説明

固体高分子電解質型燃料電池およびその膜電極接合体

【課題】固体高分子電解質型燃料電池のセル性能を向上させるための1つの解決策を提供することにあり、特にMEAのアノードおよびカソード電極での燃料、酸化剤の拡散性、反応性などを改善してセルの出力密度を高めるようにする。
【解決手段】高分子電解質膜1と、この高分子電解質膜1の表面に形成されたアノード電極2およびカソード電極3を備え、アノード電極2およびカソード電極3がともに密な内層触媒層2A、3Aと粗な外層触媒層2B、3Bとの2層構造で構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、固体高分子電解質型燃料電池の膜電極接合体(以下、MEAと記述することがある。)に関し、アノードおよびカソード電極の触媒層を複層構造とし、高分子電解質膜側にある電極の触媒層を密とし、拡散層側に向かうにつれて個々の層を徐々に粗とし、セル性能を高めるようにしたものである。
【背景技術】
【0002】
図3は、固体高分子電解質型燃料電池の反応部であるMEAの一例を示すものである。図3において、符号1は、高分子電解質膜を示す。
この高分子電解質膜1の一方の表面には、厚さ10μm程度の膜状のアノード電極2が、他方の表面には厚さ10μm程度の膜状のカソード電極3が接合、一体化されて設けられ、これらアノード電極2、カソード電極3の表面には、それぞれ図示しないカーボンペーパーなどからなる拡散層が設けられて、MEAとなっている。
【0003】
前記高分子電解質膜1には、厚さ30〜70μm程度のパーフルオロスルホン酸系ポリマーなどからなるフィルムが用いられている。
また、前記アノード電極2およびカソード電極3には、径2〜5nm程度の白金微粒子などを径数十nmのカーボン粒子などに担持した担持触媒粒子を、アイオノマー、水、イソプロパノールなどからなる高分子電解質溶液に分散させ、この分散液を拡散層となるカーボンペーパーなどの上に塗布し、乾燥したものが用いられている。
【0004】
このアノード電極2およびカソード電極3の高分子電解質膜1への接合は、アノード電極2およびカソード電極3の拡散層が外側となるように配置されて熱圧着などによって接合される。
また、アノードおよびカソード電極における触媒量は、出力密度とコストとの関係から1〜3mg/cm程度となっているが、白金使用量の低減の努力がなされ、0.1〜0.5mg/cm程度にまで減少させることができるとの提案もある。
【0005】
また、燃料として、改質水素、メタノール、ジメチルエーテル(DME)などを用いる場合には、これら燃料に含まれる一酸化炭素による触媒の被毒の恐れがあることから、アノード電極2に含まれる触媒として、白金/ルテニウム合金触媒が用いられている。
【0006】
この固体高分子電解質型燃料電池の動作原理は、以下のようである。アノード電極2に供給された水素は、ここでの触媒反応により水素イオンとなって高分子電解質膜1中を移動し、カソード電極3に至り、カソード電極3での触媒反応によりここに供給された酸素と反応して水になる。アノード電極2において生成した電子は図示しないセパレータを介して外部回路に流れ、カソード電極3に移動する。
燃料として、メタノールやジメチルエーテルなどを用いた場合には、アノード電極2において触媒反応により、直接メタノールやジメチルエーテルなどが酸化されて、二酸化炭素と水素イオンと電子が生成し、水素イオンが高分子電解質膜1中を移動することになる。
【0007】
このような固体高分子電解質型燃料電池の出力密度などのセル性能を向上させる研究開発が盛んに進められており、多くの特許出願がなされている。
【特許文献1】特表2002−532833号公報
【特許文献2】特表2003−502827号公報
【特許文献3】特開平9−27326号公報
【特許文献4】特開2006−140134号公報
【特許文献5】特開2005−197195号公報
【特許文献6】特開2005−56583号公報
【特許文献7】特開2005−174620号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明における課題は、固体高分子電解質型燃料電池のセル性能を向上させるための1つの解決策を提供することにあり、特にMEAのアノードおよびカソード電極での燃料、酸化剤の拡散性、反応性などを改善してセルの出力密度を高めるようにすることにある。
【課題を解決するための手段】
【0009】
かかる課題を解決するため、
請求項1にかかる発明は、高分子電解質膜と、この高分子電解質膜の表面に形成されたアノードおよびカソードと、これらアノードおよびカソード電極の表面に設けられた拡散層を備えた膜電極接合体であって、
前記アノードおよびカソード電極のいずれか一方または両方が複層構造とされ、これら複数層のうち、前記高分子電解質膜側にある電極の触媒層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされていることを特徴とする固体高分子電解質型燃料電池の膜電極接合体である。
【0010】
請求項2にかかる発明は、請求項1に記載の膜電極接合体を備えたことを特徴とする固体高分子電解質型燃料電池である。
【発明の効果】
【0011】
本来ならば、MEAのアノード、カソード電極は、緻密で空隙、ボイドなどが存在しない方が、触媒担持粒子が連結してその電気抵抗が低く、電気伝導性も良好であり、高分子電解質の連結も良くなってプロトン伝導性が良好になって好ましいが、緻密になりすぎるとアノードおよびカソード電極での燃料供給、酸化剤供給、排ガスの排出、水分供給、生成水排出の点で不都合が生じる。
【0012】
一方、アノードおよびカソード電極に空隙が存在すると、実質的な表面積が増加し、空隙に存在する触媒の利用率が高くなる。また、燃料供給、酸化剤供給、排ガスの排出、水分供給、生成水排出の点で有利となるが、電気伝導性、プロトン伝導性が低下する。
本発明のように、高分子電解質膜側にある層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされた構造では、両者の利点をうまく生かすことができ、全体としてセル特性を向上させることができる。
【発明を実施するための最良の形態】
【0013】
図1は、本発明のMEAの一例を示すものである。この例のMEAにあっては、アノード電極2およびカソード電極3の触媒が2層構造となっている。
すなわち、アノード電極2の高分子電解質膜1側の内層2Aとこの内層2Aの外側の外層2Bと外層2Bの表面の図示しない拡散層とから構成され、カソード電極3の高分子電解質膜1側の内層3Aとこの内層3Aの外側の外層3Bと外層3Bの表面の図示しない拡散層とから構成されている。
【0014】
そして、アノード電極2の触媒内層2Aは密となっており、外層2Bの電極触媒は粗となっており、同様にカソード電極3の内層3Aは密となっており、外層3Bは粗となっている点が本発明の特徴である。
内層2A、3Aにおける密とは、層全体が緻密で、ひび割れ、空隙、ボイド、気泡などがなく、担持触媒粒子と高分子電解質とが均一に分散され、実密な状態を言う。
外層2B、3Bにおける粗とは、層全体に微細な亀裂、空隙が多く形成され、表面に微小な開口が形成されている状態であり、担持触媒粒子と高分子電解質とが凝集し、その凝集粒子間に空隙が存在する状態でもある。
【0015】
内層2A、3Aと外層2B、3Bとの厚さの割合は、全体の10〜50%を内層2A、3Aが占め、残部の50〜90%を外層2B、3Bが占めるようにすることが好ましい。内層2A、3Aはその厚さが厚くなるとガス透過性が低下するので、10μm以下とする必要がある。
なお、内層2A、3Aと外層2B、3Bとに含まれる触媒の種類は、同一でもよく、互いに異なった種類の触媒を用いてもよい。アノード電極2では、内層2Aには白金触媒を、外層2Bには、白金/ルテニウム合金触媒を用いることで、燃料としてメタノール、ジメチルエーテルなどを用いた際の一酸化炭素による触媒被毒による触媒性能の劣化を防止できる。
【0016】
前述の密な内層2A、3Aの作製は、例えば白金触媒などを担持した触媒担持微粒子とアイオノマー、水、イソプロパノールなどからなる高分子電解質溶液に分散したインク様の触媒分散液を高分子電解質膜1や離型紙にスプレーによって塗布する際、スプレーの噴霧量を増加させて非常に細かい液滴をスプレーし、薄い層を何層にも積層する方法で行うことができる。この時、前記触媒分散液の粘度を下げておき、スプレー噴霧により小さな液滴が形成されるようにする。触媒分散液の粘度は、用いる溶媒の種類、使用量を調整することで調整することができる。
【0017】
また、粗な外層2B、3Bの作製には2種の方法があり、第1の方法は、前記触媒分散液を拡散層となるカーボンペーパーや離型紙に塗布し、乾燥する際に、塗布条件、乾燥条件を制御して層に多数のひび割れを形成する方法である。
【0018】
触媒分散液の塗布は、スプレー法、ドクターブレード法、スクリーン印刷などによって行われるが、この際その塗布量を多目にして塗布直後に触媒分散液が液状で保持され、ある時間液面が形成されるようにする。
塗布量が少ないと、触媒分散液がすぐに乾燥して担持触媒粒子が塗布された位置に固定されて、担持触媒粒子が均一に配置され、その結果担持触媒粒子間の凝集が起こらず、意図するひび割れが生じにくい。
【0019】
つぎに、乾燥を行うが、この時には液層となっている触媒分散液の表面にのみ熱を加えるようにする。例えば、白熱電球などのランプの光を触媒分散液の液面に照射する。加熱炉などの全体が加熱されるものでも可能であるが、表面のみに熱を加えた方が好ましい。
触媒分散液の表層の加熱により、触媒分散液の溶媒である水、イソプロパノールなどが揮発していくが、イソプロパノールの沸点が低いので早く揮発し、塗布された触媒分散液の表面側に存在する担持触媒粒子が初期の凝集を形成する。
【0020】
そして、初期凝集した担持触媒粒子は、未だ完全に乾燥していないが、時間とともに水も揮発するので、触媒分散液の表面側では担持触媒粒子が乾燥固定され、下層側では若干流動性を持つ状態となる。
乾燥は、表面層から内層に進行するため、表面層に初めに形成されたひび割れはクサビのように内層側のひび割れを引き起こすきっかけとなり、乾燥して得られた触媒層全体にひび割れが生じた状態となる。
【0021】
このようにして形成された触媒層の断面を観察すると、触媒層の厚さ方向にひび割れが生じた状態となる。
このひび割れは、触媒分散液に含まれる2種以上の沸点の異なる溶媒の混合割合、溶媒の含有量、塗布後の加熱温度等を変化させることにより、その個数、形状、大きさなどを制御することができる。
【0022】
第2の方法は、触媒分散液として、溶媒の使用量を減らした粘度の高いものを使用する。溶媒には、揮発速度の早いイソプロパノールなど使用し、水を極力少なくすることが好ましい。この粘度の高い触媒分散液をスプレー噴霧量の少ない状態で噴霧する。そうすると、スプレーノズルからは比較的大きな液滴が吐出し、塗布される。この液滴は、溶媒量が少ないので大きなまま速やかに固化して大きな粒子となり、粒子間の隙間を埋めることなく、空隙が大きな状態で次々と粒子が形成することとなり、空隙が無数生じた粗の層となる。
【0023】
このようなMEAでは、アノード電極2およびカソード電極3がともに粗な外層2A、3Aと密な内層2B、3Bとから構成されているので、アノードおよびカソード電極での燃料、酸化剤の供給が容易に行われ、生成したガス、水の排出が容易で、水分の供給が円滑になるとともに外層での触媒反応に実際に関与する表面積が増加して触媒の利用率が高いものとなる。また、内層では、電気伝導性、プロトン伝導性が高くなる。
このため、このようなMEAを備えた固体高分子電解質型燃料電池では、出力密度等のセル特性の高いものとなる。
【0024】
なお、以上説明した例では、アノードおよびカソード電極が2層構造である例を示したが、3層以上の複層構造としてもよく、この場合には拡散層側に向けて徐々に粗の度合いを大きくするようにし、高分子電解質膜1に接する層は、必ず密な層とすることが必要である。
【0025】
本発明の固体高分子電解質型燃料電池は、上述のMEAを備えたものである。すなわち、前記MEAと、カーボンなどからなり、その両面に燃料または酸化剤が流れる流路が形成された板状のセパレータ(バイポーラプレート)をガスケットを介して組み合わせたセルを有するものである。
この固体高分子電解質型燃料電池では、したがってその性能が高いものとなる。
【0026】
以下、具体例を示す。
(実施例1)
平均粒径3nmの白金粒子を平均一次粒径30nmのケッチェンブラックに50質量%担時させた担持触媒粒子を用いた。この担持触媒粒子をイソプロパノールと水(重量比4:1)との溶媒に分散したのち、高分子電解質であるNafion溶液(デュポン社製、商品名)5重量%を混合して触媒分散液を作製した。
【0027】
前記触媒分散液をスプレー装置にて、カーボンペーパー上に塗布した。触媒分散液は、カーボンペーパー上に薄い液体で存在できる程度に比較的多量に塗布した。その後、白熱ライト(200W)を用いて、白熱光を塗布面から1〜3分照射し、触媒分散液を完全に乾燥させ、溶媒を揮発させた。
乾燥後の塗布面を観察したところ、多数のひび割れが生じていた。このひび割れは、カーボンペーパー側に向かってひび割れの幅が小さくなっているものであった。
【0028】
この塗布層イの上に、さらに同様の触媒分散液を塗布、乾燥して別の塗布層ロを形成した。塗布層ロの作製は、塗布層イの上にスプレー噴霧する際、1回の塗布量を少なくし、5回に分けて塗布し、加熱炉にて乾燥して行った。この塗布層ロは、表面が平滑でひび割れ等は認められなかった。
この塗布層イと塗布層ロとから2層構造のものをアノードおよびカソード電極として、ホットプレスにより高分子電解質膜に接合してMEAとした。
【0029】
このように作製したMEAをカーボン製のセパレータで挟み込み、セルとした。セパレータには、燃料および酸化剤が流れる流路が刻み込まれた構造のものである。
このセルに燃料として水素を、酸化剤として空気を供給し、セル温度80℃とし、触媒量を1mg/cmとして出力密度を測定した。
結果を図2のグラフの曲線Aで示す。
【0030】
比較として、同様の触媒分散液を用い、カーボンペーパーにスプレー噴霧する際、1回の塗布量を少なくし、10回に分けて塗布し、加熱炉にて乾燥して得られた単層構造のアノードおよびカソードを作製し、これを用いてMEAを作製した。このMEAのアノードおよびカソード電極の表面は平滑で、ひび割れ等は認められなかった。先と同様にセルを作製し、その出力密度を同様にして測定した。
結果を図2のグラフの曲線Bで示す。
図2のグラフから、粗密構造を有するMEAを用いたものでは、セル性能が改善されていることがわかる。
【図面の簡単な説明】
【0031】
【図1】本発明のMEAの一例を示す概略断面図である。
【図2】実施例の結果を示す図表である。
【図3】従来のMEAを示す概略断面図である。
【符号の説明】
【0032】
1・・高分子電解質膜、2・・アノード電極、2A・・内層触媒層、2B・・外層触媒層、3・・カソード電極、内層3A、外層3B

【特許請求の範囲】
【請求項1】
高分子電解質膜と、この高分子電解質膜の表面に形成されたアノードおよびカソード電極と、これらアノードおよびカソード電極の表面に設けられた拡散層を備えた膜電極接合体であって、
前記アノードおよびカソード電極のいずれか一方または両方が複層構造とされ、これら複数層のうち、前記高分子電解質膜側にある電極の触媒層が密とされ、前記拡散層側に向かうにつれて個々の層が徐々に粗とされていることを特徴とする固体高分子電解質型燃料電池の膜電極接合体。
【請求項2】
請求項1に記載の膜電極接合体を備えたことを特徴とする固体高分子電解質型燃料電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−243781(P2008−243781A)
【公開日】平成20年10月9日(2008.10.9)
【国際特許分類】
【出願番号】特願2007−86923(P2007−86923)
【出願日】平成19年3月29日(2007.3.29)
【出願人】(000217686)電源開発株式会社 (207)
【Fターム(参考)】