いは被検出面に着磁したN極とS磁との境界)を、精度良く(境界線の位置や傾斜角度を設計値通りに)製作しなければならない。これに対して、加工精度や着磁精度には限界があり、上記境界線の寸法誤差に基づいて上記センサの検出信号が変動するパターンが変化する事は、或る程度考慮しなければならない。
【0015】
又、仮に、上記エンコーダの被検出面の特性が変化する境界線の精度が満足できるものであっても、このエンコーダを回転側軌道輪に組み付ける際の組み付け誤差によって、この回転側軌道輪の回転に伴って上記被検出面が、荷重に関係なく、見掛け上変位(回転に伴って振動)してしまう。上述の様な先発明の構造により、転がり軸受ユニットを構成する静止側軌道輪と回転側軌道輪との間に作用する荷重を求める場合、特に上記センサの出力信号に補正を施さない限り、上記エンコーダの被検出面の幾何中心軸と回転中心軸とが一致している事が重要である。これら両中心軸同士が互いに不一致である場合、即ち、両中心軸同士が径方向にずれていたり、或いは互いに傾斜していたりすると、上記荷重に関係なく、上記センサの検出部が対向する、上記被検出面の幅方向位置がずれる。
【0016】
例えば、検出すべき荷重がラジアル荷重である場合、エンコーダの被検出面はその軸方向側面となるが、この軸方向側面の中心軸と回転側軌道輪の回転中心軸との径方向位置がずれていた場合、この回転側軌道輪の回転に伴って上記被検出面が、回転1次の振れ回り運動をする。又、検出すべき荷重がアキシアル荷重である場合、エンコーダの被検出面はその周面とする場合が多くなるが、この周面の中心軸と回転側軌道輪の回転中心軸とが傾斜していた場合には、この回転側軌道輪の回転に伴って上記被検出面が、回転1次の軸方向変位運動をする。何れにしても、この被検出面のうちで上記センサの検出部が対向する部分が、この被検出面の幅方向に関してずれる。この結果、上記荷重が変動しない場合でも、上記センサの出力信号が変動するパターンが変化して、この荷重の測定精度が悪化する。
【0017】
【特許文献1】特開2001−21577号公報
【特許文献2】特開平3−209016号公報
【特許文献3】特開2004−3918号公報
【特許文献4】特公昭62−3365号公報
【特許文献5】特開2004−77159号公報
【発明の開示】
【発明が解決しようとする課題】
【0018】
本発明は、上述の様な事情に鑑み、回転側軌道輪等の回転部材に対するエンコーダの組み付け不良等により、この回転側軌道輪等の回転部材の回転に伴ってこのエンコーダの被検出面が、その幅方向に振れた場合でも、この回転部材の変位量、或いはこの回転部材に加わる荷重を、回転側軌道輪と静止側軌道輪との相対変位量、或いはこれら両軌道輪同士の間に加わる荷重等として正確に求められる、回転部材の変位測定装置及び荷重測定装置を実現すべく発明したものである。
【課題を解決するための手段】
【0019】
本発明の回転部材の変位測定装置及び荷重測定装置は、エンコーダと、センサと、フィルタ回路と、演算器とを備える。
このうちのエンコーダは、回転部材の一部にこの回転部材と同心に支持されたもので、被検出面の特性を円周方向に関して交互に変化させている。
又、上記センサは、その検出部を上記被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させる。
又、上記フィルタ回路は、上記センサの出力信号若しくはこの出力信号に基づいて得られる処理信号にフィルタリング処理を施す。即ち、上記フィルタ回路は、上記出力信号若しくは上記処理信号の変動のうち、上記被検出面の円周方向に亙る特性変化に関する誤差に基づく、誤差成分を消去する。
又、上記演算器は、上記フィルタ回路によりフィルタリング処理を施された上記出力信号若しくは上記処理信号に基づいて、上記回転部材の変位量を算出する。即ち、上記演算器は、上記フィルタ回路を通過した、上記出力信号若しくは上記処理信号が変化するパターンに基づいて、上記相対変位量を算出する機能を有する。
【0020】
上記回転部材は、例えば請求項2に記載した様に、転がり軸受ユニットの回転側軌道輪若しくはこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転する部材とする。尚、上記転がり軸受ユニットは、使用状態で回転する上記回転側軌道輪と、使用状態でも回転しない静止側軌道輪と、これら回転側軌道輪と静止側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものである。
又、請求項3に記載した様に、上記回転側軌道輪と静止側軌道輪との相対変位量を、これら回転側軌道輪と静止側軌道輪との間に作用する荷重を求める為に使用する。
又、上記エンコーダの被検出面の特性が円周方向に関して変化するピッチ若しくは位相は、例えば請求項4に記載した様に、検出すべき変位の方向に対応して(検出すべき変位に伴って上記被検出面が変位する方向に)、この被検出面の幅方向に関して連続的に変化させる。要するに、上記エンコーダは、この被検出面の幅方向と上記検出すべき変位に対応してこのエンコーダが変位する方向とが一致する状態で、上記回転部材に組み付ける。 尚、回転側軌道輪と静止側軌道輪との間に作用する荷重を求める為には、必ずしもこれら回転側軌道輪と静止側軌道輪との相対変位量を求める必要はない。即ち、請求項24に記載した様に、演算器に、センサの出力信号若しくはこの出力信号に基づいて得られる処理信号に基づいて、上記回転部材に加わる荷重を直接(上記相対変位量を求める過程を経る事なく)算出する機能を持たせる事もできる。
【発明の効果】
【0021】
上述の様に構成する本発明の回転部材の変位測定装置及び荷重測定装置は、前述の先発明の場合と同様にして、回転部材の変位、又は、この回転部材に加わる荷重を、例えば静止側軌道輪と回転側軌道輪との間の変位、又はこれら両軌道輪同士の間に加わる荷重として求める。即ち、これら両軌道輪同士の間に荷重が作用すると、これら両軌道輪同士が、静止側、回転側両軌道及び各転動体の弾性変形に伴って相対変位する。この結果、回転側軌道輪に支持されたエンコーダの被検出面と、上記静止側軌道輪若しくは懸架装置の一部に支持されたセンサの検出部との位置関係が変化する。
【0022】
従って、請求項4に記載した様に、上記エンコーダの被検出面の特性が円周方向に関して変化するピッチ若しくは位相を、検出すべき荷重の作用方向に対応して連続的に変化させれば、この荷重に基づいて上記両軌道輪同士が相対変位すると、上記回転側軌道輪の回転に伴って上記センサの出力信号が変化するパターン(変化の周期或は大きさ、若しくは位相)が変化する。このパターンの変化の程度と上記荷重の大きさとの間には相関関係があるので、このパターンに基づいて、この荷重の大きさ、又は、上記両軌道輪同士の相対変位量を求められる。
【0023】
上記エンコーダとセンサとの組み合わせは、ABSやTCSの制御を行なう為に上記回転側軌道輪の回転速度を検出する為にも必要である(車輪支持用転がり軸受ユニットに関して実施する場合)。又、工作機械に関して実施する場合でも、主軸の回転速度を検出する為に必要である。本発明の回転部材の変位測定装置及び荷重測定装置は、この様な回転速度を検出する為に必要な構造を工夫する事により上記荷重又は変位を求められる様に構成できて、転がり軸受ユニット部分に新たな部品を組み込む必要をなくせる。この為、この転がり軸受ユニットに加わる荷重又は変位を求める為の構造を、小型且つ軽量に構成できる。
【0024】
更に、本発明の場合には、上記回転側軌道輪若しくはこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転する部材である回転部材に対する上記エンコーダの組み付け不良により、この回転側軌道輪等の回転部材の回転に伴ってこのエンコーダの被検出面がその幅方向に振れたり、或いは、被検出面の特性変化に関してピッチ誤差が存在したりした場合等でも、上記回転側軌道輪と上記静止側軌道輪との相対変位量等の回転部材の変位量、又はこの回転部材に加わる荷重を正確に求められる。即ち、本発明の場合には、フィルタ回路により、上記センサの出力信号若しくはこの出力信号に基づいて得られる処理信号にフィルタリング処理を施して、上記エンコーダの被検出面の円周方向に亙る特性変化に関する誤差に基づく、誤差成分を消去する。この為、上記組み付け不良に基づく上記被検出面の振れ回りや、この被検出面の特性変化のピッチ誤差等に拘らず、上記両軌道輪同士の相対変位量等として表れる回転部材の変位量、延てはこれら両軌道輪同士の間に加わる荷重等の回転部材に加わる荷重を正確に求められる。
【発明を実施するための最良の形態】
【0025】
本発明を実施する場合に、例えば請求項5に記載した様に、エンコーダの被検出面に、互いに異なる特性を有する第一被検出部と第二被検出部とを、円周方向に関して交互に且つ等間隔で配置する。そして、これら両被検出部の円周方向に関する幅のうち、第一被検出部の幅は上記被検出面の幅方向の片側程広く、第二被検出部の幅はこの被検出面の幅方向の他側程広くする。又、センサの出力信号は、第一被検出部と第二被検出部との円周方向に関する幅の差に対応して周期若しくは振幅に関する値を変化させる、パルス状信号若しくは正弦波状信号とする。又、フィルタ回路は、上記周期若しくは振幅に関する比に対してフィルタリング処理を施す。更に、演算器は、このフィルタ回路を通過した、この周期若しくは振幅に関する比を表す信号に基づいて相対変位量を求める。
【0026】
この様な構成を採用した場合、回転側軌道輪と静止側軌道輪との間に加わる荷重に基づくこれら両軌道輪同士の相対変位に伴って、上記被検出面のうちでセンサの検出部が対向する部分の幅方向位置が変化する。そして、上記荷重の変動に伴って、上記被検出面のうちでセンサの検出部が対向する部分の幅方向位置が変化すると、上記検出部が対向する第一、第二両被検出部のうちの一方の被検出部の円周方向長さが長くなり、他方の被検出部の円周方向長さが短くなる。又、上記センサの出力信号が変化する周期或は変化する大きさは、上記検出部が対向する第一、第二両被検出部の円周方向長さに応じて変化する。そこで、上記センサの出力信号の変化のうちで、上記第一被検出部に対応した変化の周期或は大きさと、上記第二被検出部に対応した変化の周期或は大きさとの比を求めれば、上記両軌道輪の中心軸同士が径方向に偏心した程度(又は軸方向への変位量)、延てはこれら両軌道輪同士の間に作用しているラジアル荷重(又はアキシアル荷重)の大きさを求められる。
【0027】
或いは、本発明を実施する場合に、請求項6に記載した様に、エンコーダの被検出面に、それぞれが他の部分とは特性が異なる1対の個性化部分より成る複数の被検出用組み合わせ部を、円周方向に亙り等間隔で配置する。これら各被検出用組み合わせ部を構成する1対ずつの個性化部分同士の円周方向に関する間隔は、総ての被検出用組み合わせ部で、上記被検出面の幅方向に関して同じ方向に連続的に変化させる。又、センサの出力信号の変化の位相を、このセンサの検出部が対向する、上記エンコーダの被検出面の幅方向位置に対応して変化させる。そして、フィルタ回路は、上記変化の位相(を表す信号)に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、この変化の位相を表す信号に基づいて相対変位量を求める。
この様に構成すると、上記エンコーダの被検出面にその検出部を対向させたセンサの出力信号が、上記各個性化部分に対向する瞬間に変化するが、変化する間隔(周期)は、上記センサの検出部が対向する部分の幅方向位置の変化に伴って変化する。
【0028】
或いは、本発明を実施する場合に、請求項7に記載した様に、エンコーダの被検出面の幅方向に離隔した位置にそれぞれの検出部を位置させた状態で設置された1対のセンサを備える。又、この被検出面のうちで、少なくとも一方のセンサの検出部が対向する部分は、円周方向に関して特性が変化する境界を、上記幅方向に対し傾斜させて、上記少なくとも一方のセンサの出力信号の変化の位相を、当該センサの検出部が対向する、上記エンコーダの被検出面の幅方向位置に対応して変化させる。又、フィルタ回路は、上記変化の位相に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、この変化の位相を表す信号に基づいて相対変位量を求める。
この様な構成を採用した場合、回転側軌道輪と静止側軌道輪との間に加わる荷重に基づくこれら両軌道輪同士の相対変位に伴って、上記被検出面のうちで、上記両センサの検出部が対向する部分の幅方向位置が変化する。そして、これら両センサのうちの一方のセンサの出力信号の位相が進む。両センサの検出部が対向する部分の境界を互いに逆方向に傾斜させた場合には、上記一方のセンサの出力信号の位相が進むと同時に、他方のセンサの出力信号の位相が遅れる。そこで、上記両センサの出力信号の位相のずれを求めれば、上記両軌道輪同士の相対変位、延てはこれら両軌道輪同士の間に作用している荷重の大きさを求められる。
【0029】
或いは、本発明を実施する場合に、請求項8に記載した様に、複数のエンコーダと、これら各エンコーダの被検出面にそれぞれの検出部を対向させた複数個のセンサとを備える。これら各エンコーダは、それぞれの被検出面の特性が、円周方向に関して交互に、これら各エンコーダ同士の間で同じピッチで変化したものとする。又、このうちの少なくとも1個のエンコーダの被検出面の特性が円周方向に関して変化する位相を、検出すべき変位の方向に対応して、当該被検出面の幅方向に関して連続的に変化したものとする。そして、フィルタ回路は、上記複数個のセンサの出力信号同士の間に存在する位相差を表す信号に対してフィルタリング処理を施す。更に、演算器は、上記フィルタ回路を通過した、上記各センサの出力信号同士の間に存在する位相差を表す信号に基づいて相対変位量を求める。
この様な構成を採用した場合でも、上述した請求項7に記載した発明の場合と同様に、上記各センサの出力信号の位相のずれに基づいて、上記両軌道輪同士の相対変位等の回転部材の変位、延てはこれら両軌道輪同士の間等、回転部材に作用している荷重の大きさを求められる。
尚、上述の様な請求項8に記載した発明を実施する場合に好ましくは、請求項9に記載した様に、それぞれが被検出面を有する上記複数のエンコーダとして、一体化されたものを使用する。この様にすれば、これら各エンコーダの位相を合わせる作業が容易になる。
【0030】
又、本発明を実施する場合に好ましくは、請求項10に記載した様に、フィルタ回路として適応フィルタを使用する。
フィルタ回路として適応フィルタを使用すれば、エンコーダの被検出面の幅方向への振れに基づく変位測定に関する誤差を解消する事に伴う、信号処理の遅れをなくし、この変位を利用した各種制御を迅速に行なえる。
即ち、傾きや偏心等、回転側軌道輪に対するエンコーダの取付誤差に伴って発生する変動変位は、回転1次成分の誤差となる。例えば、車速40km/hで走行する自動車の車輪支持用転がり軸受ユニットの回転輪の回転速度は、約300min-1 (5Hz)であり、回転1次成分の誤差の周波数は、5Hz程度の低い周波数となる。この様な低周波の誤差成分は、ハイパスフィルタにより除去する事も可能ではあるが、その場合には応答遅れが大きくなり、求めた変位(荷重)に基づく制御を迅速に行なえなくなる。この為、例えば、工作機械の制御を行なう場合には殆ど問題にはならないが、自動車の走行安定性を確保する為の制御を行なう場合には好ましくない。これに対して、上述の様な低周波の誤差成分を適応フィルタにより除去すれば、応答遅れをなくして、求めた変位(荷重)に基づく制御を迅速に行なえる。
【0031】
上記請求項10に記載した発明の様に適応フィルタを使用する場合に好ましくは、請求項11に記載した様に、LMS(最小二乗平均)アルゴリズム(二乗平均誤差を最急降下法に基づいて最小にする演算規則)により作動する、ディジタルフィルタ又はアナログフィルタを使用する。
或いは、請求項12に記載した様に、同期式LMSアルゴリズムを用いる適応フィルタを使用する。
この様に構成すれば、エンコーダの特性が変化する毎(1パルス毎)にセンサの検出信号に関して必要とする演算処理の回数を大幅に低減して、計算速度が特に速くない、低コストの演算器(CPU)での処理が十分に可能になる。
【0032】
尚、上記適応フィルタにより、エンコーダの製作誤差に起因する誤差成分を除去する事も可能である。即ち、この製作誤差に基づくセンサの検出信号の変動にも、上記エンコーダの組み付け誤差に基づく変動と同様に、周期性がある。例えば、被検出面の特性が変化する境界線の円周方向位置が設計値からずれている事に伴う誤差は、回転側軌道輪が1回転する毎に繰り返される、回転n次成分の誤差となる。この場合に、上記同期式LMS適応フィルタを使用すれば、この様な誤差成分の除去を効果的に行なえる。即ち、同期式LMSアルゴリズムを用いる適応フィルタによれば、回転1次も含めた回転n次成分の誤差成分を総て除去する事ができて、しかも計算量も少なく抑えられる。
【0033】
又、LMS適応フィルタのステップサイズパラメータμを変化させ、一定時間経過後はこのステップサイズパラメータμを小さな値にすれば、位相遅れも極く小さく抑えられる。しかも、誤差である回転n次成分と同一の周波数で、検出すべき変位(荷重)の変動が過渡的に生じた場合でも、上記ステップサイズパラメータμを小さくしておけば、変位(荷重)の変動を検出する事が可能になる。この理由は、上記適応フィルタは、センサの出力信号を演算器に送る為の主信号経路に対して並列的に設置され、誤差を除去する為の処理は引き算で行なう為、結果として誤差成分と検出すべき成分とが同一周波数になっても処理できる為である。
【0034】
上述の様な請求項11〜12に記載した発明を実施する場合に、更に好ましくは、請求項13に記載した様に、適応フィルタによるフィルタリング処理を開始する際に、この適応フィルタに最初に入力される出力信号若しくは処理信号により表されるデータを、この適応フィルタのフィルタ係数の初期値とする。
即ち、適応フィルタにより回転n次の変動成分を除去する為の補正演算を開始する際に、この適応フィルタに最初に入力される出力信号若しくは処理信号により表されるデータは、上記変動成分の影響(ノイズ)を除けば、このデータ(平均DCレベル)とほぼ等価であると仮定できる。勿論、上記最初に入力されるデータそのものは、上記ノイズを含んでいるので、上記平均DCレベルと厳密には等しくないが、上記適応フィルタの収束性を改善する目的に使用する事を考慮した場合には、上記の様な仮定をする事は特に問題ない。即ち、上記最初に入力されたデータを、総てのフィルタ係数にその初期値として入力すれば、最終的に収束するフィルタ係数と近い値になる(最終的に収束するフィルタ係数との差が上記変動成分だけになる)。
【0035】
上述の様に、最初に入力するフィルタ係数(フィルタ係数の初期値)として、本来の(適切な)フィルタ係数に近い値を採用する事により、上記適応フィルタが起動(フィルタリングを開始)してから短時間の間に、この適応フィルタのフィルタ係数が適正値に収束する。そして、このフィルタ係数が適正値に収束した後は、上記センサの出力信号中に含まれる誤差成分を除かれた(誤差を補正された)、回転側軌道輪と静止側軌道輪との相対変位量に関する正確なデータを得られる。この為、例えば、この相対変位量に基づいて上記両軌道輪同士の間に加わる荷重を求め、この荷重を、車両の走行安定性確保の制御の為に利用する場合に、起動直後からこの制御を適切に行なって、自動車の走行安定性向上を図れる。
【0036】
尚、上記最初に入力するフィルタ係数を、最初にサンプリングした単一のデータだけから設定する事もできるが、起動直後にサンプリングする(第1〜k番目の)複数個のデータの平均値を、上記フィルタ係数の初期値として、上記適応フィルタに入力する事もできる。但し、平均すべきデータの個数(kの値)を多くし過ぎると、上記フィルタ係数の初期値を求める為に時間を要し、応答遅れを生じて、本来の目的を達成できなくなるので、好ましくない。
【0037】
又、本発明を実施する場合に、例えば請求項14に記載した様に、フィルタ回路に、ローパスフィルタとノッチフィルタとのうちの少なくとも何れか一方のフィルタを含ませる事もできる。
例えば、転がり軸受ユニットの構成部材の形状誤差、寸法誤差、組み付け誤差等、この転がり軸受ユニット部分に起因する誤差以外の、外乱による誤差成分は、当然に、回転側軌道輪の回転に非同期な誤差成分となる。例えば、電気的なノイズや磁束ノイズ、路面振動によるセンサ振動等がこれに当たる。通常の場合、これらの回転に非同期な誤差成分は比較的高い周波数になるので、ローパスフィルタにより、応答遅れを問題ない程度に抑えて除去できる。この場合に使用するローパスフィルタは、回転次数追従型のフィルタでも良いし、周波数固定型のフィルタでも良い。
【0038】
これに対して、誤差成分の周波数が一定の場合には、ノッチフィルタによりこの誤差成分を除去できる。例えば、自動車の懸架装置に組み込んだばねよりも路面側に存在する部分(所謂ばね下)の共振周波数は、15〜25Hz程度になる。この様なばね下の共振によってセンサが振動し、このセンサの検出信号中に誤差成分が混入する場合には、この共振周波数に、予め上記ノッチフィルタのノッチ周波数を合わせておく。この場合には、上記ノッチフィルタとして、周波数固定型のものを使用する。
【0039】
一方、転がり軸受ユニットを構成する転動体の形状誤差に起因する振動の様に、回転次数が定まっている振動に基づき、上記センサの検出信号中に誤差成分が混入する可能性もある。上記転がり軸受ユニットを構成する各転動体の数をZ、接触角をα、同じく直径をd、同じくピッチ円直径をD、同じく公転速度をωc 、回転側軌道輪となる内輪の回転速度ωr とした場合、ωc =(1−d・ cosα/D)・(ωr /2)であり、転動体による振動はnZωc 、0.5nZωc 、nωc 、0.5nωc 等の公転次数成分となる。回転側軌道輪となる内輪の回転速度ωr と上記各転動体の公転速度ωc との関係は上式の通りであるから、上記各公転次数の振動周波数を、回転側軌道輪の回転次数に換算した上で、ノッチフィルタにより除去すべき誤差成分の周波数を設定する。この場合、上記ノッチフィルタとして、回転次数追従型のものを使用する。
【0040】
又、請求項10〜14に記載した発明を実施する場合に、請求項15に記載した様に、適応フィルタと、ローパスフィルタとノッチフィルタとのうちの少なくとも何れか一方のフィルタとを互いに直列に設ける事もできる。この場合に、上記適応フィルタを、このローパスフィルタとノッチフィルタのうちの少なくとも何れか一方のフィルタよりも前段に配置する。
この様に、適応フィルタと、ローパスフィルタとノッチフィルタとのうちの少なくとも何れか一方のフィルタとを互いに直列に配置する事で、センサの検出信号に関して混入する誤差成分を、広範囲に亙って良好に除去できる。又、適応フィルタを他のフィルタの前段側に配置するので、この他のフィルタを使用する事により、この適応フィルタのフィルタ係数が収束するまでに要する時間が長くなる事もない。
【0041】
尚、以上に述べた各フィルタによるフィルタリング処理は、センサの出力信号のデューティ比に関するデータ、或は位相差に関するデータに就いて行なっても良いし、上記出力信号の周期や周波数(速度)に関するデータに対して一連のフィルタリング処理を行ない、フィルタリングされた結果からデューティ比、或は位相差を取り出しても良い。
何れの場合でも、組み付け不良等に基づくエンコーダの被検出面の振れやセンサの振動等に拘らず、静止側、回転側両軌道輪同士の相対変位量、延てはこれら両軌道輪同士の間に加わる荷重を正確に求められる。
【0042】
又、上述した請求項14〜15に記載した発明を実施する場合に好ましくは、請求項16に記載した様に、ローパスフィルタとノッチフィルタのうちの少なくとも何れか一方のフィルタのカットオフ周波数を、回転側軌道輪若しくはこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転する部材等の、回転部材の回転速度に応じて変化させる。 この様に構成すれば、この回転部材の回転速度の変化に拘らず、エンコーダの組み付け不良に基づく被検出面の振れ回りや、この被検出面の特性変化のピッチ誤差等に拘らず、上記回転部材の変位量、延てはこの回転部材に加わる荷重を正確に求められる。
【0043】
又、請求項2に記載した発明を実施する場合に好ましくは、請求項17に記載した様に、転がり軸受ユニットを、静止側軌道輪と回転側軌道輪との互いに対向する1対の周面に、それぞれ複列の静止側軌道面と回転側軌道面とを設けた複列転がり軸受ユニットとする。
この様な複列転がり軸受ユニットは、複列に配置された転動体に逆方向の(背面組み合わせ型或いは正面組み合わせ型)の接触角を付与する事により、十分な剛性を得られ、又、静止側軌道輪と回転側軌道輪とが、これら両軌道輪同士の間に作用する荷重の方向に、この荷重の大きさに応じた量だけ変位する。従って、請求項2に記載した発明を複列転がり軸受ユニットに関して実施すれば、荷重の方向及び大きさを適切に測定できる。
【0044】
又、上述の様な請求項17に記載した発明を実施する場合に、例えば請求項18に記載した様に、転がり軸受ユニットを車輪支持用転がり軸受ユニットとする。そして、使用状態で、静止側軌道輪である外輪を懸架装置に支持固定し、回転側軌道輪であるハブを車輪を支持固定してこの車輪と共に回転させる。又、上記外輪の内周面に存在する、それぞれが静止側軌道である複列の外輪軌道と、上記ハブの外周面に存在する、それぞれが回転側軌道である複列の内輪軌道との間に転動体を、各列毎に複数個ずつ設ける。更に、上記ハブの軸方向外端部に車輪を支持固定する為のフランジを設ける。
上述の様に構成すれば、車輪に加わる荷重を算出して、走行安定性確保の為の制御に利用できる。
【0045】
又、上述の請求項17〜18に記載した発明を実施する場合に、例えば請求項19に記載した様に、エンコーダを、回転側軌道輪の一部で複列の回転側軌道面同士の間部分に、この回転側軌道輪と同心に支持固定する。
或いは、請求項20に記載した様に、エンコーダを、回転側軌道輪の端部に、この回転側軌道輪と同心に支持固定する。
何れの構造を採用するかは、複列転がり軸受ユニットの内部スペース等を考慮して、設計的に定める。
【0046】
又、請求項18に記載した発明を実施する場合に、例えば請求項21に記載した様に、回転側軌道輪と共に回転する部材を、ハブに結合固定された状態でディスクブレーキを構成するディスクロータとする。そして、このディスクロータの外周面を被検出面とする。この場合に、このディスクロータの外周面自体を被検出面としても、このディスクロータの外周面にエンコーダを外嵌固定しても良い。
或いは、請求項22に記載した様に、回転側軌道輪と共に回転する部材を、ハブに結合固定された等速ジョイントとする。そして、この等速ジョイントの一部外周面を被検出面とする。この場合も、この等速ジョイントの外周面自体を被検出面としても、この等速ジョイントの外周面にエンコーダを外嵌固定しても良い。
何れの場合でも、上記被検出面及びこの被検出面に対向するセンサを、複列転がり軸受ユニット外の、広い空間部分に設置できる。この為、小型の複列転がり軸受ユニットで、内部に上記被検出面及びセンサを設置可能な空間が存在しない場合でも、この複列転がり軸受ユニットに加わる荷重を測定できる。
【0047】
又、本発明を実施する場合に、例えば請求項23に記載した様に、転がり軸受ユニットを、工作機械の主軸をハウジングに回転自在に支持する為のものとし、使用状態で、静止側軌道輪である外輪をこのハウジング若しくはこのハウジングに固定された部分に内嵌固定し、回転側軌道輪である内輪を上記主軸若しくはこの主軸と共に回転する部分に外嵌固定する事もできる。
この様に構成すれば、上記主軸に加わる荷重を測定して、この主軸に支持した工具の送り速度を適正に制御できる。
尚、請求項2、4〜23に記載した好ましい実施の形態が、請求項24に記載した様な、演算器に、センサの出力信号若しくはこの出力信号に基づいて得られる処理信号に基づいて、回転部材に加わる荷重を直接算出する機能を持たせる構造にも適用できる事は勿論である。
【実施例1】
【0048】
図1〜7は、請求項1〜5、10、12、17、18、20、24に対応する、本発明の実施例1を示している。本実施例の変位測定装置付(或は荷重測定装置付)転がり軸受ユニットは、車輪支持用転がり軸受ユニット1と、回転速度検出装置としての機能を兼ね備えた、変位測定装置2(又は荷重測定装置)とを備える。
このうちの車輪支持用転がり軸受ユニット1は、図1に示す様に、外輪3と、ハブ4と、複数の転動体5、5とを備える。このうちの外輪3は、使用状態で懸架装置に支持固定される静止側軌道輪であって、内周面に複列の外輪軌道6、6を、外周面にこの懸架装置に結合する為の外向フランジ状の取付部7を、それぞれ有する。又、上記ハブ4は、使用状態で車輪を支持固定してこの車輪と共に回転する回転側軌道輪であって、ハブ本体8と内輪9とを組み合わせ固定して成る。この様なハブ4は、外周面の軸方向外端部(懸架装置への組み付け状態で車体の幅方向外側となる端部)に車輪を支持固定する為のフランジ10を、軸方向中間部及び内輪9の外周面に複列の内輪軌道11、11を、それぞれ設けている。上記各転動体5、5は、これら各内輪軌道11、11と上記各外輪軌道6、6との間にそれぞれ複数個ずつ、予圧を付与した状態で転動自在に設けて、上記外輪3の内径側に上記ハブ4を、この外輪3と同心に回転自在に支持している。尚、図示の例では、転動体として玉を使用しているが、重量の嵩む車両の車輪支持用転がり軸受ユニットの場合には、各転動体として円すいころを使用する場合もある。転動体として玉を使用した構造の方が、同じく円すいころを使用した構造に比べて外輪とハブとの変位量を多くできるが、転動体として円すいころを使用した構造の場合にも、変位量は小さいものの変位はする為、本発明の対象となり得る。
【0049】
一方、上記変位測定装置2は、図1に示す様に、エンコーダ12と、センサ13と、図示しない演算器とを備える。
このうちのエンコーダ12は、支持板14とエンコーダ本体15とから成る。このうちの支持板14は、軟鋼板等の磁性金属板を曲げ形成する事により、円輪部16と円筒部17とを傾斜部により連続させたもので、断面形状を大略J字形とし、全体を円環状としている。又、上記エンコーダ本体15は、ゴム磁石、プラスチック磁石等の永久磁石製で、全体を円輪状としており、上記円輪部16の軸方向内側面に、上記円筒部17と同心に添着固定されている。
【0050】
上記エンコーダ本体15を構成する永久磁石は、軸方向に着磁されており、その着磁方向を、円周方向に亙り、交互に且つ等間隔で変化させている。従って、被検出面である上記エンコーダ本体15の軸方向内側面には、N極とS極とが交互に、且つ、等間隔に配置されている。本実施例の場合には、これらN極に着磁された部分とS極に着磁された部分とが、上記エンコーダ12の被検出面に存在する、互いに異なる特性を有する第一被検出部と第二被検出部とに対応する。そして、図2に示す様に、上記N極に着磁された部分とS極に着磁された部分との円周方向に関する幅のうち、N極に着磁された部分の幅を径方向外側程広く、S極に着磁された部分の幅を径方向内側程広くしている。
【0051】
上述の様に構成する上記エンコーダ12は、上記支持板14の円筒部17を前記内輪9の軸方向内端部に締り嵌めで外嵌する事により、前記ハブ4の軸方向内端部に、このハブ4と同心に結合固定している。この状態で上記エンコーダ本体15の軸方向内側面は、このハブ4の中心軸に直交する仮想平面上に位置する。
【0052】
一方、前記センサ13は、前記外輪3の軸方向内端部に、カバー18を介して支持固定している。このカバー18は、合成樹脂を射出成形する事により、或は、金属板に絞り加工を施す事により、有底円筒状に形成されており、上記外輪3の内端開口部を塞ぐ状態で、この外輪3の内端部に嵌合固定されている。この様なカバー18を構成する底板部19の一部外径寄り部分で上記エンコーダ12の被検出面に対向する部分に取付孔20を、この底板部19を軸方向に貫通する状態で形成している。
【0053】
上記センサ13は、上記取付孔20を軸方向内方から外方に挿通する状態で、上記底板部19に支持固定されている。そして、上記センサ13の先端面(図1の左端面)に設けた検出部を、上記エンコーダ12の被検出面に、0.5〜2mm程度の測定隙間を介して、近接対向させている。又、アクティブ型の磁気センサである、上記センサ13の検出部には、ホール素子、磁気抵抗素子等の磁気検出素子を設けている。この様な磁気検出素子の特性は、N極に対向している状態とS極に対向している状態とで変化する。従って、前記ハブ4と共に上記エンコーダ12が回転すると、上記磁気検出素子の特性が変化し、上記センサ13の出力信号が変化する。
【0054】
この様にして上記センサ13の出力信号が変化する周期(周波数)は、上記ハブ4の回転速度に応じて変化する。具体的には、この回転速度が速くなる程、上記出力信号が変化する周期が短くなり、変化する周波数が高くなる。この為、この出力信号を車体側等に設けた図示しない制御器に送れば、上記エンコーダ12と共に回転する前記車輪の回転速度を求めて、ABSやTCSの制御を行なえる。この点に就いては、従来から知られている技術と同様である。
特に、本実施例の場合には、上記ハブ4と前記外輪3との間に作用するラジアル荷重に基づく、これらハブ4と外輪3との径方向に関する相対変位により、上記出力信号が変化するパターンが変化する為、このパターンを観察する事により、上記ハブ4と外輪3との径方向に関する相対変位量、更には上記ラジアル荷重を求める事ができる。この点に就いて、図3〜5を参照しつつ説明する。
【0055】
先ず、上記ラジアル荷重を求められる前提に就いて説明する。前述した特許文献1に記載されている様に、上記外輪3と上記ハブ4との径方向に関する相対位置は、これら外輪3とハブ4との間に加わるラジアル荷重の大きさに応じて変化する。この理由は、このラジアル荷重に基づいて、前記各転動体5、5、並びに、これら各転動体5、5の転動面が転がり接触する、前記各外輪軌道6、6及び前記各内輪軌道11、11の弾性変形量が変化する為である。上記特許文献1に記載されている従来技術の場合には、外輪とハブとの径方向に関する変位量を変位センサにより直接測定し、更にはこの変位量に基づいて、上記外輪とハブとの間に加わるラジアル荷重を求める様にしていた。これに対して、本実施例の場合には、上記エンコーダ12と上記センサ13との相対変位に基づいて、上記外輪3と上記ハブ4との相対変位量、更にはこれら外輪3とハブ4との間に加わるラジアル荷重の大きさを求める様にしている。この点に就いて、以下に説明する。
【0056】
上記外輪3と上記ハブ4との間に標準的なラジアル荷重(標準値)が加わっている場合に、上記センサ13の検出部が、上記エンコーダ12の被検出面の径方向中央部に対向していると仮定する。この場合に上記センサ13の検出部は、図3に鎖線αで示した、上記被検出面の径方向中央部を走査する。この径方向中央部では、前記N極に着磁された部分の周方向に関する幅と、S極に着磁された部分の周方向に関する幅とが互いに等しいので、上記センサ13の出力信号は、図4の(A)に示す様に、基準電圧(例えば0V)を中心として両側に同じだけ振れる。即ち、上記出力信号の電圧がこの基準電圧よりも高くなる周期TH と低くなる周期TL とは互いに等しく(TH =TL )なる。又、上記出力信号の電圧の最大値と上記基準電圧との差△VH と、同じく最小値と基準電圧との差△VL とも、互いに等しく(△VH =△VL )なる。
【0057】
これに対して、上記外輪3と上記ハブ4との間に加わるラジアル荷重が標準値よりも大きくなると、このハブ4に対するこの外輪3の位置が下方にずれて、上記センサ13の検出部が、上記エンコーダ12の被検出面の径方向内側寄り部分に対向する。この場合に上記センサ13の検出部は、図3に鎖線βで示した、上記被検出面の径方向内寄り部分を走査する。この径方向内寄り部分では、上記N極に着磁された部分の周方向に関する幅が、S極に着磁された部分の周方向に関する幅よりも狭いので、上記センサ13の出力信号は、図4の(B)に示す様に、基準電圧(例えば0V)を中心として低位側に大きく振れる。即ち、上記出力信号の電圧がこの基準電圧よりも低くなる周期TL が高くなる周期TH よりも大きく(TH <TL )なる。又、上記出力信号の電圧の最小値と基準電圧との差△VL が、同じく最大値と基準電圧との差△VH よりも大きく(△VL >△VH )なる。
【0058】
更に、上述した場合とは逆に、上記外輪3と上記ハブ4との間に加わるラジアル荷重が標準値よりも小さくなると、このハブ4に対するこの外輪3の位置が上方にずれて、上記センサ13の検出部が、上記エンコーダ12の被検出面の径方向外側寄り部分に対向する。この場合に上記センサ13の検出部は、図3に鎖線γで示した、上記被検出面の径方向外寄り部分を走査する。この径方向外寄り部分では、上記N極に着磁された部分の周方向に関する幅が、S極に着磁された部分の周方向に関する幅よりも広いので、上記センサ13の出力信号は、図4の(C)に示す様に、基準電圧(例えば0V)を中心として高位側に大きく振れる。即ち、上記出力信号の電圧がこの基準電圧よりも高くなる周期TH が低くなる周期TL よりも大きく(TH >TL )なる。又、上記出力信号の電圧の最大値と上記基準電圧との差△VH が、同じく最小値と基準電圧との差△VL よりも大きく(△VH >△VL )なる。
【0059】
従って、上記センサ13の出力信号のパターンを見れば、上記外輪3の中心軸と上記ハブ4の中心軸とがずれている程度(径方向変位量)を求める事ができる。具体的には、この出力信号の電位が基準電圧よりも高くなる周期TH と低くなる周期TL との比「TH /TL 」を観察すれば、上記外輪3の中心軸と上記ハブ4の中心軸とがずれている程度(径方向変位量)を求める事ができる。又は、上記出力信号の電圧の最大値と上記基準電圧との差△VH と、同じく最小値と基準電圧との差△VL との比「△VH /△VL 」を観察する事によっても、上記径方向変位量を求められる。これら各比「TH /TL 」、「△VH /△VL 」と径方向変位量との関係は、何れの比に就いてもほぼ直線的であるから、容易に求められる。そして、求めた関係を、前記ラジアル荷重を算出する為の図示しない演算器(マイクロコンピュータ)にインストールするソフトウェア中に組み込んでおく。尚、上記センサ13に波形成形回路を組み込み、このセンサ13の出力信号をパルス的に変化する矩形波とする場合がある。この場合には、上記電圧の比「△VH /△VL 」に基づいて上記径方向変位量を求める事はできないが、上記周期の比「TH /TL 」によりこの径方向変位量を求める事は、出力信号が正弦波である場合と同様に可能である。
【0060】
更に、上記径方向変位量と上記ラジアル荷重との関係は、計算により、或は実験により求められる。計算により求める場合には、前記転がり軸受ユニット1の諸元、即ち、前記各外輪軌道6、6及び前記各内輪軌道11、11の断面の曲率半径、前記各転動体5、5の数及び直径に加えて、上記外輪3及びハブ4の材質を基に、転がり軸受ユニットの技術分野で広く知られた理論に基づいて求める。又、実験により求める場合には、上記外輪3とハブ4との間に、それぞれが既知である、異なる大きさのラジアル荷重を加えつつ、これら外輪3とハブ4との径方向に関する相対変位量を測定する。何れにしても、上記径方向変位量と上記ラジアル荷重の大きさとに関して、図5に示す様な関係を求め、上記ソフトウェア中に組み込んでおく。尚、上記ラジアル荷重と上記何れかの比との関係を直接求め、この関係を上記ソフトウェア中に組み込む事もできる。
【0061】
上述の様に、本実施例の場合には、上記何れかの比「TH /TL 」、「△VH /△VL 」に基づいて、上記外輪3の中心軸と上記ハブ4の中心軸との径方向に関する変位量(又はラジアル荷重)を求めるが、この変位量を正確に求める為には、前述した様に、前記エンコーダ12の被検出面の精度が良好である必要がある。これに対してこの被検出面の特性が変化する境界部分の位置に関する精度は、前述した様に、上記ハブ4に対する上記エンコーダ12の組み付け誤差等により、必ずしも十分でない場合がある。そこで本実施例の場合には、上記何れかの比「TH /TL 」、「△VH /△VL 」に関するデータを、図6に示す様な適応フィルタ32により処理する事で、上記境界部分の位置に関する誤差を除去する様にしている。この適応フィルタ32は、LMSアルゴリズムを用いるものである。以下、この適応フィルタ32の動作に就いて、上記ハブ4に対する上記エンコーダ12の組み付け誤差による振れ回り等による、回転1次成分の誤差を除去する場合を中心に説明する。
【0062】
前記センサ13の検出部が対向する部分での、前記エンコーダ12の被検出面に存在するS極とN極との境界の幅は、実際にこのエンコーダ12が上記センサ13に対し径方向に変位する事に伴って変化した分dd と、上記振れ回り等による回転1次成分の誤差成分dn とが重畳されたもの(dd +dn )となる。即ち、上記センサ13の出力信号に基づく信号dは、上記実際の径方向変位分を表す信号dd と上記誤差成分dn とを足し合わせた信号d(=dd +dn )になる。従って、上記適応フィルタ32によりこの変動分dn を上記出力信号dから差し引けば(減ずれば)、上記実際の変位量dd を求められる事になる。
【0063】
一方、上記適応フィルタ32を作動させる為には、上記振れ回りに基づく変動分dn と相関性のある参照信号xが必要になる。この参照信号xを入手できれば、上記適応フィルタ32は自己学習によって、実際の信号の流れ「dn →d」の伝達特性と同じ特性を持った、FIR(finite impulse response )フィルタ(インパルス応答時間が有限なフィルタ=インパルス応答が有限時間内に0になるフィルタ)を形成する。そして、上記センサ13の出力信号dから、上記適応フィルタ32による計算の結果得られる、キャンセル信号y{=後述するy(k)}を差し引けば、上記センサ13の出力信号dから上記振れ回りによる変動分dn を取り除いた(d−dn )事と等価になる。この様にしてこの変動分dn を取り除く場合に、上記適応フィルタ32は、信号の主ルート(図6の上半部分)を送られる出力信号dに対してフィルタリングするのではなく、副ルート(図6の下半部分)を送られる参照信号xに基づいて上記変動分dn を取り除く為のキャンセル信号yを計算する。そして、上記主ルートである出力信号dから上記キャンセル信号yを引き算するだけであるので、上記出力信号dの応答遅れを招かない。
【0064】
本実施例の場合、上記参照信号xを、前記エンコーダ12の1回転中での特性変化の回数に基づき、このエンコーダ12に対向した上記センサ13の出力信号の処理回路、又は、この出力信号に基づいて前記外輪3の中心軸と前記ハブ4の中心軸との径方向に関する変位量(更にはこの変位量からラジアル荷重)を求める為の処理回路により、自己生成する。従って、上記参照信号xの生成に要するコストを低減できる。即ち、従来から適応フィルタの用途として一般的に知られていたアクティブノイズコントロールの構造をそのまま上記変位量を正確に求める為の構造に適用すると、上記エンコーダ12の振れ回りを、変位センサや回転速度センサ等、別途設けたセンサにより検出し、このセンサの検出信号を上記適応フィルタ32の参照信号xとして使用する事になる。勿論、本発明をこの様な構造で実施する事も可能ではあるが、別途センサを設ける分だけ、コスト並びに設置スペースが必要になる。
【0065】
これに対して本実施例の場合には、この様な別途設けたセンサの検出信号を使用する事なく上記参照信号xを入手して、上記適応フィルタ32により、上記エンコーダ12の振れ回りに基づく、上記センサ13の出力信号dの変動分dn を低減させる。即ち、上記エンコーダ12の1回転中での特性変化の回数(S極とN極との数)は予め分かっている。従って、このエンコーダ12の1回転分のパルス数を観察する事で、特に変位センサや回転速度センサ等のセンサを別途設けなくても、上記変動分dn と相関のある上記参照信号xを生成できる。具体的には、上記エンコーダ12の振れ回りの影響は、回転1次が主成分の波形であり、例えばこのエンコーダ12が、1回転当り60パルスのものであれば、60データで1周期となる様なサイン波、三角波、鋸波、矩形波、パルス波等として自己生成できる。
【0066】
この様な参照信号xの波形は、前記外輪3の中心軸と前記ハブ4の中心軸との径方向に関する変位量(更にはラジアル荷重)を算出する為の処理回路(CPU)で生成する事もできるし、上記センサ13に付属の電子回路部(IC)で生成する事もできる。何れにしても、得られた上記参照信号xに基づいて算出したキャンセル信号yは、上記センサ13の出力信号dから差し引いて、前記実際の変位量dd を表す修正信号e{=後述するe(k)}を求める。この様にして求めた修正信号eは、上記変位量(ラジアル荷重)を算出する為の処理回路に送ってこの変位量(ラジアル荷重)を求める為に利用する他、上記適応フィルタ32が自己学習する為の情報としても利用する。
【0067】
尚、上記適応フィルタ32部分で、上記キャンセル信号yを求め、更にこのキャンセル信号yを上記センサ13の出力信号dから差し引いて、上記修正信号eを得る為の処理は、次の(1)〜(3)式に基づいて行なう。
【数1】

【数2】

【数3】

【0068】
上記(1)(2)(3)式中、kは時系列でのデータ番号、Nは適応フィルタ32として用いるFIRフィルタのタップ数である。又、wはFIRフィルタのフィルタ係数を表し、wk はk番目のデータ処理をする場合に使用するフィルタ係数を、wk+1 は次のデータ系列(k+1番目)を処理する場合に使用するフィルタ係数を、それぞれ表している。即ち、本実施例の場合、上記FIRフィルタは、上記(3)式により逐次適正にフィルタ係数が更新されていく適応フィルタとなる。
【0069】
尚、上記適応フィルタ32に入力する前記参照信号xは、前記エンコーダ12の振れ回り等に代表される、このエンコーダ12の回転n次(nは正の整数) 成分と相関のある信号であれば良いので、このエンコーダ12の1回転当り1インパルス信号でも構わない。そこで、上記参照信号xが1インパルス信号であると同時に、上記適応フィルタ32のタップ数Nが、上記エンコーダ12の1回転当りのパルス数と等しい場合を想定する。この場合、時系列kの瞬間に計算に使用する参照信号xは、次の(4)式で表される。
【数4】

【0070】
この(4)式で、参照信号xが値1のインパルスとなる位置jは、時系列kが進んでいくのに従って右側に1個ずつずれて行き、一番右側の「N−1」番目までずれると、次の時系列では、新たなインパルス値が一番左の0番目に表れる事になる。即ち、上記参照信号xは、値1のインパルスの位置を0番目からN−1番目まで巡回させただけのデータ列となる。この(4)式を、前述の(1)(3)式に当て嵌めると、次の(5)(6)式を得られる。
【数5】

【数6】

【0071】
同期式でない、通常のLMSアルゴリズムで適応フィルタを作動させる場合には、前述した様に、(1)(2)(3)各式に示す計算を繰り返し行なう必要があるのに対して、同期式LMSアルゴリズムで適応フィルタを作動させる場合には、上記(5)(6)式及び(2)式に示す計算を行なうだけで済む。例えば、適応フィルタ32のタップ数Nを60とした場合、通常のLMSアルゴリズムで適応フィルタ32を作動させると、エンコーダ12の1ピッチ毎の演算の回数の合計は、上記(1)式で掛け算を60回、上記(2)式で引き算を1回、上記(3)式で掛け算を120回と足し算を60回との180回、合計で241回になる。これに対して、同期式LMSアルゴリズムで適応フィルタ32を作動させる場合には、上記(5)式はデータ入れ替えのみで演算なし、上記式(2)で引き算1回、上記(6)式で掛け算1回と足し算1回との2回、合計で3回の四則演算を、上記エンコーダ12の1パルス毎に行なえば良い。即ち、LMSアルゴリズムとして同期式を採用する事で、採用しない場合に比べて、演算の回数を凡そ1/80に削減できる。
【0072】
但し、上記適応フィルタ32を作動させるのに同期式LMSアルゴリズムを採用した場合に、実際の変位量を表す信号であるDC成分までもがキャンセルされる事を防止する為に、上記適応フィルタ32の零点を補正する必要がある。即ち、この適応フィルタ32を動作させるLMSアルゴリズムとして同期式を採用し、特に対策を施さない場合には、上記エンコーダ12の振れ回りに基づく変動成分だけでなく、このエンコーダ12の変位量を表すDC成分までもがキャンセルされて、出力値が零となる。これは、適応動作によって上記適応フィルタ32のフィルタ係数WがDCレベルを持ってしまい、結果としてこの適応フィルタ32の出力信号yがDCレベルを持ってしまう為に生じる現象である。この問題を解決する為には、前記(6)式で表されるフィルタ係数wの平均値から上記DCレベルを算出し、このDCレベルに参照信号xのインパルス値を掛け算したDC信号を計算しておく(インパルス値が1である場合には掛け算不要)。そして、上記適応フィルタ32によって誤差をキャンセルされた信号eに、上述の様にして計算したDC信号を加える事で、正確な変位量を表すDCレベルを得られる様にする。
【0073】
尚、演算を開始する際に最初に用いるフィルタ係数wk は、零を代入しておいても、動き始めれば自己適応していくので差し支えはないが、予め望ましいフィルタ特性を求めてその値を代入しておいても良い。或いは、前回の処理で最後に使用したフィルタ係数を、EEPROM等の記憶手段に記憶しておき、再始動時に使用しても良い。更には、請求項13に記載した発明の様に、最初に入力される信号により表されるデータを、上記フィルタ係数の初期値とする事もできる。
【0074】
又、前記(3)式中のμは、ステップサイズパラメータと呼ばれる、フィルタ係数を自己適正化させていく場合の更新量を決定する値であり、通常0.01〜0.001程度の値となるが、実際には、適応動作の妥当性を事前に調べて設定するか、次の(7)式を用いて逐次更新する事もできる。
【数7】

尚、この(7)式中のαも、フィルタ係数を自己適正化させていく為の更新量を決定するパラメータとなるが、0<α<1の範囲であれば良く、上記μよりも設定が容易である。又、本実施例の場合には、前記参照信号xを自己生成するので、上記(7)式中の分母の値は既知であり、μの最適値を事前に算出しておく事もできる。計算量削減の観点からは、予め(7)式でこのμを算出しておき、このμを定数として上記(3)式でフィルタ係数を自己適正化させるのが望ましい。
【0075】
上述の様に、前記センサ13の出力信号dから、前記適応フィルタ32が算出したキャンセル信号yを差し引く事で、前記実際の変位量dd を表す修正信号eを求められる。そして、この様にして求めた修正信号eに基づいて、前記外輪3の中心軸と前記ハブ4の中心軸との径方向に関する変位量、更には、これら外輪3とハブ4との間に作用するラジアル荷重を正確に求められる。尚、実際の場合には、上記センサ13の出力信号d中には、前記ピッチ誤差に基づく、上記センサ13の振れ回りに基づく変動よりも周期が短い第二の変動が存在する。そこで、この第二の変動を平均化する為の平均化フィルタ等のローパスフィルタを、上記適応フィルタ32の前又は後に(好ましくは、請求項15に記載した発明の様に後に)設けて、上記第二の変動に拘らず、上記変位量、更にはラジアル荷重を正確に求められる様にする。高周波の変動を抑える為の、平均化フィルタ等のローパスフィルタの構造及び作用に関しては、従来から周知である為、詳しい説明は省略する。
【0076】
本実施例は、上述の様に構成するので、転がり軸受ユニット部分に変位センサ等の新たな部品を組み込む必要なく、上記ラジアル荷重を求める事ができる。即ち、前記エンコーダ12とセンサ13との組み合わせは、ABSやTCSの制御を行なうべく、上記ハブ4の回転速度を検出する為にも必要である。本実施例の変位測定装置付転がり軸受ユニットは、この様な回転速度を検出する為に必要な構造を工夫する事により上記ラジアル荷重を求める構造である為、この転がり軸受ユニットに加わるラジアル荷重を求める為の構造を、小型且つ軽量に構成できる。
【0077】
尚、図4から明らかな通り、本実施例の場合、ラジアル荷重の大きさにより、上記センサ13の出力信号の電圧が基準電圧よりも高くなる周期TH と低くなる周期TL とが変化する。従って、上記ラジアル荷重の変動に関係なく、上記ハブ4の回転速度を正確に求める為には、上記両周期の和「TH +TL 」に基づいて、この回転速度を算出する。この和「TH +TL 」は、前記N極に着磁された部分及びS極に着磁された部分を、図2、3に示す様な扇形或は逆扇形にした場合でも、前記径方向変位に関係なくほぼ一定である為、上記回転速度を正確に求められる。
【実施例2】
【0078】
図7の(A)は、請求項1〜5、24に対応する、本発明の実施例2を示している。本実施例の場合には、円輪状のエンコーダ12aの径方向中間部に透孔21、21を、円周方向に関して等間隔に形成している。本実施例の場合にこれら各透孔21、21は、上記エンコーダ12aの径方向外方に向かう程円周方向に関する幅が狭くなる逆扇形(若しくは倒立台形)としている。そして、円周方向に隣り合う透孔21、21同士の間部分22、22を、径方向外方に向かう程円周方向に関する幅が広くなる扇形(若しくは台形)としている。従って本実施例の場合には、上記各間部分22、22が請求項5に記載した第一被検出部となり、上記各透孔21、21部分が同じく第二被検出部となる。上述の場合とは逆に、図7の(B)に示す様に、透孔21a、21aの幅を径方向外方に向かう程大きくし、間部分22a、22aの幅を径方向外方に向かう程小さくする事もできる。
【0079】
何れの場合でも、適宜のセンサと組み合わせる事により、上述した実施例1の場合と同様にして、このセンサを支持した外輪等の静止側軌道輪の中心軸と、上記エンコーダ12aを支持固定した、ハブ等の回転側軌道輪の中心軸との径方向に関する変位量を求められる。そして、これら静止側軌道輪と回転側軌道輪との間に作用するラジアル荷重を求められる。変位量を求める過程を省略して、直接ラジアル荷重を求めても良い事は、上記実施例1の場合と同じである。尚、上記エンコーダ12aを構成する材質は、センサの種類によって選択する。
例えば、このセンサが、永久磁石と、ホール素子或は磁気抵抗素子等の磁気検出素子とを備えた、アクティブ型の磁気センサである場合には、上記エンコーダ12aを鋼板等の磁性金属製とする。上記センサが、永久磁石と、ポールピースと、コイルとから成る、パッシブ型の磁気センサの場合も同様である。この様な構造でも、上記実施例1の場合と同様に、このエンコーダ12aの被検出面のうちで上記センサの検出部が対向する部分の径方向位置の変化に伴って、このセンサの出力信号が変化する。磁気センサを使用する場合には、エンコーダの被検出面に、透孔に代えて、扇形或は逆扇形の凹部や凸部を形成する事もできる。被検出面にN極とS極とを配置した永久磁石製のエンコーダの場合には、磁束強度が不均一になる事に伴って、荷重の検出精度が悪化する可能性があるが、磁性金属板に透孔、或は凹部や凸部を形成したエンコーダを使用すれば、この様な問題を生じないので、上記荷重の検出精度を確保し易い。
【0080】
これに対して、上記センサが光学式のものである場合には、上記エンコーダ12aの被検出面に形成する前記第一被検出部又は第二被検出部の一方の構造は透孔に限る。この場合には、このエンコーダ12aを構成する材質は、光を遮る材質であれば良い。光学式のセンサを使用する場合には、このエンコーダ12aの被検出面のうちで上記センサの検出部が対向する部分の径方向位置の変化に伴って、このセンサの出力信号が変化する周期が変化する(変化の大きさは変わらない)。
エンコーダ12a以外の部分の構造及び作用は、前述した実施例1と同様であるから、同等部分に関する図示並びに説明は省略する。
【実施例3】
【0081】
図8は、請求項1〜5、17〜19、24に対応する、本発明の実施例3を示している。本実施例の場合には、ハブ4aの軸方向中間部で複列に配置された転動体5、5同士の間にエンコーダ12bを外嵌固定している。このエンコーダ12bは、断面L字形で全体を円環状に形成した支持板14aを備える。そして、この支持板14aの円輪部23の軸方向片側面に、前述の図2、3に示す様な永久磁石製のエンコーダ本体15を添着するか、上記円輪部23に前述の図7に示す様な透孔21、21a若しくは凹孔を形成する事で、この円輪部23自体にエンコーダとしての機能を持たせる。
【0082】
この様なエンコーダ12bと組み合わされるセンサ13aは、外輪3の軸方向中間部で複列の外輪軌道6、6の間部分に形成された取付孔20aに、この外輪3の径方向外方から内方に向け挿通している。そして、上記センサ13aの先端部で軸方向側面に設けた検出部を、上記円輪部23の軸方向側面に添着したエンコーダ本体15の被検出面又はこの円輪部23自身の側面に近接対向させている。
上記センサ13aの出力信号のパターンに基づいてハブ4aの中心軸と上記外輪3の中心軸とのずれ(径方向変位量)を求め、このずれから(或は上記出力信号のパターンから直接)上記ハブ4aと外輪3との間に作用するラジアル荷重を求める点、適応フィルタにより、取付け誤差等に伴う上記センサ13aの出力信号の変動を除去する点に関しては、前述した実施例1或は実施例2と同様であるから、重複する説明は省略する。
【実施例4】
【0083】
図9〜11は、請求項1〜4、6、24に対応する、本発明の実施例4を示している。本実施例の場合には、被検出面であるエンコーダ12cの軸方向側面に複数の被検出用組み合わせ部24、24を、円周方向に亙り等間隔で配置している。これら各被検出用組み合わせ部24、24は、それぞれが他の部分とは特性が異なる1対の個性化部分25、25により構成している。この様な各個性化部分25、25としては、図9の(A)に示す様なスリット状の長孔、同じく(B)に示す様な凹孔、同じく(C)に示す様な土手状の凸部を採用可能である。上記各個性化部分25、25が何れのものであっても、上記各被検出用組み合わせ部24、24を構成する1対ずつの個性化部分25、25同士の円周方向に関する間隔は、総ての被検出用組み合わせ部24、24で、径方向に関して同じ方向に連続的に変化させる。図示の例では、各被検出用組み合わせ部24、24を構成する1対ずつの個性化部分25、25同士の円周方向に関する間隔が、上記エンコーダ12cの径方向外側程大きくなり、円周方向に隣り合う各被検出用組み合わせ部24、24を構成する個性化部分25、25同士の円周方向に関する間隔が、上記エンコーダ12cの径方向外側程小さくなる方向に傾斜している。
【0084】
上述の様なエンコーダ12cの被検出面にその検出部を対向させたセンサの出力信号は、図11に示す様に、上記各個性化部分25、25に対向する瞬間に変化する。そして、変化する間隔(周期)は、上記センサの検出部が対向する部分の径方向位置の変化に伴って変化する。
例えば、外輪等の静止側軌道輪とハブ等の回転側軌道輪との間に標準的なラジアル荷重(標準値)が加わっている場合、上記センサの検出部は、図10、11に鎖線αで示した、上記被検出面の径方向中央部を走査する。この場合に上記センサの出力信号は、図11の(B)に示す様に変化する。
これに対して、上記静止側軌道輪と上記回転側軌道輪との間に加わるラジアル荷重が標準値よりも大きくなると、上記センサの検出部は、例えば、図10、11に鎖線βで示した、上記被検出面の径方向内寄り部分を走査する。この場合に上記センサの出力信号は、図11の(A)に示す様に変化する。
更に、上記静止側軌道輪と上記回転側軌道輪との間に加わるラジアル荷重が標準値よりも小さくなると、上記センサの検出部は、例えば、図10、11に鎖線γで示した、上記被検出面の径方向外寄り部分を走査する。この場合に上記センサの出力信号は、図11の(C)に示す様に変化する。
従って、本実施例の場合も、上記センサの出力信号のパターン(変化の間隔)を見れば、上記静止側軌道輪の中心軸と上記回転側軌道輪の中心軸とがずれている程度(径方向変位量)を求め、更にこのずれている程度から(或は上記出力信号のパターンから直接)、上記両軌道輪同士の間に加わるラジアル荷重を求める事ができる。
【実施例5】
【0085】
図12〜14は、請求項1〜5、17〜19、24に対応する、本発明の実施例5を示している。本実施例の場合には、ハブ4aの軸方向中間部で複列に配置された転動体5、5同士の間部分に、エンコーダ12dを外嵌固定している。このエンコーダ12dは、図13の(A)に示す様な帯状の素材を丸める事により、図13の(B)に示す様に構成したもので、円筒状の支持板14bの外周面に同じく円筒状のエンコーダ本体15aを、全周に亙って添着固定して成る。
【0086】
上記エンコーダ本体15aは、ゴム磁石、プラスチック磁石等の永久磁石製で、径方向に着磁している。着磁方向は、円周方向に亙って交互に且つ等間隔で変化させている。従って、被検出面である上記エンコーダ本体15aの外周面には、N極とS極とが、交互に、且つ、等間隔で配置されている。このうち、第一被検出部であるN極に着磁された部分の円周方向に関する幅は、上記エンコーダ本体15aの軸方向一端部で広く、他端部で狭くしている。これに対して、第二被検出部であるS極に着磁された部分の円周方向に関する幅は、上記エンコーダ本体15aの軸方向一端部で狭く、他端部で広くしている。
【0087】
この様なエンコーダ12dと組み合わされるセンサ13bは、外輪3の軸方向中間部で複列の外輪軌道6、6の間部分に形成された取付孔20aに、この外輪3の径方向外方から内方に向け挿通している。そして、上記センサ13bの先端面に設けた検出部を、上記エンコーダ本体15aの外周面に近接対向させている。
【0088】
上述の様な構成を有する本実施例の場合、上記外輪3と上記ハブ4aとの間に加わるアキシアル荷重の変動に伴ってこれら外輪3とハブ4aとの相対位置が軸方向にずれると、上記エンコーダ本体15aの外周面のうちで上記センサ13bの検出部が対向する部分の軸方向位置が変化する。この結果、前述した実施例1の場合と同様に、上記センサ13bの出力信号が変化するパターンが、図14に示す様に変わる。この図14に示す様なセンサ13bの出力信号が変化するパターンと、上記外輪3と上記ハブ4aとの間の軸方向変位量及びこれら外輪3とハブ4aとの間に加わるアキシアル荷重の大きさとの関係も、前述した実施例1での径方向変位量及びラジアル荷重と出力信号の変化のパターンとの関係と同様に、計算或は実験により求められる。従って、この出力信号の変化のパターンを観察する事で、上記軸方向変位量及びアキシアル荷重の大きさを求める事ができる。適応フィルタにより、取付け誤差等に伴う上記センサ13bの出力信号の変動を除去する点に関しては、前述した実施例1〜4と同様である。
【実施例6】
【0089】
図15は、請求項1〜5、17、18、20、24に対応する、本発明の実施例6を示している。本実施例の場合には、ハブ4aの軸方向内端部にエンコーダ12eを外嵌固定している。このエンコーダ12eは、支持板14cを備える。そして、この支持板14cの円筒部26の内周面に、その内周面にN極とS極とを、それぞれ扇形若しくは台形の範囲に着磁した状態で交互に配置した永久磁石製のエンコーダ本体を添着するか、上記円筒部26に扇形若しくは台形の透孔を形成する事で、この円筒部26自体にエンコーダとしての機能を持たせる。そして、外輪3の内端開口部に固定したカバー18aに支持固定したセンサ13cの検出部を、被検出面である上記エンコーダ12eの内周面に近接対向させている。
この様な本実施例の場合も、上記センサ13cの出力信号の変化のパターンを観察する事で、上記外輪3と上記ハブ4aとの間の軸方向変位量及びこれら外輪3とハブ4aとの間に作用するアキシアル荷重の大きさを求める事ができる。適応フィルタにより、取付け誤差等に伴う上記センサ13cの出力信号の変動を除去する点に関しては、前述した実施例1〜4と同様である。
【実施例7】
【0090】
図16は、請求項1〜4、6、24に対応する、本発明の実施例7を示している。本実施例は、前述の図9〜11に示した実施例4の構造を、アキシアル荷重の大きさを求める為に適用したものである。即ち、本実施例の場合には、被検出面である円筒状のエンコーダ12fの外周面(又は内周面)に、複数の被検出用組み合わせ部24、24を、円周方向に亙り等間隔で配置している。これら各被検出用組み合わせ部24、24は、それぞれが他の部分とは特性が異なる1対の個性化部分25、25により構成している。この様な各個性化部分25、25として本実施例の場合には、スリット状の長孔を採用している。
【0091】
この様な各個性化部分25、25を有する上記エンコーダ12fは、図16の(A)に示す様な、予め上記各長孔を打ち抜き形成した帯状の磁性金属板を同(B)に示す様に丸め、円周方向両端縁同士を突き合わせ溶接する事により造る。尚、上記各個性化部分25、25としては、前述の図9の(B)に示す様な凹孔、同じく(C)に示す様な土手状の凸部も採用可能である。本実施例の場合も、上記実施例4の場合と同様に、上記各被検出用組み合わせ部24、24を構成する1対ずつの個性化部分25、25同士の円周方向に関する間隔は、総ての被検出用組み合わせ部24、24で軸方向に関して同じ方向に連続的に変化させる。即ち、各被検出用組み合わせ部24、24を構成する1対ずつの個性化部分25、25同士の円周方向に関する間隔が、上記エンコーダ12fの軸方向一端(図16の右下端)程小さくなり、円周方向に隣り合う各被検出用組み合わせ部24、24を構成する個性化部分25、25同士の円周方向に関する間隔が、上記エンコーダ12fの軸方向他端(図16の左上端)程小さくなる方向に傾斜している。
【0092】
上述の様なエンコーダ12fの被検出面である外周面(又は内周面)にその検出部を対向させたセンサの出力信号は、前述の実施例4の場合と同様、図11に示す様に、上記各個性化部分25、25に対向する瞬間に変化する。そして、変化する間隔(周期)は、上記センサの検出部が対向する部分の軸方向位置の変化に伴って変化する。従って、本実施例の場合も、上記センサの出力信号のパターンを見れば、静止側軌道輪と回転側軌道輪とが軸方向にずれている程度(軸方向変位量)を求め、更にこのずれている程度から(或は、上記出力信号のパターンから直接)、上記両軌道輪同士の間に加わるアキシアル荷重を求める事ができる。上記センサの出力信号のパターンから相対変位量及び荷重を求める手法に関しては、求めるべき相対変位の方向が径方向から軸方向に、同じく荷重がラジアル荷重からアキシアル荷重に、それぞれ変わった以外、上記実施例4の場合と同様である。適応フィルタにより、取付け誤差等に伴う上記センサの出力信号の変動を除去する点に関しても、上記実施例4と同様である。
【実施例8】
【0093】
図17〜19は、請求項1〜5、17〜19、24に対応する、本発明の実施例8を示している。本実施例は、駆動輪用の車輪支持用転がり軸受ユニット1aで本発明を実施する場合に就いて示している。又、重量の嵩む車両に組み込む事を考慮して、転動体5a、5aとして円すいころを使用している。この様な本実施例の場合、ハブ4bの軸方向中間部で複列の内輪軌道11a、11a同士の間部分に、図18に示す様なエンコーダ12gを外嵌固定している。このエンコーダ12gは、磁性金属材により全体を円環状とされたもので、外周面に、第一被検出部である凸部27、27と、第二被検出部である凹部28、28とを、円周方向に関して交互に且つ等間隔で形成している。
【0094】
上述の様な構成を有する本実施例の場合、内周面に複列の外輪軌道6a、6aを形成した外輪3aと、上記ハブ4bとの間に加わるアキシアル荷重の変動に伴ってこれら外輪3aとハブ4bとの相対位置が軸方向にずれると、上記エンコーダ12gの外周面のうちでこの外輪3aの軸方向中間部に支持したセンサ13dの検出部が対向する部分の軸方向位置が変化する。この結果、前述した実施例5の場合と同様に、上記センサ13dの出力信号が変化するパターン(デューティー比)が、図19に示す様に変わる。この図19に示す様なセンサ13dの出力信号が変化するパターンと、上記外輪3aと上記ハブ4bとの間の軸方向に関する相対変位量及びこれら外輪3aとハブ4bとの間に加わるアキシアル荷重の大きさとの関係も、前述した実施例5と同様に、計算或は実験により求められる。従って、この出力信号の変化のパターンを観察する事で、上記相対変位量及びアキシアル荷重の大きさを求める事ができる。適応フィルタにより、取付け誤差等に伴う上記センサの出力信号の変動を除去する点に関しても、求めるべき相対変位量の方向が径方向から軸方向に変わり、求めるべき荷重がラジアル荷重からアキシアル荷重に変わった点以外、上記実施例5と同様である。
尚、本実施例の様に、台形若しくは倒立台形の凹部と凸部とを円周方向に関して交互に配置する構造を、被検出面を軸方向側面に形成したエンコーダに適用し、転がり軸受ユニットに加わるラジアル荷重測定に使用する事もできる。
【実施例9】
【0095】
図20〜24は、請求項1〜4、7〜9、17〜19、24に対応する、本発明の実施例9を示している。本実施例の場合には、前述の図12〜14に示した実施例5と同様に、ハブ4aの中間部に、永久磁石製のエンコーダ12hを外嵌固定している。被検出面である、このエンコーダ12hの外周面には、第一被検出部に相当するN極に着磁した部分と、第二被検出部に相当するS極に着磁した部分とが、円周方向に関して交互に且つ等間隔で配置されている。特に、本実施例の場合には、上記第一、第二両被検出部に対応する、N極に着磁された部分とS極に着磁された部分との境界を、上記エンコーダ12hの軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ12hの軸方向中間部を境に互いに逆方向としている。従って、上記N極に着磁された部分とS極に着磁された部分とは、軸方向中間部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。
【0096】
一方、外輪3の軸方向中間部で複列に配置された転動体5、5同士の間部分に1対のセンサ13e、13eを設置し、これら両センサ13e、13eの検出部を、上記エンコーダ12hの外周面に、近接対向させている。これら両センサ13e、13eの検出部がこのエンコーダ12hの外周面に対向する位置は、このエンコーダ12hの円周方向に関して同じ位置としている。言い換えれば、上記両センサ13e、13eの検出部は、上記外輪3の中心軸に平行な仮想直線上に配置されている。又、この外輪3とハブ4aとの間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分とS極に着磁された部分との軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ13e、13eの検出部同士の間の丁度中央位置に存在する様に、各部材12h、13e、13eの設置位置を規制している。
【0097】
上述の様に構成する本実施例の場合、上記外輪3とハブ4aとの間にアキシアル荷重が作用すると、上記両センサ13e、13eの出力信号が変化する位相がずれる。即ち、上記外輪3とハブ4aとの間にアキシアル荷重が作用していない状態では、上記両センサ13e、13eの検出部は、図23(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ13e、13eの出力信号の位相は、同図の(C)に示す様に一致する。これに対して、上記エンコーダ12hを固定したハブ4aに、図23の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ13e、13eの検出部は、図23の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ13e、13eの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ12hを固定したハブ4aに、図23の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ13e、13eの検出部は、図23の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ13e、13eの出力信号の位相は、同図の(D)に示す様にずれる。
【0098】
上述の様に本実施例の場合には、上記両センサ13e、13eの出力信号の位相が、上記外輪3とハブ4aとの間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ13e、13eの出力信号の位相がずれる程度は、このアキシアル荷重が大きくなる程大きくなる。従って本実施例の場合には、上記両センサ13e、13eの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪3とハブ4aとの間の軸方向に関する相対変位量及びこれら外輪3とハブ4aとの間に作用しているアキシアル荷重の方向及び大きさを求められる。
【0099】
適応フィルタにより、取付け誤差等に伴う上記両センサ13e、13eの出力信号の変動を除去する点に関しては、基本的には前述の実施例1〜8と同様である。特に、本実施例の場合には、1対のセンサ13e、13eの出力信号同士の位相差に基づいて、上記外輪3とハブ4aとの軸方向変位、更にはこれら外輪3とハブ4aとの間に加わるアキシアル荷重を求める様にしている為、上記位相差(を表す信号)に就いて、フィルタリング処理を施す様にしている。尚、上記両センサ13e、13eに波形成形回路を組み込み、これら両センサ13e、13eの出力信号をパルス的に変化する矩形波とした場合も、基本的な考え方は同じである。
【0100】
図24は、この様なフィルタリング処理を行なう、本実施例の効果を確認する為に行なったコンピュータシミュレーションの結果を示している。この様な図24の縦軸は、位相差、即ち、上記エンコーダ12hの軸方向変位に伴う、上記両センサ13e、13eの出力信号同士の位相差、即ち、図23の(B)〜(D)に示したこれら両センサ13e、13eの出力信号同士の時間ずれ量を、これら両センサ13e、13eの出力信号の周期で除した値(位相差比)である。図24には、この時間ずれ量が大きく、且つ、上記取付け誤差等に伴う上記両センサ13e、13eの出力信号の変動が極端に大きい場合に就いて示している。
【0101】
上記図24のうちの(A)は、上記フィルタリング処理を施さずに、上記両センサ13e、13eの出力信号をそのまま比較して、上記位相差比を求めた場合を示している。この様な図24の(A)には、上記エンコーダ12hの組み付け誤差に基づく回転1次の変動成分(誤差)が大きく現れている。これに対して図24の(B)には、上記位相差比を表す信号に関して、同期式LMS適応フィルタによるフィルタリング処理を施した結果得られる信号を示している。この様な図24の(B)から明らかな通り、このフィルタリング処理により、前記アキシアル荷重を求める場合に問題となる回転1次の変動成分(誤差)を低減できる。フィルタリング処理後の信号には、若干の高周波ノイズが残っているが、この高周波ノイズは、ローパスフィルタにより容易に、且つ、実用上問題となる様な応答遅れを生じさせずに低減できるので、特に問題とはならない。
【実施例10】
【0102】
図25〜28は、請求項1〜4、7〜9、17〜19、24に対応する、本発明の実施例10を示している。本実施例の場合には、ハブ4aの中間部に、磁性金属板製のエンコーダ12iを外嵌固定している。被検出面である、このエンコーダ12iの外周面には、第一被検出部に相当するスリット状の透孔29a、29bと、第二被検出部に相当する柱部30a、30bとが、円周方向に関して交互に且つ等間隔で配置されている。尚、円周方向に隣り合う透孔29a、29b同士、或は柱部30a、30b同士のピッチは互いに等しいが、各透孔29a、29bの円周方向に関する幅と、各柱部30a、30bの円周方向に関する幅とが等しい必要はない。特に、本実施例の場合には、上記第一被検出部に対応する上記各透孔29a、29bと、第二被検出部に対応する上記各柱部30a、30bとを、上記エンコーダ12iの軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ12iの軸方向中間部を境に互いに逆方向としている。即ち、本実施例のエンコーダ12iは、軸方向片半部に、上記軸方向に対し所定方向に同じだけ傾斜した透孔29a、29aを形成すると共に、軸方向他半部に、この所定方向と逆方向に同じ角度だけ傾斜した透孔29b、29bを形成している。
【0103】
一方、外輪3の軸方向中間部で複列に配置された転動体5、5同士の間部分に1対のセンサ13f、13fを設置し、これら両センサ13f、13fの検出部を、上記エンコーダ12iの外周面に、近接対向させている。これら両センサ13f、13fの検出部がこのエンコーダ12iの外周面に対向する位置は、このエンコーダ12iの円周方向に関して同じ位置としている。又、この外輪3とハブ4aとの間にアキシアル荷重が作用しない状態で、上記各透孔29a、29b同士の間に位置し、全周に連続するリム部31が、上記両センサ13f、13fの検出部同士の間の丁度中央位置に存在する様に、各部材12i、13f、13fの設置位置を規制している。
【0104】
上述の様に構成する本実施例の場合、上記外輪3とハブ4aとの間にアキシアル荷重が作用すると、前述した実施例9の場合と同様に、上記両センサ13f、13fの出力信号が変化する位相がずれる。即ち、上記外輪3とハブ4aとの間にアキシアル荷重が作用していない状態では、上記両センサ13f、13fの検出部は、図28の(A)の実線イ、イ上、即ち、上記リム部31から軸方向に同じだけずれた部分に対向する。従って、上記両センサ13f、13fの出力信号の位相は、同図の(C)に示す様に一致する。これに対して、上記エンコーダ12iを固定したハブ4aに、図28の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ13f、13fの検出部は、図28の(A)の破線ロ、ロ上、即ち、上記リム部31からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ13f、13fの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ12iを固定したハブ4aに、図28の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ13f、13fの検出部は、図28の(A)の鎖線ハ、ハ上、即ち、上記リム部31からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ13f、13fの出力信号の位相は、同図の(D)に示す様にずれる。
【0105】
上述の様に本実施例の場合も、前述した実施例9の場合と同様に、上記両センサ13f、13fの出力信号の位相が、上記外輪3とハブ4aとの間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ13f、13fの出力信号の位相がずれる程度は、このアキシアル荷重が大きくなる程大きくなる。従って本実施例の場合も、上記両センサ13f、13fの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪3とハブ4aとの間の軸方向に関する変位量及びこれら外輪3とハブ4aとの間に作用しているアキシアル荷重の方向及び大きさを求められる。適応フィルタにより、取付け誤差等に伴う上記両センサ13f、13fの出力信号の変動を除去する点に関しては、上記実施例9と同様である。
【0106】
尚、何れの実施例に就いても、センサの検出部の面積(スポット径)は小さい方が好ましい。この理由は、荷重変動に伴う、エンコーダの被検出面の特性変化のパターンの変化を求める為、このパターン変化を高精度で読み取れる様にする為である。又、上記センサの構造は、磁気式、光学式等、特に問わないが、磁気式のものが、低コストで必要とする精度を有するセンサを得易い事から好ましい。又、磁気式のセンサを使用する場合に、パッシブ型、アクティブ型、何れの構造のものも使用可能であるが、上記スポット径を小さくして精度の良い測定を行なえる事、低回転時から測定を行なえる事から、アクティブ型のセンサが、好ましく使用できる。更に、アクティブ型のセンサであれば、検出素子を通過する磁束の密度の変化に対応して出力の切換(ON・OFF)を行なうユニポーラ型を含め、各種構造の磁気センサを使用できる。
【実施例11】
【0107】
図29は、請求項1〜5、7〜9、24に対応する、本発明の実施例11を示している。本実施例の場合には、アキシアル方向の変位とラジアル方向の変位との両方の変位(アキシアル荷重とラジアル荷重との両方の荷重)を求める構造に関して本発明を実施する場合に就いて示している。上記両方の変位を求める為に本実施例の場合には、ラジアル方向の変位を求める為のエンコーダ12jの軸方向片側面に存在する円輪状の被検出面に、それぞれがこのエンコーダ12jの径方向に対し一方向に傾斜した、突条、透孔、凹孔、磁極等の被検出用特性部33、33を設けている。又、アキシアル方向の変位を測定する為のエンコーダ12kの外周面に存在する円筒状の被検出面の軸方向片半部{図29の(B)の左半部}に、それぞれが軸方向に傾斜した第二被検出用特性部34、34を設けている。これに対して、上記エンコーダ12kの被検出面の軸方向他半部{図29の(B)の右半部}に、それぞれがこのエンコーダ12kの軸方向に対し平行な、第三被検出用特性部35、35を設けている。これら各被検出用特性部33〜35のピッチは、互いに等しい。
【0108】
この様なエンコーダ12j、12kを組み込んだ構造の場合、合計3個のセンサの検出部を、これら両エンコーダ12j、12kの被検出面で、上記各被検出用特性部33、34、35を形成した部分に対向させる。そして、上記エンコーダ12kの軸方向に対し平行な、第三被検出用特性部35、35に対向したセンサの出力信号が変化する瞬間を基準として、残り2個のセンサの出力信号の位相のずれの方向及び大きさを求める。更に、この位相のずれの方向及び大きさに基づいて、アキシアル方向及びラジアル方向の変位(又は、アキシアル荷重及びラジアル荷重)を求める。
【0109】
本実施例の構造によれば、比較的小型に構成できて、アキシアル方向の変位とラジアル方向の変位(又は、アキシアル荷重とラジアル荷重)との両方の変位を求める事ができる。そして、この様な構造で、上記2個のセンサの出力信号の位相のずれの方向及び大きさに関して前述の実施例1に記載した様なフィルタ処理を施せば、上記両エンコーダ12j、12kの被検出面の振れ回りに拘らず、上記アキシアル方向及びラジアル方向の変位(又は、アキシアル荷重及びラジアル荷重)を精度良く求められる。
【実施例12】
【0110】
図30は、請求項1〜5、7〜9、24に対応する、本発明の実施例12を示している。本実施例の場合には、磁性金属板製のエンコーダ12iの外周面に、3個のセンサ13g〜13iの検出部をラジアル方向に対向させるのみで、アキシアル方向の変位(荷重)だけでなく、ラジアル方向の変位(荷重)も求められる様にしている。即ち、前述の図25〜28に示した実施例10の構造にセンサを1個加える事により、静止側軌道輪である外輪3と、回転側軌道輪であるハブ4a(図25参照)との間のアキシアル方向の変位(荷重)だけでなく、ラジアル方向の変位(荷重)を測定可能にしている。このラジアル方向の変位(荷重)を測定可能にする点以外の構成及び作用は、上記実施例10の場合と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。尚、上記3個のセンサ13g〜13iのうちの2個のセンサ13g、13hが、上記実施例10の構造に組み込まれた1対のセンサ13f、13fに対応する。又、エンコーダ12iの構造に就いては、上記実施例10の構造と同じである。
【0111】
上記3個のセンサ13g〜13iのうち、上記2個のセンサ13g、13hの検出部を、上記エンコーダ12iの外周面の軸方向両側部分に振り分けて、上記エンコーダ12iの円周方向に関して同じ位置に対向させている。又、上記実施例10の場合と同様に、上記外輪3と上記ハブ4a(図25参照)との中立状態で、上記エンコーダ12iに形成した各透孔29a、29b同士の間に位置し、全周に連続するリム部31が、上記両センサ13g、13hの検出部同士の間の丁度中央位置に存在する様にしている。
【0112】
これに対して、上記3個のセンサ13g〜13iのうちの残り1個のセンサ13iの検出部は、上記エンコーダ12iの外周面のうちの軸方向片側寄り部分に対向させている。上記1個のセンサ13iの検出部が上記エンコーダ12iの外周面に対向する位置は、上記外輪3と上記ハブ4aとの中立状態で、上記エンコーダ12iの回転方向に関しては、上記センサ13gが対向している部分から90度ずれた位置としている。又、上記エンコーダ12iの軸方向に関しては、上記センサ13gが対向している部分と同じ位置としている。
【0113】
上述の様に構成する本実施例の構造によれば、上記外輪3と上記ハブ4aとの相対変位により生じる、上記3個のセンサ13g〜13iの出力信号同士の間の位相差に基づいて、アキシアル方向の変位(荷重)だけでなく、ラジアル方向の変位(荷重)も求められる。この点に就いて、x、y、z各方向の変位と、上記3個のセンサ13g〜13iの出力信号同士の間の位相差の有無とに就いて説明する。尚、x、y、z各方向とは、本実施例を自動車の車輪支持用転がり軸受ユニットに適用した場合に於いて、x方向が前後方向に関するラジアル方向を、y方向が幅方向に関するアキシアル方向を、z方向が上下方向に関するラジアル方向を、それぞれ表している。
【0114】
(1) x方向の変位が発生(外輪3とハブ4aとが前後方向に相対変位)した場合。
この場合には、下側に設けた2個のセンサ13g、13hの出力信号同士の間には位相差は発生しない。
これに対して、水平方向に設けて第一の被検出面に対向した上記1個のセンサ13iの出力信号と、上記下側に設けた2個のセンサ13g、13hの出力信号との間に、上記x方向の変位(方向及び大きさ)に応じた方向及び大きさの位相差が発生する。
(2) y方向の変位が発生{外輪3とハブ4aとが幅方向(軸方向)に相対変位}した場合。
この場合には、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間に位相差が発生する。
同様に、上記水平方向に設けた1個のセンサ13iの出力信号と上記下側に設けたセンサ13hの出力信号との間にも位相差が発生する。
これに対して、上記下側に設けて第一の被検出面に対向したセンサ13gの出力信号と上記水平方向に設けた1個のセンサ13iの出力信号との間には位相差は発生しない。
(3) z方向の変位が発生(外輪3とハブ4aとが上下方向に相対変位)した場合。
この場合には、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間には位相差は発生しない。
これに対して、上記水平方向に設けた1個のセンサ13iの出力信号と、上記下側に設けた2個のセンサ13g、13hの出力信号との間に、上記z方向の変位(方向及び大きさ)に応じた方向及び大きさの位相差が発生する。
【0115】
これら、x、y、z各方向の変位が発生した状態での、上記各センサ13g〜13iの出力信号同士の間の位相差の出現状態から明らかな通り、本実施例の場合には、アキシアル方向の変位(荷重)だけでなく、ラジアル方向の変位(荷重)も求められる。但し、x、z両方向に関するラジアル方向の変位を見分ける事はできない。従って、本実施例の構造は、アキシアル方向の変位(アキシアル荷重)に加えて、何れか一方向のラジアル方向の変位(ラジアル荷重)を求める場合に有効である。即ち、x方向或はz方向の何れか一方向にのみ変位が発生し、他方向には変位が発生しない(一定値である)と見做せる様な用途、構造であれば、上記アキシアル、ラジアル、両方向の変位(荷重)を求められる。
【0116】
例えば、転がり軸受ユニットが、自動車の従動輪(FR車の後輪、FF車、RR車、MR車の前輪)を支持する為の転がり軸受ユニットの場合には、走行中に作用する荷重は、制動時を除き、アキシアル荷重と上下方向のラジアル荷重のみであり、前後方向のラジアル荷重はほぼ無視できる場合がある。そこで、上記x方向のラジアル変位を0であるとして、上記各センサ13g〜13iの出力信号同士の間の位相差を処理すれば、残りの2方向、即ち、車両の幅方向であるy方向に関するアキシアル方向の変位(アキシアル荷重)と、同じく上下方向であるz方向に関するラジアル方向の変位(ラジアル荷重)とを求められる。即ち、y方向の変位はセンサ13g、13hの出力信号同士の位相差により、z方向の変位はセンサ13i、13g(13h)の出力信号同士の位相差により、それぞれ求められる。上記各センサ13g〜13iの出力信号同士の間の位相差に基づいて、上記y、z両方向の変位を求める方法は、基本的には前述の図25〜28に示した、実施例10の場合と同様であるから、詳しい説明は省略する。
【0117】
上述の様にして、上記y、z両方向の変位を求められれば、これらy、z両方向に加わる荷重を求められる。そして、この様な構造で、上記各センサ13g〜13iの出力信号の位相のずれの方向及び大きさに関して前述の実施例1に記載した様なフィルタ処理を施せば、前記エンコーダ12iの被検出面の振れ回りに拘らず、上記アキシアル方向及びラジアル方向の変位(アキシアル荷重及びラジアル荷重)を精度良く求められる。
【実施例13】
【0118】
図31は、請求項1〜5、7〜9、24に対応する、本発明の実施例13を示している。本実施例の場合には、上述した実施例12の構造に加えて、第四のセンサであるセンサ13jを設けている。そして、このセンサ13jの検出部を、第三のセンサであるセンサ13iの検出部と同様に、エンコーダ12iのうちで、透孔29a、29aと柱部30a、30aとを交互に設けた部分に対向させている。上記第四のセンサであるセンサ13jの検出部が上記エンコーダ12iの外周面に対向する位置は、外輪3とハブ4a(図25参照)との中立状態で、上記エンコーダ12iの回転方向に関しては、センサ13gが対向している部分から90度、上記第三のセンサであるセンサ13iとは180度反対側にずれた位置としている。又、上記エンコーダ12iの軸方向に関しては、上記両センサ13g、13iが対向している部分と同じ位置としている。本実施例の場合、この様な構成を採用する事により、x、y、zの3方向の変位を求め、更にこれら3方向の変位から、これら3方向に加わる荷重を求められる様にしている。
【0119】
上述の様に構成する本実施例の構造によれば、上記外輪3と上記ハブ4aとの相対変位により生じる、4個のセンサ13g〜13jの出力信号同士の間の位相差に基づいて、アキシアル方向の変位(荷重)だけでなく、2方向のラジアル方向の変位(荷重)も求められる。この点に就いて、x、y、z各方向の変位と上記4個のセンサ13g〜13jの出力信号同士の間の位相差の有無に就いて説明する。
(1) x方向の変位が発生(外輪3とハブ4aとが前後方向に相対変位)した場合。
この場合には、下側に設けた2個のセンサ13g、13hの出力信号同士の間には位相差は発生しない。
これに対して、上記下側に設けたセンサ13hの出力信号と、水平方向に設けた2個のセンサ13i、13jの出力信号との間に、上記x方向の変位(方向及び大きさ)に応じた方向及び大きさの位相差が発生する。
又、上記下側に設けたセンサ13gの出力信号と、上記水平方向に設けた2個のセンサ13i、13jの出力信号との間にも、上記x方向の変位(方向及び大きさ)に応じた方向及び大きさの位相差が発生する。
上記水平方向に設けた2個のセンサ13i、13jの出力信号同士の間には、位相差は発生しない。
(2) y方向の変位が発生{外輪3とハブ4aとが幅方向(軸方向)に相対変位}した場合。 この場合には、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間に位相差が発生する。
同様に、上記水平方向に設けた2個のセンサ13i、13jの出力信号と、上記下側に設けたセンサ13hの出力信号との間にも、位相差が発生する。
これに対して、上記下側に設けたセンサ13gの出力信号と、上記水平方向に設けた2個のセンサ13i、13jの出力信号との間には、位相差は発生しない。
又、上記水平方向に設けた2個のセンサ13i、13jの出力信号同士の間にも、位相差は発生しない。
(3) z方向の変位が発生(外輪3とハブ4aとが上下方向に相対変位)した場合。
この場合には、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間には、位相差は発生しない。
これに対して、上記下側に設けたセンサ13gの出力信号と、水平方向に設けた2個のセンサ13i、13jの出力信号同士の間に、位相差が発生する。
又、上記下側に設けたセンサ13hの出力信号と、水平方向に設けた2個のセンサ13i、13jの出力信号同士の間にも、位相差が発生する。
更に、水平方向に設けた2個のセンサ13i、13jの出力信号同士の間にも、位相差が発生する。
【0120】
要するに、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間の位相は、y方向の変位のみで変化(位相差が発生)し、x、z方向の変位では変化しない。従って、上記下側に設けた2個のセンサ13g、13hの出力信号同士の間の位相差の有無、方向、大きさを測定すれば、上記y方向の変位を求められる。
又、上記水平方向に設けた2個のセンサ13i、13jの出力信号同士の間の位相は、z方向の変位のみで変化し、x、y方向の変位では変化しない。従って、上記水平方向に設けた2個のセンサ13i、13jの出力信号同士の間の位相差の有無、方向、大きさを測定すれば、上記z方向の変位を求められる。
更に、それぞれが下方或いは水平方向に設けられた、センサ13g、13iの出力信号同士の間の位相は、x方向の変位によって変化するが、同時に、z方向の変位によっても変化する。但し、このうちのz方向の変位は、上記水平方向に設けた2個のセンサ13i、13jの出力信号同士の間の位相差から求められるので、これら両センサ13i、13jの出力信号同士の間の位相差から上記z方向の変位の影響を除く修正演算を行なえば、上記x方向の変位のみを求められる。尚、このx方向の変位は、下方と水平方向とに設けられた上記両センサ13g、13jの出力信号同士の間の位相差からも、同様に上記z方向の変位の影響を除く修正演算を行なう事により求められる。即ち、センサ13g、13iの出力信号同士の間の位相差、或いは、センサ13g、13jの出力信号同士の間の位相差から、或は両位相差の平均から、x方向の変位のみを求められる。
【0121】
尚、センサ13h、13iの出力信号同士の間の位相差や、センサ13h、13jの出力信号同士の間の位相差も、x方向の変位により変化するが、同時にy方向の変位やz方向の変位によっても変化する。これらy、z方向の変位は上述の様に求められるので、上記センサ13h、13iの出力信号同士の間の位相差や、上記センサ13h、13jの出力信号同士の間の位相差から、これらy、z方向の変位の影響を除く為の修正演算により、x方向の変位のみを求める事もできる。但し、計算量が多くなり、このx方向の変位を求めるまでに要する時間が長くなるだけでなく、誤差が入り込み易くなるので、好ましくはない。
【0122】
上述の様にして、上記x、y、z両方向の変位を求められれば、これらx、y、z各方向に加わる荷重を求められる。そして、この様な構造で、上記各センサ13g〜13jの出力信号の位相のずれの方向及び大きさに関して前述の実施例1に記載した様なフィルタ処理を施せば、前記エンコーダ12iの被検出面の振れ回りに拘らず、上記アキシアル方向及びラジアル方向の変位(アキシアル荷重及びラジアル荷重)を精度良く求められる。
【実施例14】
【0123】
図32〜33は、請求項1〜5、17、18、20、24に対応する、本発明の実施例14を示している。尚、本実施例の特徴は、エンコーダ12mに形成した透孔29c、29cの形状を工夫すると共に、1対のセンサ13k、13mを、このエンコーダ12mの直径方向反対側2個所位置に設けた点にある。変位測定装置を組み込む車輪支持用転がり軸受ユニット1の構造に関しては、例えば前述の図15に示した実施例6の場合と同様であるから、重複する説明は省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。
【0124】
磁性金属板製の上記エンコーダ12mの先半部に設けた円筒状部36に、スリット状の透孔29c、29cを、円周方向に関して等間隔に形成している。これら各透孔29c、29cは、それぞれが上記円筒状部36の軸方向に対し傾斜した、直線状である。又、外輪3の内端部に嵌合固定した、有底円筒状のカバー18bの内周面の一部で、直径方向反対側2個所位置に、1対のセンサ13k、13mを支持している。本実施例の場合には、車輪37を構成するタイヤ38と路面39との接触部(接地面部分)に車両の幅方向に加わるアキシアル荷重を求める事を意図している為、一方のセンサ13kを上記カバー18bの上端部内周面に、他方のセンサ13mをこのカバー18bの下端部内周面に、それぞれ支持固定している。
【0125】
又、外輪3の中心軸とハブ4a(の内端部に外嵌固定した上記エンコーダ12m)の中心軸とが一致している状態で、上記両センサ13k、13mの検出部がこのエンコーダ12mの外周面に対向している位置は、このエンコーダ12mの軸方向に関して、互いに同じ位置としている。従って、上記外輪3の中心軸と上記ハブ4aの中心軸とが一致している中立状態では、上記両センサ13k、13mの検出信号の位相は、互いに一致する(位相差は生じない)。又、温度変化に伴って上記ハブ4aや上記エンコーダ12mの軸方向寸法が変化し、上記円筒状部36が軸方向に平行移動した場合でも、上記両センサ13k、13mの検出信号の位相が互いにずれる事はない(一致した状態のままとなる)。
【0126】
これに対して、上記外輪3と上記ハブ4aとの間にモーメントが加わり、これら外輪3とハブ4aとの中心軸同士が不一致になると、上記両センサ13k、13mの検出信号の位相が互いにずれる(位相差が生じる)。例えば、上記ハブ4aに、図32に矢印で示す様な、反時計方向のモーメントが加わると、上記一方のセンサ13kの検出信号の位相は上記中立状態よりも進み(或いは遅れ)、上記他方のセンサ13mの検出信号の位相は上記中立状態よりも遅れる(或いは進む)。この結果、これら両センサ13k、13mの検出信号同士の間に位相差が生じる。
【0127】
この様にして生じる、これら両センサ13k、13mの検出信号同士の間の位相差と、上記外輪3の中心軸と上記ハブ4aの中心軸との傾斜角度との間には、前記各透孔29c、29cの傾斜角度θや、複列に配置された転動体5、5のピッチP、上記円筒状部36の直径等の幾何学的要因によって定まる、所定の関係(第一の関係)がある。従って、上記両センサ13k、13mの検出信号を処理する図示しない演算器中のメモリに、上記第一の関係を表した式或いはマップを記憶させておけば、上記位相差に基づいて上記傾斜角度を求められる。又、この傾斜角度の大きさと、上記モーメントの大きさとの間には、前記車輪支持用転がり軸受ユニット1のモーメント剛性等により定まる、一定の関係(第二の関係)がある。そして、この第二の関係は、転がり軸受ユニットの分野で広く知られている弾性接触理論等に基づいて計算により求められる他、実験によっても求められる。従って、上記演算器中に、上記第二の関係を表した式或いはマップを記憶させておけば、上記傾斜角度に基づいて上記モーメントを求められる。
【0128】
更に、このモーメントの大きさと、前記車輪37を構成するタイヤ38と路面39との接触部(接地面部分)に車両の幅方向に加わるアキシアル荷重との間には、上記車輪37の回転半径等により幾何学的に定まる、一定の関係(第三の関係)がある。従って、上記演算器中のメモリに、この第三の関係を表した式或いはマップを記憶させておけば、上記モーメントに基づいて上記アキシアル荷重を求められる。この様にして求めたアキシアル荷重は、上記路面39と上記車輪37(タイヤ38)との接触面で生じている荷重と等価である。従って、上記求めたアキシアル荷重に基づいて車両の走行状態を安定化させる為の制御を行なえば、車両の姿勢が不安定になる事を予防する為のフィードフォワード制御が可能になる等、車両の走行安定性確保の為の高度な制御が可能になる。しかも、本実施例の場合には、上記求めたアキシアル荷重の値に、温度変化に基づく誤差が入り込まない。そして、上述の様な構造で、上記各センサ13k、13mの出力信号の位相のずれの方向及び大きさに関して前述の実施例1に記載した様なフィルタ処理を施せば、前記エンコーダ12mの被検出面の振れ回りに拘らず、上記アキシアル方向の変位を精度良く求められる。上記出力信号の位相のずれ及び大きさに基づいて上記アキシアル荷重を直接求めても良い事は、前述した各実施例の場合と同様である。
【実施例15】
【0129】
図34〜35は、請求項1〜4、17、18、21、24に対応する、本発明の実施例15を示している。本実施例の場合も、例えば前述した各実施例を示す、図1、8、12、15、17、20、25、32、33に示す様に、荷重測定装置を組み込む為の転がり軸受ユニットを、車輪支持用転がり軸受ユニットとしている。そして、静止側軌道輪である外輪を、使用状態で懸架装置に支持固定されるものとし、回転側軌道輪を、車輪を支持固定してこの車輪と共に回転するハブとしている。特に、本実施例の場合には、エンコーダ12nを、回転側軌道輪であるハブと共に回転する部材である、ディスクロータ40の外周縁部に設けている。
【0130】
周知の様にディスクロータ40は、前述の図33に示す様に、回転部材であり回転側軌道輪であるハブ4aの外端部外周面に設けたフランジ10に結合固定して、このハブ4aと共に回転する。又、上記ディスクロータ40はこのハブ4aに対し、強固に結合固定される為、これらディスクロータ40とハブ4aとは、同期して(一体的に)変位する。従って、このディスクロータ40の外周縁部に上記エンコーダ12nを設け、この外周縁部にセンサ13nの検出部を対向させれば、上記ハブ4aと、静止側軌道輪である外輪3との間に加わるアキシアル荷重を求められる。
【0131】
上記ディスクロータ40の外周縁部に上記エンコーダ12nを設ける為の構造は、特に限定しない。鋳鉄等の磁性材製のディスクロータ40の場合には、外周縁部に直接、図34の(A)〜(C)に示す様な凹凸或いは孔(凹孔若しくは径方向の貫通孔)を形成して、上記ディスクロータ40の外周縁の磁気特性を変化させる事ができる。この場合に、このディスクロータ40がソリッド型である場合には、このディスクロータ40の外周面に、上記図34の(A)〜(C)に示す様な形状を有する凹凸を形成する。これに対して、上記ディスクロータ40がベンチレーテッド型である場合には、このディスクロータ40に、断面形状が上記図34の(A)〜(C)に示す様なものであり、それぞれが径方向に貫通する貫通孔を形成する。一方、上記ディスクロータ40が、アルミニウム合金、アルミニウムコンポジット製等の非磁性材製である場合には、このディスクロータ40の外周縁部に、別途磁性材により円環状に形成した、上記エンコーダ12nを外嵌固定する。この場合でも、上記ディスクロータ40がソリッド型である場合には、上記エンコーダ12nの外周面に凹凸を、ベンチレーテッド型である場合には貫通孔を、それぞれ形成する。尚、以上の説明は、上記エンコーダ12nと上記センサ13nとの組み合わせが、磁気検知式の場合である。光学式等の場合には、上記ディスクロータ40が非磁性材製であっても、このディスクロータ40の外周面に上記凹凸或いは孔を直接形成して、この外周面を被検出面とする事ができる。
【0132】
一方、上記センサ13nに関しては、前記車輪支持用転がり軸受ユニットに加わる荷重に拘らず変位しない部分に支持する。この様な部分としては、懸架装置を構成するナックル41(図33参照)や、上記ディスクロータ40と共にディスクブレーキを構成する制動用部材42(図35参照)が考えられる。この制動用部材42としては、このディスクブレーキが対向ピストン型である場合にはキャリパを、フローティングキャリパ型である場合にはサポートを、それぞれ採用可能である。図示の実施例の場合には、上記制動用部材42に上記センサ13nを、支持腕43を介して支持している。この様な本実施例の構造によれば、上記車輪支持用転がり軸受ユニットに、上記エンコーダ12n及びセンサ13nを設置する為の空間的余裕がない場合でも、荷重測定装置付転がり軸受ユニットを実現できる。尚、図示の場合とは逆に、ディスクロータ40のうちで、パッドを押圧する為の円輪状の摩擦板部の内周縁部にエンコーダを設ける事もできる。この場合にはセンサを、車輪支持用転がり軸受ユニットの外輪等の静止部材に設置する。何れにしても、本実施例の構造でも、上記センサ13nの出力信号に関して前述の実施例1に記載した様なフィルタ処理を施せば、上記ディスクロータ40の外周面の振れ回りに拘らず、上記アキシアル方向の変位(アキシアル荷重)を精度良く求められる。
【実施例16】
【0133】
図36は、請求項1〜4、17、18、22、24に対応する、本発明の実施例16を示している。本実施例の場合も、荷重測定装置を組み込む為の転がり軸受ユニットを、車輪支持用転がり軸受ユニットとしている。そして、静止側軌道輪である外輪3aを、使用状態で懸架装置に支持固定されるものとし、回転側軌道輪を、車輪を支持固定してこの車輪と共に回転するハブ4bとしている。特に、本実施例の場合には、回転側軌道輪と共に回転する部材である、このハブ4bに結合固定された等速ジョイント44の中間部外周面を、被検出面としている。
【0134】
周知の様にこの等速ジョイント44は、上記ハブ4bを回転駆動する為のもので、このハブ4bと共に回転する。又、この等速ジョイント44はこのハブ4bに対し、強固に結合固定される為、これら等速ジョイント44とハブ4bとは、同期して(一体的に)変位する。従って、この等速ジョイント44の外周面にエンコーダ12pを設け、このエンコーダ12pの外周面にセンサ13p、13pの検出部を対向させれば、上記ハブ4bと外輪3aとの間に加わるアキシアル荷重を求められる。この為に本実施例の場合には、上記等速ジョイント44の中間部に円筒状のエンコーダ12pを外嵌固定している。そして、ナックル41に支持した上記両センサ13p、13pの検出部を、上記エンコーダ12pの外周面の2個所位置に近接対向させている。
【0135】
この様な本実施例の構造によっても、前述した実施例15の場合と同様に、車輪支持用転がり軸受ユニット側部分に、エンコーダやセンサを装着するスペースを確保できない場合でも、この車輪支持用転がり軸受ユニットに加わる荷重を測定できる構造を実現できる。そして、本実施例の構造でも、上記両センサ13p、13pの出力信号に関して前述の実施例1に記載した様なフィルタ処理を施せば、上記エンコーダ12pの外周面の振れ回りに拘らず、上記アキシアル方向の変位を精度良く求められる。
【産業上の利用可能性】
【0136】
以上に述べた各実施例は、外輪とハブとの相対変位量を求めてから、これら外輪とハブとの間に加わる荷重を求める場合を中心に説明した。但し、前述の段落番号[0022]の終段部分の記載から明らかな様に、センサの出力信号が変化するパターンと荷重との間には相関関係がある。従って、請求項24に記載した様に、上記相対変位量を求めなくても、上記出力信号若しくはこの出力信号を処理する事により得られる処理信号に基づいて、上記荷重を直接求める事もできる。この場合でも、上記各実施例の処理は、この荷重を精度良く求める面から有効である。
【図面の簡単な説明】
【0137】
【図1】本発明の実施例1を示す断面図。
【図2】エンコーダ本体を取り出して図1の右方から見た図。
【図3】センサの検出部によるエンコーダの被検出面の走査部分を示す、図2と同様の図。
【図4】ラジアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図5】外輪とハブとの径方向変位とラジアル荷重との関係の1例を示す線図。
【図6】センサの出力信号に基づくデータをフィルタリング処理する適応フィルタのブロック図。
【図7】本発明の実施例2に組み込むエンコーダの2例を示す斜視図及び正面図。
【図8】同実施例3を示す断面図。
【図9】同実施例4に組み込むエンコーダの3例を示す要部斜視図。
【図10】センサの検出部によるエンコーダの被検出面の走査部分を示す、エンコーダの被検出面を軸方向から見た図。
【図11】ラジアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図12】本発明の実施例5を示す断面図。
【図13】実施例5に組み込むエンコーダの素材と組立状態とを示す斜視図。
【図14】アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図15】本発明の実施例6を示す断面図。
【図16】同実施例7に組み込むエンコーダの素材と組立状態とを示す斜視図。
【図17】同実施例8を示す断面図。
【図18】実施例8に組み込むエンコーダの部分斜視図。
【図19】アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図20】本発明の実施例9を示す断面図。
【図21】実施例9に組み込むエンコーダの斜視図。
【図22】同じく展開図。
【図23】アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図24】実施例9の効果を確認する為に行なったコンピュータシミュレーションの結果を示す線図。
【図25】本発明の実施例10を示す断面図。
【図26】実施例10に組み込むエンコーダの斜視図。
【図27】同じく展開図。
【図28】アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。
【図29】本発明の実施例11を示す、エンコーダの側面図及び平面図。
【図30】同実施例12を示す、エンコーダ及びセンサの斜視図。
【図31】同実施例13を示す、エンコーダ及びセンサの斜視図。
【図32】同実施例14を示す断面図。
【図33】懸架装置への組み付け状態を示す略断面図。
【図34】本発明の実施例15を示す、ディスクロータの外周縁部に設けた被検出面の形状の3例を示す略側面図。
【図35】センサの取付状態の1例を示す正面図及び側面図。
【図36】本発明の実施例16を示す断面図。
【符号の説明】
【0138】
1、1a 車輪支持用転がり軸受ユニット
2 変位測定装置
3、3a 外輪
4、4a、4b ハブ
5、5a 転動体
6、6a 外輪軌道
7 取付部
8 ハブ本体
9 内輪
10 フランジ
11、11a 内輪軌道
12、12a〜12p エンコーダ
13、13a〜13p センサ
14、14a、14b、14c 支持板
15、15a エンコーダ本体
16 円輪部
17 円筒部
18、18a、18b カバー
19 底板部
20、20a 取付孔
21、21a 透孔
22、22a 間部分
23 円輪部
24 被検出用組み合わせ部
25 個性化部分
26 円筒部
27 凸部
28 凹部
29a、29b、29c 透孔
30a、30b 柱部
31 リム部
32 適応フィルタ
33 被検出用特性部
34 第二被検出用特性部
35 第三被検出用特性部
36 円筒状部
37 車輪
38 タイヤ
39 路面
40 ディスクロータ
41 ナックル
42 制動用部材
43 支持腕
44 等速ジョイント

【特許請求の範囲】
【請求項1】
回転部材の一部にこの回転部材と同心に支持された、被検出面の特性を円周方向に関して交互に変化させたエンコーダと、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるセンサと、このセンサの出力信号若しくはこの出力信号に基づいて得られる処理信号にフィルタリング処理を施すフィルタ回路と、このフィルタ回路によりフィルタリング処理を施された上記出力信号若しくは上記処理信号に基づいて、上記回転部材の変位量を算出する演算器とを備え、上記フィルタ回路は、上記出力信号若しくは上記処理信号の変動のうち、上記被検出面の円周方向に亙る特性変化に関する誤差に基づく、誤差成分を消去するものであり、上記演算器は、上記フィルタ回路を通過した、上記出力信号若しくは上記処理信号が変化するパターンに基づいて、上記相対変位量を算出する機能を有するものである回転部材の変位測定装置。
【請求項2】
回転部材は、転がり軸受ユニットの回転側軌道輪若しくはこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転する部材であり、
上記転がり軸受ユニットは、使用状態で回転する上記回転側軌道輪と、使用状態でも回転しない静止側軌道輪と、これら回転側軌道輪と静止側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものであり、演算器は、上記回転側軌道輪と上記静止側軌道輪との相対変位量を算出する、請求項1に記載した回転部材の変位測定装置。
【請求項3】
静止側軌道輪と回転側軌道輪との相対変位量を、これら静止側軌道輪と回転側軌道輪との間に作用する荷重を求める為に使用する、請求項2に記載した回転部材の変位測定装置。
【請求項4】
エンコーダの被検出面の特性が円周方向に関して変化するピッチ若しくは位相が、検出すべき変位の方向に対応して、上記被検出面の幅方向に関して連続的に変化している、請求項2〜3のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項5】
エンコーダの被検出面に、互いに異なる特性を有する第一被検出部と第二被検出部とが円周方向に関して交互に且つ等間隔で配置されており、これら両被検出部の円周方向に関する幅のうち、第一被検出部の幅は上記被検出面の幅方向の片側程広く、第二被検出部の幅はこの被検出面の幅方向の他側程広く、センサの出力信号は、第一被検出部と第二被検出部との円周方向に関する幅の差に対応して周期若しくは振幅に関する値を変化させる、パルス状信号若しくは正弦波状信号であり、フィルタ回路は、上記周期若しくは振幅に関する比に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、この周期若しくは振幅に関する比を表す信号に基づいて相対変位量を求める、請求項4に記載した回転部材の変位測定装置。
【請求項6】
エンコーダの被検出面に、それぞれが他の部分とは特性が異なる1対の個性化部分より成る複数の被検出用組み合わせ部を、円周方向に亙り等間隔で配置しており、これら各被検出用組み合わせ部を構成する1対ずつの個性化部分同士の円周方向に関する間隔は、総ての被検出用組み合わせ部で、上記被検出面の幅方向に関して同じ方向に連続的に変化しており、センサの出力信号の変化の位相は、このセンサの検出部が対向する、上記エンコーダの被検出面の幅方向位置に対応して変化するものであり、フィルタ回路は、上記変化の位相に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、この変化の位相を表す信号に基づいて相対変位量を求める、請求項4に記載した回転部材の変位測定装置。
【請求項7】
エンコーダの被検出面の幅方向に離隔した位置にそれぞれの検出部を位置させた状態で設置された1対のセンサを備え、この被検出面のうちで、少なくとも一方のセンサの検出部が対向する部分は、円周方向に関して特性が変化する境界が、上記幅方向に対し傾斜しており、上記少なくとも一方のセンサの出力信号の変化の位相は、当該センサの検出部が対向する、上記エンコーダの被検出面の幅方向位置に対応して変化するものであり、フィルタ回路は、上記変化の位相に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、この変化の位相を表す信号に基づいて相対変位量を求める、請求項4に記載した回転部材の変位測定装置。
【請求項8】
複数のエンコーダとこれら各エンコーダの被検出面にそれぞれの検出部を対向させた複数個のセンサとを備え、これら各エンコーダの被検出面の特性は、円周方向に関して交互に、これら各エンコーダ同士の間で同じピッチで変化しており、このうちの少なくとも1個のエンコーダの被検出面の特性が円周方向に関して変化する位相が、検出すべき変位の方向に対応して、当該被検出面の幅方向に関して連続的に変化しており、フィルタ回路は、上記複数個のセンサの出力信号同士の間に存在する位相差を表す信号に対してフィルタリング処理を施し、演算器は、このフィルタ回路を通過した、上記各センサの出力信号同士の間に存在する位相差を表す信号に基づいて相対変位量を求める、請求項4に記載した回転部材の変位測定装置。
【請求項9】
それぞれが被検出面を有する複数のエンコーダが一体化されたものである、請求項8に記載した回転部材の変位測定装置。
【請求項10】
フィルタ回路が適応フィルタである、請求項1〜9のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項11】
適応フィルタが、LMSアルゴリズムを用いる適応フィルタである、請求項10に記載した回転部材の変位測定装置。
【請求項12】
適応フィルタが、同期式LMSアルゴリズムを用いる適応フィルタである、請求項10に記載した回転部材の変位測定装置。
【請求項13】
適応フィルタによるフィルタリング処理を開始する際に、この適応フィルタに最初に入力される出力信号若しくは処理信号により表されるデータを、この適応フィルタのフィルタ係数の初期値とする、請求項11〜12のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項14】
フィルタ回路に、ローパスフィルタとノッチフィルタとのうちの少なくとも何れか一方のフィルタを含む、請求項1〜13のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項15】
適応フィルタと、ローパスフィルタとノッチフィルタとのうちの少なくとも何れか一方のフィルタとを互いに直列に、且つ、上記適応フィルタをこのローパスフィルタとノッチフィルタのうちの少なくとも何れか一方のフィルタよりも前段に配置した状態で設けた、請求項10〜14のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項16】
ローパスフィルタとノッチフィルタのうちの少なくとも何れか一方のフィルタのカットオフ周波数が、回転部材の回転速度に応じて変化する、請求項14〜15のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項17】
転がり軸受ユニットが、静止側軌道輪と回転側軌道輪との互いに対向する1対の周面に、それぞれ複列の静止側軌道面と回転側軌道面とを設けた複列転がり軸受ユニットである、請求項2に記載した回転部材の変位測定装置。
【請求項18】
転がり軸受ユニットが車輪支持用転がり軸受ユニットであって、使用状態で、静止側軌道輪である外輪が懸架装置に支持固定され、回転側軌道輪であるハブが車輪を支持固定してこの車輪と共に回転するものであり、上記外輪の内周面に存在する、それぞれが静止側軌道である複列の外輪軌道と、上記ハブの外周面に存在する、それぞれが回転側軌道である複列の内輪軌道との間に転動体が、各列毎に複数個ずつ設けられており、上記ハブの軸方向外端部に車輪を支持固定する為のフランジが設けられている、請求項17に記載した回転部材の変位測定装置。
【請求項19】
エンコーダが、回転側軌道輪の一部で複列の回転側軌道面同士の間部分に、この回転側軌道輪と同心に支持固定されている、請求項17〜18のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項20】
エンコーダが、回転側軌道輪の端部に、この回転側軌道輪と同心に支持固定されている、請求項17〜18のうちの何れか1項に記載した回転部材の変位測定装置。
【請求項21】
回転側軌道輪と共に回転する部材が、ハブに結合固定された状態でディスクブレーキを構成するディスクロータであり、このディスクロータの外周面を被検出面としている、請求項18に記載した回転部材の変位測定装置。
【請求項22】
回転側軌道輪と共に回転する部材が、ハブに結合固定された等速ジョイントであって、この等速ジョイントの一部外周面を被検出面としている、請求項18に記載した回転部材の変位測定装置。
【請求項23】
転がり軸受ユニットが工作機械の主軸をハウジングに回転自在に支持する為のものであり、使用状態で、静止側軌道輪である外輪がこのハウジング若しくはこのハウジングに固定された部分に内嵌固定され、回転側軌道輪である内輪が上記主軸若しくはこの主軸と共に回転する部分に外嵌固定される、請求項2に記載した回転部材の変位測定装置。
【請求項24】
回転部材の一部にこの回転部材と同心に支持された、被検出面の特性を円周方向に関して交互に変化させたエンコーダと、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるセンサと、このセンサの出力信号若しくはこの出力信号に基づいて得られる処理信号にフィルタリング処理を施すフィルタ回路と、このフィルタ回路によりフィルタリング処理を施された上記出力信号若しくは上記処理信号に基づいて、上記回転部材に加わる荷重を算出する演算器とを備え、上記フィルタ回路は、上記出力信号若しくは上記処理信号の変動のうち、上記被検出面の円周方向に亙る特性変化に関する誤差に基づく、誤差成分を消去するものであり、上記演算器は、上記フィルタ回路を通過した、上記出力信号若しくは上記処理信号が変化するパターンに基づいて、上記荷重を算出する機能を有するものである回転部材の荷重測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate


【公開番号】特開2007−40954(P2007−40954A)
【公開日】平成19年2月15日(2007.2.15)
【国際特許分類】
【出願番号】特願2005−329717(P2005−329717)
【出願日】平成17年11月15日(2005.11.15)
【出願人】(000004204)日本精工株式会社 (8,378)
【Fターム(参考)】