説明

地下水の溶存酸素検出方法及び装置

【課題】地下水の原位置における溶存酸素を簡単且つ迅速に検出する方法及び装置を提供する。
【解決手段】ボーリング孔3内の地下水深度4に、少なくとも一方に光センサ10が取り付けられたパッカー対6、7で仕切った孔内区間9を形成する。孔内区間9が前記深度4の地下水2で置換されたことを検知装置14により検知したのち、当該区間9へ投入装置13により酸素と反応して発光する発光試薬17を投入する。光センサ10の出力を検出装置12に入力し、検出装置12により前記深度4の地下水2の溶存酸素を検出する。好ましくは発光試薬17を、ルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物、又はその混合物を脱酸素水に溶解した溶液とする。例えば投入装置13に、発光試薬17を地上から前記区間9へ非酸素ガスにより送入する送入手段を含めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は地下水の溶存酸素検出方法及び装置に関し、とくに地下水が存在している原位置で当該地下水の溶存酸素を検出する方法及び装置に関する。
【背景技術】
【0002】
地下水は溶存酸素の有無により酸化状態(酸化雰囲気)と還元状態(還元雰囲気)とに大別される。地下水の酸化・還元状態は放射性元素(核分裂生成物)の溶解速度に影響するので、例えば高レベル放射性廃棄物の地層処分場を構築する場合に地下水の溶存酸素及びその変化の調査が必要となる(非特許文献1の第3章参照)。また、地下水の酸化・還元状態は地下の微生物の活動にも大きな影響を与えるので、地下構造物の微生物耐性や地盤汚染の微生物浄化等を検討する際に地下水の溶存酸素の調査が必要となる。例えば酸化状態では硫黄酸化細菌等の好気性微生物による鉄鋼腐食が問題となり、嫌気状態では硫酸還元菌等の嫌気性微生物による鉄鋼腐食が問題となる。また好気状態では油等の汚染物質の好気的分解が期待できるのに対し、嫌気状態ではそのような分解は期待できないことがある。
【0003】
従来、地下水の酸化・還元状態を調査する場合は、地盤・岩盤(以下、纏めて岩盤という)に掘削したボーリング孔を介して所要深度の地下水を採水して分析する方法が一般的である。但し、地下水の長期に亘る状態を検討するためには地下水が存在する原位置における溶存酸素を把握する必要があり、ボーリング時の掘削水や他の深度の地下水と混合させずに原位置での圧力を保持したまま大気と接触しない状態(以下、被圧不活性状態ということがある)で採水する必要がある。
【0004】
地下水を被圧不活性状態で採水する技術として、特許文献1及び2は、試錐孔(ボーリング孔)内に遮水パッカーで区切った採水区間を形成し、採水区間の地下水を継続的に地上へ採水(サンプリング採水)して分析することにより採水区間が完全に当該区間深度の地下水(以下、区間地下水ということがある)に置換されたことを判断し、置換が確認された時点で採水区間の地下水を採水カプセル(容器)に閉じ込めて採水する地下水採水装置を開示する。また特許文献3は、地上へのサンプリング採水に代えて、孔内システムで採水区間の地下水を分析して区間地下水への置換を確認する大深度孔内採水装置を開示する。
【0005】
図7は特許文献3の採水装置の一例を示す。同図の採水装置は、採水区間を形成するダブルパッカー30a、30bとそれに取り付けたサンプラー(採水器)33及び孔内ポンプ34とを有し、サンプラー33内に水質センサ38や水圧計39等からなる孔内システム40と内部パッカー41とを設けている。採水時にボーリング孔内にサンプラー33、孔内ポンプ34と共にパッカー30a、30bを吊り下げ、パッカー30a、30bを拡張して採水区間を形成すると共に内部パッカー41を拡張する。全てのパッカー30a、30b、41が効いていれば採水区間の湧水圧によりサンプラー33内の水圧が上昇するので、水圧計39によりパッカーの効き具合を確認する。次いで内部パッカー41を収縮し、ポンプ34により採水区間内の溜まり水を採水ロッド31、逆止弁43、水通路42、サンプラー33及び排水口45経由で区間外へ排水する。このとき、サンプラー33内の孔内システム40で水圧、水質(電気伝導度(EC)、水温、pH等)及び水量を計測し、計測値を観測用ケーブル44経由で地表のデータ観測機器35及び記録機器36へ伝送する。
【0006】
採水区間内の水質は、排水当初は不安定であるが、排水量が増えるに応じて安定する傾向を示す。孔内システム40の計測値が一定の値に達したことにより、サンプラー33内が区間地下水にすっかり置き替わったことを確認する。その後ポンプ34を停止し、内部パッカー41を拡張してサンプラー33を閉塞することにより採水区間内の地下水をサンプラー33内に被圧不活性状態で蓄える。地下水を蓄えたサンプラー33はパッカー30a、30bを収縮して地表まで引き上げる。地上へサンプリング採水する方法に比し、図7の装置ではサンプリング採水の揚程を短くできるので、ポンプ34の揚水能力による採水深度の制約がなく1,000m程度の大深度でも効率的な採水が可能である。
【0007】
【非特許文献1】核燃料サイクル開発機構「わが国における高レベル放射性廃棄物地層処分の技術的信頼性(地層処分研究開発第2次取りまとめ)報告書、分冊1わが国の地質環境」平成11年11月
【特許文献1】特開平6−193101号公報
【特許文献2】特開平9−025783号公報
【特許文献3】特開平6−294270号公報
【特許文献4】特開2002−010800号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかし、特許文献1〜3に示す従来の採水装置は、被圧不活性状態での採水を可能とするものの、被圧不活性状態での水質計測を保証するものではない。例えば特許文献3では、採水した地下水を原位置の圧力状態に保持したまま採水ボトルへ移し替えるが(段落0018)、その移し替えや計測の際に地下水が大気と接触するおそれがある。すなわち地下水を地表へ採水して溶存酸素等を検出する方法は、被圧不活性状態で厳密に採水した場合でも、計測時に被圧不活性状態を保持することが難しい問題点がある。
【0009】
被圧不活性状態で溶存酸素を計測するため、例えば図7の孔内システム40に溶存酸素計又は酸化還元電位計を含め、地下水の溶存酸素を原位置での検層により検出する方法も考えられる。しかし従来の溶存酸素計又は酸化還元電位計は、電極を用いて溶存酸素量(mg/リットル単位)又は酸化還元電位(mV単位)として溶存酸素を計測するので、電極のメンテナンス(洗浄)が不可欠であり、電極のメンテナンスが不充分であると計測精度が低下する。上述したサンプラー33内の区間地下水への入れ替わりには数日〜1週間程度を要する場合があり、電極を数日間も地下水中に浸漬し続けると計測精度が低下してしまう問題点がある。また、何らかの方法で電極がメンテナンスできたとしても、メンテナンス後のキャリブレーション(校正)に手間がかかる問題点もある。地下水の溶存酸素を被圧不活性状態で簡単に且つ迅速に検出できる技術の開発が望まれている。
【0010】
そこで本発明の目的は、地下水の原位置における溶存酸素を簡単且つ迅速に検出する方法及び装置を提供することにある。
【課題を解決するための手段】
【0011】
本発明者は酸素と反応して発光する発光試薬に注目した。例えば、マグネシウムイオンの存在下で、アデノシン三リン酸(Adenosine Triphosphate,以下、ATPという)及び酸素(O2)と反応して発光するルシフェリン(Luciferin、基質)−ルシフェラーゼ(Luciferase、酵素)発光系が知られている。ルシフェリン・ルシフェラーゼ発光系を利用した試薬(以下、生物発光試薬ということがある)は、従来から特許文献4のように医療・食品等の分野において実験室規模で試料又は細胞中のATPを測定する方法として広く使用されている。しかし、生物発光試薬を用いて水中の溶存酸素を検出する方法は開発されていない。
【0012】
本発明者は、水道水と脱気水道水とを用いて、生物発光試薬により水中の溶存酸素の検出が可能であるか否かを確認する実験を行った。本実験では、次のA粉末及びB粉末からなるホタライト(キッコーマン株式会社製)を用い、A粉末を溶かした水道水(A溶液)とB粉末を溶かした水道水(B溶液)とを調製し、水道水A・B溶液の混合時の発光強度と、水道水A・B溶液を混合した後脱気したA・B溶液の発光強度とを目視で検出した。また、それぞれの混合溶液の温度、電気伝導度、pHを併せて検出した。実験結果を表1に示す。表1の実験結果は、酸素の溶存した水道水では強い発光が検出されるのに対し、脱気した場合は弱い発光しか検出できないことを示す。本発明者は、更なる実験により水道水の脱気の程度に応じて発光強度を例えば5段階のレベルに分けることができ、発光強度に基づき水中の溶存酸素量が検出可能であることを確認できた。
A粉末:ルシフェラーゼ(酵素)
B粉末:ルシフェリン(基質)、ATP,硫酸マグネシウム7水塩、グリシン緩衝剤
【0013】
【表1】

【0014】
また本発明者は、前記ホタライトを発光試薬として使用し、水中の溶存酸素濃度と発光強度との関係を確認する実験を行った。本実験では、水道水150ミリリットルにA粉末を溶かした溶液(A溶液)と、同様にB粉末を溶かした溶液(B溶液)とを調製し、図5に示すスターラー51と溶存酸素計(DOメータ)50と温度計53とを設けた三角フラスコ52にA溶液及びB溶液を投入して攪拌することにより発光させ、1時間55分放置して発光が十分弱まった(安定した)後、混合溶液中に窒素ガスを吹き込んで溶液中の溶存酸素を追い出しながら5〜10分間隔で溶存酸素計50及び温度計53の出力を読み取り、同時に溶液の一部分を空気に接触しないように取り出して分光蛍光光度計(島津製作所製RF-5000)により発光スペクトルと発光強度とを測光した。発光が安定するまで放置した理由は、発光強度の測光中に発光の経時減衰による精度低下を避けるためである。分光蛍光光度計の測光精度は0.5〜1.0Absのとき±0.004Absである。実験結果を表2及び図6に示す。
【0015】
【表2】

【0016】
表2及び図6のNo.1〜6は、水中(混合溶液中)の溶存酸素量の減少と共に発光強度が低下すること、発光後2時間と2時間10分との間(表2のNo.2とNo.3との間)において両者が共に大きく減少していることを示す。また図6は、前記ホタライトの発光極大波長は545nm付近であり、発光極大波長の発光強度が水中の溶存酸素量と対応していることを示す。本実験では発光強度と水中の溶存酸素量との比例関係は確認できなかったが、発光強度と水中の溶存酸素量との間に相関関係があり、発光強度に基づき水中の溶存酸素量が検出できることを確認できた。なお、表2及び図6のNo.7は発光が十分に弱まる前の時点(発光後55分)における発光強度と溶存酸素との計測値を示す。発光試薬はボーリング孔内の原位置で地下水中に直接投入することが可能であり、発光強度は従来技術に属する光センサを用いて検出できる。本発明はこの知見に基づく研究開発の結果、完成に至ったものである。
【0017】
図1の実施例を参照するに、本発明による地下水の溶存酸素検出方法は、ボーリング孔3内の地下水深度4(図2参照)に光センサ10付きパッカー対6、7で仕切った区間9を形成し、当該区間9が前記深度4の地下水2で置換されたのち当該区間9へ酸素と反応して発光する発光試薬17を投入し、前記光センサ10の出力により前記深度4の地下水2の溶存酸素を検出してなるものである。
【0018】
また、図1のブロック図を参照するに、本発明による地下水の溶存酸素検出装置は、ボーリング孔3内の地下水深度4(図2参照)に遮水された区間9を形成するパッカー対6、7、パッカー対6、7の少なくとも一方に取り付けた光センサ10、前記区間9が前記深度4の地下水2で置換されたことを検知する検知装置14、前記区間9へ酸素と反応して発光する発光試薬17を投入する投入装置13、及び前記光センサ10の出力により前記深度4の地下水2の溶存酸素を検出する検出装置12を備えてなるものである。
【0019】
好ましくは発光試薬17を、ルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物、又はその混合物を脱酸素水に溶解した溶液とする。例えば投入装置13に、発光試薬17を地上から前記区間9へ非酸素ガスにより送入する送入手段を含めることができる。
【発明の効果】
【0020】
本発明による地下水の溶存酸素検出方法及び装置は、ボーリング孔内の地下水深度に光センサ付きパッカー対で仕切った区間を形成し、当該区間が前記深度の地下水で置換されたのち当該区間へ酸素と反応して発光する発光試薬を投入し、前記光センサの出力により前記深度の地下水の溶存酸素を検出するので、次の顕著な効果を奏する。
【0021】
(イ)地下水を地表へ採水する必要がなく、岩盤中地下水の任意区間深度の溶存酸素を原位置で直接計測することができる。
(ロ)従来の手間のかかる電極のメンテナンスやキャリブレーション等を必要としないので、極めて簡単な操作で地下水の溶存酸素を検出できる。
(ハ)電極を使用しないので、メンテナンスの手間が大幅に省略でき、メンテナンス不足等に起因する検出精度の低下のおそれが小さい。
(ニ)発光試薬の発光を光センサで検出するので、地下水の溶存酸素の迅速な検出が可能である。
(ホ)地下水の水温や塩分濃度、pH等が発光範囲内にあることを条件に、発光試薬投入時の光センサの出力の有無により溶存酸素の有無をデジタル的に判断するシステムの構築に利用できる。
(ヘ)光センサの出力と地下水の水温、電気伝導度及び/又はpH等とを組み合わせることにより、地下水の溶存酸素の定量的計測も期待できる。
【発明を実施するための最良の形態】
【0022】
図1は、ボーリング孔3内に吊り下げた本発明の溶存酸素検出装置の一実施例を示す。図示例の溶存酸素検出装置は、ボーリング孔3内の所要地下水深度4に他の深度から仕切られた孔内区間9を形成するパッカーシステム5と、孔内区間9が区間地下水(所要深度4の地下水)2で置換されたことを検知する検知装置14と、孔内区間9へ発光試薬17を投入する投入装置13とを有する。また、パッカーシステム5に取り付けた光センサ10と、光センサ10の出力により孔内区間9の地下水2の溶存酸素を検出する検出装置12とを有する。
【0023】
図示例のパッカーシステム5は、一対の上部パッカー6及び下部パッカー7と、パッカー対6、7の拡張・収縮を制御するパッカー制御装置8と、パッカー対6、7を地上から吊り下げるウィンチ19及びワイヤ18等の地上部とにより構成されている。パッカー対6、7の一例は、制御装置8により注入・回収する液体(水等)又は気体(空気等)の圧力により拡張・収縮する遮水パッカー又はメカニカルパッカーである。但し、本発明では孔内区間9の地下水深度4に応じて従来技術に属する適当なパッカーシステム5を用いることができ、パッカーシステム5の構成は図示例に限定されない。
【0024】
図示例の検知装置14は、パッカーシステム5に結合された孔内システム20と地上のデータ処理装置23とにより構成されている。孔内システム20は、採水ユニット21と孔内ポンプ22と検層ユニット24とを有する。検層ユニット24には、温度計25、電気伝導度計26、pH計27等が設けられている。例えば図7を参照して上述したように、孔内区間9の地下水2を孔内ポンプ22により水通路等(図示せず)及び採水ユニット21経由で区間9外へ連続的に排水し、採水ユニット21内の水質及び排水量を検層ユニット24で連続的に計測する。検層ユニット24の計測値を信号ケーブル23a経由でデータ処理装置23へ伝送し、データ処理装置23により孔内区間9が区間地下水2で置換されたことを検知する。データ処理装置23の一例は、検層ユニット24で連続的に計測された排水量と計測値とを記録し且つ排水量に応じて計測値が一定の値に達したことを検知するプログラム内蔵のコンピュータである。比較的浅い地下水を調査する場合は、孔内システム20に代えて、特許文献1及び2のように孔内区間9から地上のデータ処理装置23へサンプリング採水する手段(図示せず)を設けてもよい。
【0025】
投入装置13で投入する発光試薬17の一例はルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物であり、例えば上述したA粉末とB粉末との混合物とすることができる。ルシフェリン及びルシフェラーゼとして生物(ホタル等)由来のものを使用できる。この発光試薬17は発光時にATPが消費され発光が減衰するが、発光反応の生成物質に作用してATPを再生するピルベートオルトフォスフェートジキナーゼ(PPDK)やホスホエノールピルビン酸等によるATP再生酵素反応系が知られている(例えば特許文献4参照)。発光試薬17の投入時の発光を長時間持続させるため、本発明の発光試薬17にATP再生酵素反応系の試薬を混合してもよい。
【0026】
図示例の投入装置13は、投入制御装置15と投入管16とを有する。投入管16は、上部パッカー6を貫通して孔内区間9と地上の投入制御装置15とを連通する。例えば、ルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物の脱酸素水(脱気水等)溶液を投入制御装置15に蓄え、発光試薬(溶液)17の投入量を制御装置15で制御する。投入制御装置15に脱酸素ガスの送入手段を含め、適当量の発光試薬17を非酸素ガスにより孔内区間9へ送入してもよい。
【0027】
発光試薬17の投入量は孔内区間9の容量等に応じて適当に選択できるが、例えば孔内区間9の水質に影響を与えない少量の酸素溶存水に発光試薬17を溶解して発光させた上で孔内区間9へ投入し、投入後に発光が消滅することにより孔内区間9の還元状態を検出することも期待できる。また、図示例のように発光試薬17を地上から孔内区間9へ投入する方法に代えて、例えば孔内システム20に発光試薬17を蓄えた注入装置(図示せず)等を含め、地上の投入制御装置15により孔内システム20の注入装置等を制御して発光試薬17を孔内区間9へ投入する方法も考えられる。
【0028】
図示例の光センサ10は入力光を例えば電気信号に変換して出力し、検出装置12は光センサ10の出力を信号ケーブル12a経由で受信する。光センサ10の一例は、上部パッカー6の孔内区間9との対向面に取り付けた撮像機又はCCD(Charge Coupled Device)である。必要に応じて、光センサ10を下部パッカー7の孔内区間9との対向面に取り付けてもよい。光センサ10は、直接又はガラス板や透明プラスチック板等を介して孔内区間9に臨ませることができる。
【0029】
例えば発光試薬17を生物発光試薬とした場合、後述するように地下水2の温度や塩分濃度、pH等が発光範囲内であることを条件に、発光試薬17の投入時に地下水2が発光すれば溶存酸素があり、発光しなければ溶存酸素がないというデジタルな判断システムが成立する。検出装置12の一例は、光センサ10の出力の有無により地下水2の溶存酸素の有無を定性的に検知するプログラム内蔵のコンピュータである。
【0030】
また上述したように、発光試薬17の投入時の発光強度に基づき地下水2の溶存酸素量を検出することができる。例えば発光試薬17の発光強度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12のメモリに記憶しておけば、検出装置12の内蔵プログラムにより、光センサ10の出力から発光強度を求めて地下水2の溶存酸素量を定量的に検出することができる。例えば発光試薬17を生物発光試薬とした場合、生物発光試薬の発光極大波長は約540〜560nmであること及び極大波長のスペクトル強度(発光強度)は溶存酸素濃度に対応していることが知られている。従って、波長540〜560nmのスペクトル強度に応じた信号を出力する光センサ10を用いることにより、光センサ10の出力から地下水2の溶存酸素量を検出することができる。この場合、光センサ10を分光カメラとし、検出装置12をスペクトル解析装置(分光蛍光光度計)とすることができる。また、発光強度の経時的減衰による検出精度の低下を避けるため、発光試薬17を酸素溶存水に溶解して発光させ且つ発光が安定したのち孔内区間9へ投入してもよい。
【0031】
次に、図1及び図2を参照して、図1の溶存酸素検出装置による検出方法を説明する。図2に示すように、岩盤1に穿ったボーリング孔3の地下水2が存在する任意の深度(地下水深度)4に光センサ10付きパッカー対6、7と孔内システム20とを吊り下げ、パッカー対6、7を拡張して孔内区間9を形成する。ボーリング孔3の孔壁を保護するため、ケーシングパイプ等の保孔部材の先端にパッカー対6、7を取り付けてボーリング孔3内に挿入してもよい。その後、孔内区間9の溜まり水を孔内システム20経由で区間9外へ排水しながら検層ユニット24により水質(電気伝導度、水温、pH等)及び水量を計測し、地上のデータ処理装置23により孔内区間9が区間地下水(任意の深度4の地下水)2で置換されたことを確認する。置換が確認された後、投入装置13により発光試薬17を孔内区間9へ投入し、孔内区間9に臨む光センサ10の出力により孔内区間9の地下水2の溶存酸素を検出装置12で検出する。
【0032】
本発明によれば、地下水2を地表へ採水する必要がなく、原位置において地下水2の溶存酸素を直接検出できる。また、孔内区間9の区間地下水2による置換を確認したのちは発光試薬17を孔内区間9へ投入するだけで足り、従来の手間のかかる電極のメンテナンスやキャリブレーション等の操作を必要としないので、操作が極めて簡単であり、メンテナンス不足等に起因する検出精度の低下のおそれが小さい。しかも、発光試薬17の発光を光センサ10で検出するので、地下水2の溶存酸素の迅速な検出が可能となる。
【0033】
こうして本発明の目的である「地下水の原位置における溶存酸素を簡単且つ迅速に検出する方法及び装置」の提供が達成できる。
【実施例1】
【0034】
発光試薬17を生物発光試薬とした場合は、地下水2への発光試薬17投入時の発光強度は地下水2の溶存酸素のみにより定まるのではなく、地下水2の他の水質条件、例えば温度、塩分濃度、pH、微量物質等によっても変化し得る。従って本発明において、地下水2の発光の有無により溶存酸素の有無を定性的に検出する場合は、地下水2の温度や塩分濃度、pH等が発光試薬17の発光範囲内にあることを確認することが望ましい。また、地下水2の発光試薬17投入時の発光強度により溶存酸素を定量的に検出する場合は、地下水2の温度や塩分濃度、pH等の発光強度に対する影響を考慮することが望ましい。
【0035】
本発明者は、発光試薬17として前記A粉末及びB粉末からなるホタライトを用い、生物発光試薬の発光強度に対する水中の温度、塩分濃度、及びpHによる影響を確認する実験を行った。先ず、地下水2の温度による影響を確認するため、生物発光試薬のA粉末及びB粉末を水道水(22℃)に溶解して発光させた溶液に氷を投入し、溶液の温度を計測しながら発光強度の変化を観察した。また、前記発光させた溶液を透明容器に入れて80℃で湯煎し、溶液の温度を計測しながら発光強度の変化を観察した。溶液の発光強度は、前記水道水の脱気の程度に応じた5段階の発光強度レベル(表1参照)と比較し、何れのレベルの発光強度に近いかを検出した。この実験結果を表3のNo.3〜5欄に示す。
【0036】
【表3】

【0037】
表3のNo.3〜5欄に示すように、生物発光試薬が溶解した溶液の発光強度は、温度が22℃から低下すると徐々に弱くなり、温度0℃ではレベル1程度の発光強度となった。また、逆に温度が30℃程度に上昇すると発光強度は容器周囲から徐々に弱いオレンジ色となり、地下深度の1000mの地下水温度に相当する45℃においてレベル1程度となり、51℃以上で完全に発光が観察できなくなった。この実験結果から、地下水2の温度が0〜50℃の範囲内であれば溶存酸素の有無を発光の有無により定性的に検出できることを確認できた。また、水中の温度がこの範囲内にあれば、発光試薬17の発光強度と温度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておくことにより、検層ユニット24の温度計25の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することが期待できる。
【0038】
次に、地下水2の発光強度に対する水中の塩分濃度の影響を確認するため、異なる濃度の塩化ナトリウム(NaCl)溶液に生物発光試薬(A粉末及びB粉末)を溶解し、溶液の電気伝導度と発光強度との関係を観察した。塩化ナトリウム溶液を用いた理由は、海水(Na+濃度:9,000〜10,000ppm、Cl-濃度:18,000〜20,000ppm)の影響を受けた岩盤中地下水2を模擬するためである。また電気伝導度は、塩分濃度の簡易な指標として用いることができる。塩化ナトリウム濃度を0.1g/10ml(Na+濃度:3,900ppm、Cl-濃度:6,100ppm)及び0.5g/10ml(Na+濃度:19,500ppm、Cl-濃度:30,500ppm)としたときの実験結果を、表3のNo.6及び7欄と図4とに示す。図4には、後述するNo.8〜13の溶液における電気伝導度及び発光強度の関係も併せて示す。
【0039】
図4のグラフと表3とから、地下水2がpH6.88〜9.92程度であれば電気伝導度の上昇に応じて発光強度が徐々に減衰すること、地下水2が海水以上の塩分濃度(表3のNo.7欄)であってもレベル1程度の発光強度が観察できることが分かる。この実験結果から、地下水2に海水が混入した場合でも溶存酸素の有無を発光の有無により定性的に検出可能であることが確認できた。また、発光試薬17の発光強度と電気伝導度と溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておけば、検層ユニット24の電気伝導度計26の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することも期待できる。
【0040】
更に、地下水2の発光強度に対するpHの影響を確認するため、pH緩衝液及び天然鉱水(鹿児島垂水温泉の温泉水、フランスのPerrier)に生物発光試薬(A粉末及びB粉末)を溶解し、溶液のpHと発光強度との関係を観察した。実験結果を表3のNo.8〜12欄と図3とに示す。図3には、前述したNo.6及び7の溶液におけるpH計測値及び発光強度の関係も併せて示す。
【0041】
図3のグラフと表3とから、地下水2の発光強度は中性で最も強いこと、pH10.02程度のアルカリ性の地下水2でもレベル2程度の発光強度が観察できること、しかし酸性の地下水2では発光が観察できないことが分かる。この実験結果は地下水2中のH+とOH-とに関係しており、酸化還元電位と発光強度との関係を暗に示しているとも考えられる。表3及び図3の実験結果から、地下水2が中性又はpH10.02程度以下のアルカリ性であれば溶存酸素の有無を発光の有無により定性的に検出可能であることが確認できた。また、発光試薬17の発光強度とpHと溶存酸素との関係式又はグラフを実験的に求めて検出装置12に記憶しておけば検層ユニット24のpH計27の出力と光センサ10の出力とにより地下水2の溶存酸素を定量的に検出することも期待できる。
【0042】
なお、表3のNo.13欄は、200ccの蒸留水にセメント15gを攪拌して1時間放置し、その上澄み溶液(以下、セメント抽出水という)に生物発光試薬(A粉末及びB粉末)を溶解して発光強度を観察した実験結果を示す。同欄に示すようにセメント抽出水は、水温及び電気伝導度が生物発光範囲内にあるもののpHが12.17であり、発光が観察できなかった。従って、例えばボーリング孔3をセメンティングやベントナイトペレット等で保孔する場合は、地下水中に溶出したセメントスラリーやベントナイトペレットが孔内区間9を汚染しないよう注意を要する。
【0043】
図2は、岩盤1中の地下水2の溶存酸素を多数の地点(ボーリング孔3a〜3d)で検出する本発明の実施例を示す。例えば降水を起源とする堆積岩及び火成岩中の地下水2は、深度に応じて溶存酸素が徐々に減少すると考えられている。本発明の溶存酸素検出方法は、図2のように岩盤1中の複数の原位置(地下水深度4a〜4d)における地下水2の溶存酸素を簡単且つ迅速に検出できるので、岩盤1中の水理地質構造の解析への利用が期待できる。
【図面の簡単な説明】
【0044】
【図1】本発明の一実施例の説明図である。
【図2】本発明の他の実施例の説明図である。
【図3】地下水のpHと発光強度との関係を示す実験結果である。
【図4】地下水の電気伝導度と発光強度との関係を示す実験結果である。
【図5】水中の溶存酸素濃度と発光強度との関係を確認する実験の説明図である。
【図6】水中の溶存酸素濃度と発光強度との関係を示す実験結果である。
【図7】従来の地下水採水装置の一例の説明図である。
【符号の説明】
【0045】
1…岩盤 2…地下水
3…ボーリング孔 4…地下水深度
5…パッカーシステム 6…上部パッカー
7…下部パッカー 8…パッカー制御装置
9…(孔内)区間 10…光センサ
12…検出装置 12a…信号ケーブル
13…投入装置 14…検知装置
15…投入制御装置 16…投入管
17…発光試薬 18…ワイヤ
19…ウィンチ 20…孔内システム
21…採水ユニット 22…孔内ポンプ
23…データ処理装置 23a…信号ケーブル
24…検層ユニット 25…温度計
26…電気伝導度計 27…pH計
30a、30b…パッカー 31…採水ロッド
32…ガスボンベ 33…サンプラー(採水器)
34…孔内ポンプ 35…データ観測機器
36…記録機器 37…内部パッカー
38…水質センサ 39…水圧計
40…孔内システム 41…内部パッカー
42…水通路 43…逆止弁
44…観測用ケーブル 45…排水口
50…溶存酸素計(DOメータ)
51…スターラー 52…三角フラスコ
53…温度計

【特許請求の範囲】
【請求項1】
ボーリング孔内の地下水深度に光センサ付きパッカー対で仕切った区間を形成し、当該区間が前記深度の地下水で置換されたのち当該区間へ酸素と反応して発光する発光試薬を投入し、前記光センサの出力により前記深度の地下水の溶存酸素を検出してなる地下水の溶存酸素検出方法。
【請求項2】
請求項1の検出方法において、前記パッカーに温度計、電気伝導度計及び/又はpH計を取り付け、前記光センサの出力と温度計、電気伝導度計及び/又はpH計の出力とにより前記地下水の溶存酸素を検出してなる地下水の溶存酸素検出方法。
【請求項3】
請求項1又は2の検出方法において、前記発光試薬をルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物としてなる地下水の溶存酸素検出方法。
【請求項4】
請求項3の検出方法において、前記発光試薬を脱酸素水に溶解した前記混合物の溶液としてなる地下水の溶存酸素検出方法。
【請求項5】
請求項1から4の何れかの検出方法において、前記発光試薬を地上から非酸素ガスにより前記区間へ送入してなる地下水の溶存酸素検出方法。
【請求項6】
ボーリング孔内の地下水深度に遮水された区間を形成するパッカー対、前記パッカー対の少なくとも一方に取り付けた光センサ、前記区間が前記深度の地下水で置換されたことを検知する検知装置、前記区間へ酸素と反応して発光する発光試薬を投入する投入装置、及び前記光センサの出力により前記深度の地下水の溶存酸素を検出する検出装置を備えてなる地下水の溶存酸素検出装置。
【請求項7】
請求項6の検出装置において、前記パッカー対の少なくとも一方に温度計、電気伝導度計及び/又はpH計を取り付け、前記検出装置により前記光センサの出力と温度計、電気伝導度計及び/又はpH計の出力とから前記地下水の溶存酸素を検出してなる地下水の溶存酸素検出装置。
【請求項8】
請求項6又は7の検出装置において、前記発光試薬をルシフェリン、ルシフェラーゼ、マグネシウムイオン及びATPの混合物としてなる地下水の溶存酸素検出装置。
【請求項9】
請求項8の検出装置において、前記発光試薬を脱酸素水に溶解した前記混合物の溶液としてなる地下水の溶存酸素検出装置。
【請求項10】
請求項6から9の何れかの検出装置において、前記投入装置に、発光試薬を地上から前記区間へ非酸素ガスにより送入する送入手段を含めてなる地下水の溶存酸素検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−256025(P2007−256025A)
【公開日】平成19年10月4日(2007.10.4)
【国際特許分類】
【出願番号】特願2006−79748(P2006−79748)
【出願日】平成18年3月22日(2006.3.22)
【出願人】(000001373)鹿島建設株式会社 (1,387)
【出願人】(000125369)学校法人東海大学 (352)
【出願人】(594006699)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】