説明

垂直磁気記録媒体の製造管理方法

【課題】簡易な手法によって、保磁力HcとOW特性が所望の範囲内となるように調整することが可能な垂直磁気記録媒体の製造管理方法を提供する。
【解決手段】垂直磁気記録媒体100の製造管理方法の代表的な構成は、グラニュラ磁性層160または補助記録層180の膜厚を変化させることにより、これらの膜厚に対する保磁力Hcとオーバーライト特性の関係を求める工程と、分断層170の膜厚を変化させることにより、この分断層170の膜厚の増加に対して保磁力Hcとオーバーライト特性がいずれも低下する特定の範囲を求める工程と、当該垂直磁気記録媒体が保磁力Hcとオーバーライト特性について所望の範囲内となるように、分断層170の膜厚を特定の範囲内で決定し、かつグラニュラ磁性層160または補助記録層180の膜厚を決定する工程と、決定されたそれぞれの膜厚でこれらの成膜を行う工程と、を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、垂直磁気記録方式のHDD(ハードディスクドライブ)などに搭載される垂直磁気記録媒体の製造管理方法に関するものである。
【背景技術】
【0002】
近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に磁気記録技術を用いたHDDの面記録密度は年率100%程度の割合で増加し続けている。最近では、HDD等に用いられる2.5インチ径の磁気記録媒体にして、320GByte/プラッタを超える情報記録容量が求められるようになってきており、このような要請にこたえるためには500GBit/Inchを超える情報記録密度を実現することが求められる。
【0003】
HDD等に用いられる磁気記録媒体において高記録密度を達成するために、近年、垂直磁気記録方式が提案されている。垂直磁気記録方式に用いられる垂直磁気記録媒体は、磁気記録層の磁化容易軸が基板面に対して垂直方向に配向するよう調整されている。垂直磁気記録方式は従来の面内記録方式に比べて、超常磁性現象により記録信号の熱的安定性が損なわれ、記録信号が消失してしまう、いわゆる熱揺らぎ現象を抑制することができるので、高記録密度化に対して好適である。
【0004】
一方、垂直磁気記録方式に用いられる磁気ヘッドも年々進歩している。しかし、磁気ヘッドは、高記録密度化に伴い狭トラック化した垂直磁気記録媒体に対して、書き込み時に生じるばらつきを抑制することが困難になりつつある。そのため、昨今、垂直磁気記録媒体に対して、保磁力Hcとオーバーライト(OW)特性を所望の範囲内となるように管理する要請が強まっている。これらは隣接トラックへの書きにじみおよび対象トラックへの書き損じに直接影響するためである。なお、保磁力Hcは、熱揺らぎ現象を抑制するために、所定の値以上に保つ必要がある。
【0005】
特許文献1の第19図に示されるように、通常、保磁力HcとOW特性はトレードオフの関係にある。すなわち、保磁力Hcが減少するとOW特性は向上し、逆に保磁力Hcが増加するとOW特性は低下する。同図には、磁性膜(磁気記録層)組成を変化させた場合の保磁力HcとOW特性の変化(トレードオフライン)が記されている。なお、同図には2本のトレードオフラインが記載されているが、「一方は単層のCrTi下地膜を用いた媒体、他方はCrからなる初期成長制御膜とCrMo下地膜を備えた媒体」と説明されている。
【0006】
なお、このように磁性膜組成を変化させた場合だけでなく、その膜厚を変化させた場合にも、同様に保磁力HcとOW特性はトレードオフライン上を推移する。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平09−320033号公報(特に段落0046、図19)
【発明の概要】
【発明が解決しようとする課題】
【0008】
垂直磁気記録媒体は、研究開発によって膜構成(組成や膜厚)、成膜条件などが決定されると、仕様に沿った媒体を大量生産する段階に入る。このとき、スパッタリング装置(DCマグネトロンスパッタリング装置)は最初に機器の調整を行うが、生産しているうちに成膜レートにずれを生じるため、特性が異なってきてしまう。膜厚の誤差が生じるのは1つの層だけではなく、多くの層にわずかずつ誤差が生じるため、主な原因となっている層はすぐには特定できない。
【0009】
ここで、保磁力HcとOW特性が所望の範囲内から外れてしまったとしても、そのトレードオフラインが所望の範囲上を通過しているのであれば、グラニュラ磁性層の膜厚を修正することによって比較的容易に全体的な特性も修正することができる。しかし、誤差の生じた層によっては、トレードオフラインがシフトして所望の範囲上を通過しなくなってしまう場合がある。この場合には、全ての層について成膜条件を再設定し、所望の特性を発揮する媒体を生産するように修正する必要がある。
【0010】
しかし、320GByte/プラッタ、500GBit/Inchを超える情報記録密度を達成するために、垂直磁気記録媒体の多層化、薄膜化が進んでいる。特に、薄膜化によって膜厚依存による特性の変化の影響が大きくなってきており、厳密な微調整が必要となっている。さらに、1nm以下の極端に薄い層も増えてきており、そもそも膜厚の測定が困難になってきている。これらのことから、成膜条件を設定する作業の負担は大きくなる一方であって、生産性低下の原因となっていた。
【0011】
本発明は、このような課題に鑑みてなされたものであり、簡易な手法によって、保磁力HcとOW特性が所望の範囲内となるように調整することが可能な垂直磁気記録媒体の製造管理方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために本発明者らは鋭意検討し、グラニュラ磁性層と補助記録層の間に介在する分断層に着目した。そして、さらに研究を重ねることにより、この分断層には、グラニュラ磁性層や補助記録層等とは異なり、膜厚を厚くすると保磁力HcとOW特性がいずれも低下する特定の範囲が存在することを見出し、本発明を完成するに到った。
【0013】
すなわち、上記課題を解決するために本発明の代表的な構成は、少なくとも基板上に、CoCrPt合金を主成分とする磁性粒子と酸化物を主成分とする非磁性の粒界部からなるグラニュラ構造を有するグラニュラ磁性層と、グラニュラ磁性層の直上に形成されたRuまたはRu合金からなる分断層と、分断層の上に設けられ基板の面内方向に磁気的にほぼ連続した補助記録層と、をこの順に積層する垂直磁気記録媒体の製造管理方法であって、グラニュラ磁性層または補助記録層の膜厚を変化させることにより、このグラニュラ磁性層またはこの補助記録層の膜厚に対する保磁力Hcとオーバーライト特性の関係を求める工程と、分断層の膜厚を変化させることにより、この分断層の膜厚の増加に対して保磁力Hcとオーバーライト特性がいずれも低下する特定の範囲を求める工程と、当該垂直磁気記録媒体が保磁力Hcとオーバーライト特性について所望の範囲内となるように、分断層の膜厚を特定の範囲内で決定し、かつグラニュラ磁性層または補助記録層の膜厚を決定する工程と、決定されたそれぞれの膜厚で、グラニュラ磁性層、分断層、および補助記録層の成膜を行う工程と、を含むことを特徴とする。
【0014】
詳述すると、通常、保磁力HcとOW特性はトレードオフの関係にある。そして、グラニュラ磁性層または補助記録層の膜厚を変化させることで、保磁力HcとOW特性の関係を示すトレードオフラインが求められる。当然ながら、前下地層などの膜厚を変化させても、ここで求められたトレードオフライン上を移動するのみであり、このトレードオフラインが所望の範囲上を通過しない場合には、保磁力HcとOW特性が所望の範囲内となるように調整することはできない。しかし、分断層に限っては膜厚を特定の範囲内で変化させると、上記のトレードオフラインをシフトさせることができる。したがって、分断層の膜厚を調整することにより、トレードオフラインが所望の範囲上を通過するようにすることが可能である。これにより、グラニュラ磁性層または補助記録層の膜厚を調整することにより、保磁力HcとOW特性が所望の範囲内となるように調整することができる。そのため、生産を停止することなく、簡易な手法によって垂直磁気記録媒体を管理することが可能となる。
【0015】
上記分断層は、純Ruの他、Ruに他の金属元素や酸化物を添加した組成とすることが好ましい。中でも、RuCr、RuCo、Ru−SiO、Ru−TiO、Ru−WOとするとさらに好ましい。こうすることで、純Ruよりも交換結合強度に対する膜厚依存性を緩和することができる。すなわち、膜厚を厚くできるため、上述した特定の範囲の膜厚を拡大することが可能となり、分断層の膜厚の調整が容易となる。そのため、本発明と組み合わせることで、生産性の大幅な向上が可能となる。
【発明の効果】
【0016】
本発明によれば、簡易な手法によって、保磁力HcとOW特性が所望の範囲内となるように調整することが可能な垂直磁気記録媒体の製造管理方法を提供することができる。
【図面の簡単な説明】
【0017】
【図1】垂直磁気記録媒体の構成を例示する図である。
【図2】インライン型の成膜装置を模式的に示す図である。
【図3】分断層の膜厚とOW特性、および分断層の膜厚と保磁力Hcの関係を例示する図である。
【図4】垂直磁気記録媒体の製造管理方法について説明する図である。
【発明を実施するための形態】
【0018】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
【0019】
[垂直磁気記録媒体100の製造工程]
図1は、垂直磁気記録媒体100の構成を例示する図である。図1に例示するように、垂直磁気記録媒体100は、ディスク基板110、付着層120、第1軟磁性層131、スペーサ層132、第2軟磁性層133、前下地層140、下地層150、グラニュラ磁性層160、分断層170、補助記録層180、保護層190、潤滑層200を包含する。なお第1軟磁性層131、スペーサ層132、第2軟磁性層133は、あわせて軟磁性層130を構成する。
【0020】
以下に、垂直磁気記録媒体100の製造工程について説明する。垂直磁気記録媒体100は、ディスク基板110上に上記の各層を積層することで製造される。付着層120から補助記録層180までは、DCマグネトロンスパッタリング法にて順次成膜される。保護層190は、CVD法により成膜される。これらの積層には、生産性が高いという点で、概して、インライン型の成膜装置300が用いられる。潤滑層200は、ディップコート法により形成される。
【0021】
[成膜装置300]
図2は、インライン型の成膜装置300を模式的に示す図である。成膜装置300は、ロードロックチャンバー302、コーナーチャンバー304、プロセスチャンバー306(ヒートチャンバー、成膜チャンバー)、アンロードロックチャンバー308を連結して製造ラインをなす。上述したディスク基板110は、ロードロックチャンバー202より搬入される。そして、キャリア担体210に載置され、製造ラインを一周する間に複数の層が積層されて、アンロードロックチャンバー308より搬出される。
【0022】
コーナーチャンバー304は、製造ラインの角部に配置され、後続するプロセスチャンバー306にディスク基板110を引き渡す役割を担う。プロセスチャンバー306は、ヒートチャンバーや成膜チャンバーであって、ディスク基板110をヒートしたり、ディスク基板110上に特定の層を積層したりする。成膜チャンバーの出力は、レートチェック(スパッタリングのパワーと膜厚の調整)に基づき予め定められる。
【0023】
[ディスク基板110〜潤滑層200]
以下、ディスク基板110、およびこのディスク基板110上に積層される付着層120から潤滑層200について詳述する。
【0024】
ディスク基板110は、アモルファスのアルミノシリケートガラスをダイレクトプレスで円板状に成型したガラスディスクを用いることができる。なお、ガラスディスクの種類、サイズ、厚さ等は特に制限されない。ガラスディスクの材質としては、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノケイ酸ガラス、アルミノボロシリケートガラス、ボロシリケートガラス、石英ガラス、チェーンシリケートガラス、又は、結晶化ガラス等のガラスセラミックなどが挙げられる。このガラスディスクに研削、研磨、化学強化を順次施すことで、化学強化ガラスディスクからなる平滑な非磁性のディスク基板110を得た。
【0025】
付着層120はディスク基板110に接して形成され、この上に成膜される軟磁性層130とディスク基板110との剥離強度を高める機能と、この上に成膜される各層の結晶グレインを微細化及び均一化させる機能を備えている。付着層120として、アモルファス(非晶質)のCrTi合金膜を成膜した。付着層120の膜厚は、例えば6〜8nm程度とすることができる。
【0026】
軟磁性層130は、垂直磁気記録方式においてグラニュラ磁性層160に垂直方向に磁束を通過させるために、記録時に一時的に磁路を形成する層である。軟磁性層130は、CoFeTaZrからなる第1軟磁性層131と第2軟磁性層133の間に、Ruからなるスペーサ層132を成膜した。これにより軟磁性層130がAFC(Antiferro-magnetic exchange coupling:反強磁性交換結合)を備えるように構成することができる。これにより、軟磁性層130の磁化方向を高い精度で磁路(磁気回路)に沿って整列させることができ、磁化方向の垂直成分が極めて少なくなるため、軟磁性層130から生じるノイズを低減することができる。軟磁性層130の膜厚は、第1軟磁性層131と第2軟磁性層133がそれぞれ18〜20nm程度、スペーサ層132が0.3〜0.9nm程度とすることができる。第1軟磁性層131、第2軟磁性層133の組成としては、CoTaZrなどのコバルト系合金、CoCrFeB、CoFeTaZrなどのCo−Fe系合金、[Ni−Fe/Sn]n多層構造のようなNi−Fe系合金などを用いることができる。
【0027】
前下地層140(シード層ともいわれる)は、非磁性の合金層であり、軟磁性層130を防護する作用と、この上に成膜される下地層150に含まれる六方最密充填構造(hcp結晶構造)の磁化容易軸をディスク垂直方向に配向させる機能を備える。前下地層140は、面心立方構造(fcc結晶構造)のNiWを、その(111)面がディスク基板110の主表面と平行となるように成膜した。また、前下地層140は、これらの結晶構造とアモルファスとが混在した構成としてもよい。前下地層140の膜厚は8〜11nm程度とすることができる。前下地層140の材質としては、Ni、Cu、Pt、Pd、Zr、Hf、Nb、Taから選択することができる。さらに、これらの金属を主成分とし、Ti、V、Cr、Mo、Wのいずれか1つ以上の添加元素を含む合金としてもよい。例えばfcc結晶構造を取る合金としては、NiTa、NiW、NiWAl、NiWAlSi、CuW、CuCrを好適に選択することができる。また前下地層140を2層構造としてもよい。
【0028】
下地層150はhcp結晶構造であって、グラニュラ磁性層160のCoのhcp結晶構造の結晶をグラニュラ構造として成長させる作用を有している。したがって、下地層150の結晶配向性が高いほど、すなわち下地層150の結晶の(0001)面がディスク基板110の主表面と平行になっているほど、グラニュラ磁性層160の配向性を向上させることができる。下地層150の膜厚は、例えば20nm程度とすることができる。下地層150としてはRuを成膜した。他の材質としては、RuCr、RuCoから選択することができる。Ruはhcp結晶構造をとり、また結晶の格子間隔がCoと近いため、Coを主成分とするグラニュラ磁性層160を良好に配向させることができる。
【0029】
さらに、下地層150のRuに酸素を微少量含有させてもよい。これによりさらにRuの結晶粒子の分離微細化を促進することができ、グラニュラ磁性層160のさらなる孤立化と微細化を図ることができる。なお、酸素はリアクティブスパッタによって含有させてもよいが、スパッタリング成膜する際に酸素を含有するターゲットを用いることが好ましい。
【0030】
また、スパッタ時のガス圧を変更することにより下地層150をRuからなる2層構造としてもよい。その場合の膜厚は、それぞれ10nm程度とすることができる。具体的には、下地層150の下層側を形成する際にはArのガス圧を低圧にし、下地層150の上層側を形成する際には下層側を形成するときよりもArのガス圧を高圧にすると、グラニュラ磁性層160の結晶配向性の向上、および磁性粒子の粒径の微細化が可能となる。
【0031】
グラニュラ磁性層160は、CoCrPt系の硬磁性体の磁性粒子の周囲に非磁性物質を偏析させて粒界を形成した柱状のグラニュラ構造を有している。具体的には、CoCrPtRuにSiO、TiOを含有させたターゲットを用いて成膜することにより、CoCrPtRuからなる磁性粒子(グレイン)が柱状に成長し、その周囲に非磁性物質であるSiO、TiO(複合酸化物)が偏析して粒界をなすグラニュラ構造を形成することができる。ここで、酸化物として添加したSiOは磁性粒子の孤立微細化を促進する役割を担い、TiOはSNRを向上させる役割を担っている。
【0032】
なお、上記に示したグラニュラ磁性層160に用いた物質は一例であり、これに限定されるものではない。粒界を形成するための非磁性物質としては、例えば酸化チタン(TiO)、酸化珪素(SiO)、酸化クロム(Cr)、酸化コバルト(Co)、酸化ジルコン(ZrO)、酸化タンタル(Ta)、酸化コバルト(CoOまたはCo)、酸化鉄(Fe)、酸化ボロン(B)等の酸化物を例示できる。また、BN等の窒化物、B等の炭化物も好適に用いることができる。さらに、本実施形態では、グラニュラ磁性層160において2種類の酸化物を用いているが、これに限定されるものではなく、1種類の酸化物としたり、または3種類以上の酸化物を複合したりすることも可能である。
【0033】
グラニュラ磁性層160の膜厚は、必要な保磁力Hcを得られる厚さとしてよい。好適には、磁気ヘッドから軟磁性層114までの距離であるスペーシングロスを低減させる目的から、12nm以下とするとよい。
【0034】
分断層170は、グラニュラ磁性層160の上かつ補助記録層180の下に設けられ、これらの層の磁性をほぼ分断する層である。分断層170は非磁性であることが好ましいが、若干であれば弱い磁性を有していてもよい。グラニュラ磁性層160と補助記録層180の間に分断層170を介在させることによって、グラニュラ磁性層160と補助記録層180の間で交換結合が形成されるとともに、補助記録層180の結晶粒子の分離が促進される。そのため、SNRの向上、トラック幅の狭小化を図ることができる。
【0035】
図3は、分断層170の膜厚とOW特性、および分断層170の膜厚と保磁力Hcの関係を例示する図である。図3(a)に例示するように、通常、分断層170では、膜厚を厚くするとOW特性が向上する。しかし、図3(a)において両矢印で示す特定の範囲では、膜厚を厚くするにしたがって、OW特性が低下する。一方、図3(b)に例示するように、膜厚を厚くするにしたがって保磁力Hcは徐徐に低下するのみである。通常、保磁力HcとOW特性はトレードオフの関係にあり、グラニュラ磁性層160や補助記録層180、前下地層140などの膜厚を変化させてもトレードオフライン上を移動するのみとなるが、上記の特定の範囲で分断層170の膜厚を変化させた場合にはこのトレードオフラインがシフトする。さらなる詳細については、後程図4を参照しながら、本実施形態にかかる垂直磁気記録媒体100の製造管理方法と併せて説明する。
【0036】
分断層170は、結晶配向性の継承を低下させないために、RuやRu合金を主成分とする組成で成膜した。Ru合金とは、Ruに他の金属元素を添加したものであるが、さらに酸素を含んだり、酸化物を添加したりしたものもRu合金に含まれる。好適には、分断層170は、RuCr、RuCo、Ru−SiO、Ru−TiO、Ru−WO等を含有させたターゲットを用いて成膜するとよい。RuCr、RuCo、Ru−SiO、Ru−TiO、Ru−WO等は、純Ruよりも交換結合強度に対する膜厚依存性を緩和することができる。すなわち、膜厚を厚くできるため、上述した特定の範囲を拡大可能となり、後述する分断層170の膜厚の調整が容易となる。これにより、生産性の向上が可能となる。一方、分断層170に酸素を含有させた場合には、多量の酸化物を含むグラニュラ磁性層160と、酸素を含まない補助記録層180との間で、磁気的および構造的な橋渡しとなる。なお、良好な交換結合強度を得るために、分断層170は、概して0.3〜0.9nmの膜厚とするとよい。
【0037】
補助記録層180は基板主表面の面内方向に磁気的にほぼ連続した磁性層である。補助記録層180はグラニュラ磁性層160に対して磁気的相互作用を有するように、隣接または近接している必要がある。補助記録層180の膜厚は、例えば5〜7nmとすることができる。補助記録層180として、CoCrPtBを成膜した。他の材質としては、例えばCoCrPtとしたり、またはこれらに微少量の酸化物を含有させて構成することができる。
【0038】
補助記録層180はグラニュラ磁性層160の磁性粒子と磁気的相互作用を有する(交換結合を行う)ことによって、逆磁区核形成磁界Hnの調整、保磁力Hcの調整を行い、これにより耐熱揺らぎ特性、OW特性、およびSNRの改善を図ることを目的としている。この目的を達成するために、補助記録層180は垂直磁気異方性Kuおよび飽和磁化Msが高い材料であることが望ましい。またグラニュラ磁性粒子と接続する結晶粒子(磁気的相互作用を有する結晶粒子)がグラニュラ磁性粒子の断面よりも広面積となるため、磁気ヘッドから多くの磁束を受けて磁化反転しやすくなり、全体のOW特性を向上させるものと考えられる。
【0039】
なお、「磁気的に連続している」とは、磁性が連続しており、磁性粒子が酸化物などの非磁性物質によって微細化(分離孤立化)されていないことを意味している。「ほぼ連続している」とは、補助記録層180全体で観察すれば必ずしも単一の磁石ではなく、部分的に磁性が不連続となっていてもよいことを意味している。すなわち補助記録層180は、複数のグラニュラ磁性粒子の集合体から構成される記録ビットにまたがって(かぶさるように)磁性が連続していればよい。この条件を満たす限り、補助記録層180においてCrが偏析していてもよく、さらに微少量の酸化物を含有させて偏析させても良い。
【0040】
保護層190は、真空を保ったままカーボンをCVD法により成膜した。保護層190は、磁気ヘッドの衝撃から垂直磁気記録媒体100を防護するための層である。保護層190の膜厚は、例えば4〜6nmとすることができる。一般にCVD法によって成膜されたカーボンはスパッタ法によって成膜したものと比べて膜硬度が向上するので、磁気ヘッドからの衝撃に対してより有効に垂直磁気記録媒体100を防護することができる。
【0041】
潤滑層200は、PFPE(パーフロロポリエーテル)をディップコート法により成膜した。PFPEは長い鎖状の分子構造を有し、保護層190表面のN原子と高い親和性をもって結合する。この潤滑層200の作用により、垂直磁気記録媒体100の表面に磁気ヘッドが接触しても、保護層190の損傷や欠損を防止することができる。潤滑層200の膜厚は、例えば1.0〜1.4nmとすることができる。
【0042】
[垂直磁気記録媒体100の製造管理方法]
以下、本実施形態の特徴たる垂直磁気記録媒体100の製造管理方法について説明する。図4は、垂直磁気記録媒体100の製造管理方法について説明する図である。通常、保磁力HcとOW特性はトレードオフの関係にある。そこで第1の工程として、グラニュラ磁性層160または補助記録層180の膜厚を変化させることで、図4(a)に例示するように、保磁力HcとOW特性の関係を表すトレードオフラインを求める。
【0043】
ここで、トレードオフラインは、前下地層140などの膜厚を変化させても導出することができる。しかし、グラニュラ磁性層160や補助記録層180に比して、これらの層では膜厚のコントロールが困難となる。例えば、前下地層140では、膜厚を薄くすると大幅な保磁力Hcの低下を引き起こすこととなる。そのため、本実施形態では、グラニュラ磁性層160または補助記録層180の膜厚よりトレードオフラインを導出する。
【0044】
次に、第2の工程として、分断層170の膜厚を変化させることにより、図3(a)に示す分断層の膜厚の増加に対して保磁力HcとOW特性がいずれも低下する特定の範囲を求める。分断層170の膜厚をこの特定の範囲で変化させると、図4(b)に例示するように、このトレードオフラインがシフトするように保磁力HcとOW特性の値が変化する。
【0045】
そのため、図4(c)に例示するように、垂直磁気記録媒体100のトレードオフラインが所望の範囲上を通過しない場合であっても、分断層170の膜厚を変えることで、このトレードオフラインが所望の範囲上を通過するようにシフトさせることができる。したがって、トレードオフラインが所望の範囲上を通過するように分断層170の膜厚を決定した後、保磁力HcとOW特性が所望の範囲内となるようにグラニュラ磁性層160または補助記録層180の膜厚を決定すればよい。ここで、図4(a)においてトレードオフラインを導出する際に、グラニュラ磁性層160または補助記録層180のいずれかの膜厚とトレードオフライン上の位置の相関は獲得されているので、保磁力HcとOW特性が所望の範囲内となるようにグラニュラ磁性層160または補助記録層180の膜厚を簡単に決定できる。
【0046】
すなわち、第3の工程として、垂直磁気記録媒体100が保磁力HcとOW特性について所望の範囲内となるように、分断層170の膜厚を特定の範囲内で決定し、かつグラニュラ磁性層160または補助記録層180の膜厚を決定する。決定されたそれぞれの膜厚で(グラニュラ磁性層160、分断層170、および補助記録層180を)成膜することで、生産を停止することなく、保磁力HcとOW特性が所望の範囲内となるように調整することができる。そのため、簡易な手法によって、垂直磁気記録媒体100を管理することが可能となる。
【0047】
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【産業上の利用可能性】
【0048】
本発明は、垂直磁気記録方式のHDDなどに搭載される垂直磁気記録媒体およびその製造方法として利用することができる。
【符号の説明】
【0049】
100…垂直磁気記録媒体、110…ディスク基板、120…付着層、130…軟磁性層、131…第1軟磁性層、132…スペーサ層、133…第2軟磁性層、140…前下地層、150…下地層、160…グラニュラ磁性層、170…分断層、180…補助記録層、190…保護層、200…潤滑層、300…成膜装置、302…ロードロックチャンバー、304…コーナーチャンバー、306…プロセスチャンバー、308…アンロードロックチャンバー

【特許請求の範囲】
【請求項1】
少なくとも基板上に、
CoCrPt合金を主成分とする磁性粒子と酸化物を主成分とする非磁性の粒界部からなるグラニュラ構造を有するグラニュラ磁性層と、
前記グラニュラ磁性層の直上に形成されたRuまたはRu合金からなる分断層と、
前記分断層の上に設けられ前記基板の面内方向に磁気的にほぼ連続した補助記録層と、
をこの順に積層する垂直磁気記録媒体の製造管理方法であって、
前記グラニュラ磁性層または前記補助記録層の膜厚を変化させることにより、該グラニュラ磁性層または該補助記録層の膜厚に対する保磁力Hcとオーバーライト特性の関係を求める工程と、
前記分断層の膜厚を変化させることにより、該分断層の膜厚の増加に対して保磁力Hcとオーバーライト特性がいずれも低下する特定の範囲を求める工程と、
当該垂直磁気記録媒体が保磁力Hcとオーバーライト特性について所望の範囲内となるように、前記分断層の膜厚を前記特定の範囲内で決定し、かつ前記グラニュラ磁性層または前記補助記録層の膜厚を決定する工程と、
前記決定されたそれぞれの膜厚で、前記グラニュラ磁性層、前記分断層、および前記補助記録層の成膜を行う工程と、
を含むことを特徴とする垂直磁気記録媒体の製造管理方法。
【請求項2】
前記分断層は、RuCr、RuCo、Ru−SiO、Ru−TiO、Ru−WOのいずれかからなることを特徴とする請求項1に記載の垂直磁気記録媒体の製造管理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−76681(P2011−76681A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−229129(P2009−229129)
【出願日】平成21年9月30日(2009.9.30)
【出願人】(510210911)ダブリュディ・メディア・シンガポール・プライベートリミテッド (53)
【Fターム(参考)】