説明

帯電粒子量評価装置および帯電粒子量評価方法

【課題】帯電粒子源から複数の粒径ピークを有する帯電粒子が放出される場合でも帯電粒子量を高い再現性で高精度に評価できる帯電粒子量評価装置および帯電粒子量評価方法を提供する。
【解決手段】帯電粒子量評価装置1は、円筒状の内側導体2aと外側導体2bを同心に配置した同心円筒状電極2と、両導体2a,2b間の環状空間2cに軸方向に沿って気流を発生させる吸気ファン3と、両導体2a,2b間の印加電圧と両導体間に流れる電流値とから気流中の帯電粒子量を評価するコントローラ10とを備えるとともに、同心円筒状電極2の外部空間であって気流の上流側に配置されるフィルタ電極6と、フィルタ電極6により粒径が所定の閾値以下の帯電粒子を上記環状空間2c内に流入させないような電界を発生させるための電圧をフィルタ電極6に印加する電圧源7とを備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、大気中に浮遊する微粒子の粒径や粒子数などを評価する帯電粒子量評価装置および帯電粒子量評価方法に関するものである。
【背景技術】
【0002】
この種の帯電粒子量評価装置としては、帯電した微粒子の電場中における移動速度(電気移動度)の違いを利用して、微粒子の粒径を測定する微分型電気移動度測定器(DMA:Differential Mobility Analyzer)が従来より提供されている(例えば特許文献1参照)。
【0003】
しかしながら、DMAを用いた帯電粒子量評価装置は大型のため、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた帯電粒子量評価装置が従来より提供されている(例えば非特許文献1参照)。図7はゲルディエンコンデンサを用いた帯電粒子量評価装置1の概略構成図であり、この帯電粒子量評価装置1は、同心円筒状電極2と、吸気ファン3と、電流計4と、電圧源5とを主要な構成として備えている。
【0004】
同心円筒状電極2は、互いに半径の異なる円筒状の内側導体2aおよび外側導体2bを同心に配して構成される。二重同心円筒の内、外側導体2bには電圧源5により直流電圧が印加され、内側導体2aは接地されている。なお電圧源5は図示しない電圧制御部によって電源電圧を変化させることができる。
【0005】
吸気ファン3は、内側導体2aと外側導体2bとの間の空間を通して空気を吸引することによって、内側導体2aと外側導体2bの間の空間に矢印Aの方向に空気を流し、この空間に空気の流れる方向と速度が均一な層流を生成する。
【0006】
電流計4は内側導体2aと外側導体2bとの間に流れる電流を測定するものであり、その電流値から帯電粒子の個数を算出することができる。
【0007】
本装置では吸気ファン3により空気を吸引している状態で、内側導体2aを接地するとともに、電圧源5により外側導体2bに電圧Vを印加して、内外の導体間に電位差を与えると、両導体間に吸引された空気中の帯電粒子が、両導体間に発生する電界によって内側導体2aに引き寄せられる。そして、帯電粒子が内側導体2aに流れ込むと、両導体間に電流が発生するので、電流計4の測定値をもとに帯電粒子の粒子数を測定することができる。なお、電圧源5による印加電圧Vの極性と、電流計4の測定値の極性とを考慮すれば正負何れの極性の帯電粒子でも測定することができる。
【0008】
ここで、帯電粒子の粒径はその移動度に依存し、その移動度は二重円筒(内側導体2aおよび外側導体2b)の寸法と空気の流量とを一定にすると、電圧源5の印加電圧Vによって定まる。したがって電圧源5の印加電圧を変化させ、その時の電流値を電流計4で測定することによって、所定の粒径の帯電粒子の数を求めることができる。但し、ゲルディエンコンデンサと呼ばれる二重同心円筒を用いた図7の測定装置では、電圧源5の印加電圧により定めた移動度(粒径)以下の帯電粒子を全て取り込み、その全数を評価している。
【特許文献1】特開平10−288600号公報
【非特許文献1】北川信一郎編著、「大気電気学」、東海大学出版会、1996年6月10日、47−49頁
【発明の開示】
【発明が解決しようとする課題】
【0009】
上記構成の帯電粒子量評価装置では、移動度の変化をもとに帯電粒子の粒子数を所定の粒径範囲で測定することによって粒子数の分布を求めているが、測定したい粒径の帯電粒子よりも粒径の小さい帯電粒子の数を積算して計測するため、図3(a)に示すように粒径の測定範囲内で粒子数の分布が複数の極大点P1,P2を有する場合、粒径の大きな極大点P2付近で帯電粒子の粒子数を測定しようとすると、粒径の小さい極大点P1付近の帯電粒子を積算して求めてしまうため、S/N比が低下してしまい、計測精度が低下したり、再現性が悪くなるという問題があった。
【0010】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、帯電粒子源から複数の粒径ピークを有する帯電粒子が放出される場合でも帯電粒子量を高い再現性で高精度に評価できる帯電粒子量評価装置および帯電粒子量評価方法を提供することにある。
【課題を解決するための手段】
【0011】
上記目的を達成するために、請求項1の発明は、互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配置して構成された第1の同心円筒状電極と、第1内側導体と第1外側導体との間の環状空間に軸方向に沿って気流を発生させる気流発生手段と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に直流電圧を印加するための第1の電圧印加端子と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に流れる電流を測定するための電流測定端子と、前記第1の同心円筒状電極の外部空間であって前記気流の上流側に配置され、当該フィルタ電極により粒径が所定の閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧が印加される第2の電圧印加端子が設けられたフィルタ電極を備えて成ることを特徴とする。
【0012】
この発明によれば、第2の電圧印加端子を介してフィルタ電極に電圧を印加して、第1の同心円筒状電極の外部空間であって気流の上流側に、粒径が所定の閾値以下の帯電粒子を同心円筒状電極の環状空間に流入させないような電界を発生させているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価装置を実現できるという効果がある。
【0013】
請求項2の発明は、請求項1の発明において、フィルタ電極は、互いに半径が異なる円筒状の第2内側導体および第2外側導体を同心に配置して構成された第2の同心円筒状電極からなることを特徴とする。
【0014】
この発明によれば、フィルタ電極を同心円筒状電極で構成することで、除去すべき帯電粒子は内側導体又は外側導体に引き寄せられて、電流として除去されるから、測定対象以外の帯電粒子を空間に残さずに除去することで測定精度を向上させることができ、帯電粒子の空間分布を正確に検出できる。しかもフィルタ電極の形状を第1の同心円筒状電極と同様の形状とすることで、第2の同心円筒状電極を通った気流が第1の同心円筒状電極に流入する際に乱れが発生するのを防止でき、帯電粒子の粒子数の粒径分布への影響を少なくした状態で第1の同心円筒状電極に流入させることによって、測定精度を向上させることができる。
【0015】
請求項3の発明は、請求項2の発明において、第1内側導体と第2内側導体、および、第1外側導体と第2外側導体はそれぞれ半径が略同一に形成されており、第1および第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、第1の同心円筒状電極の上流側の端部において絶縁部材を介して互いに連結されたことを特徴とする。
【0016】
この発明によれば、第1内側導体と第2内側導体、および、第1外側導体と第2外側導体はそれぞれ半径が略同一に形成され、且つ、第1及び第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、絶縁部材を介して連結しているので、連結部分において不連続な点が無く、気流が第2の同心円筒状電極を通って第1の同心円筒状電極に流入する際に気流に乱れが発生するのをさらに防止できるという効果がある。
【0017】
請求項4の発明は、請求項1乃至3の何れかの発明において、第1及び第2の電圧印加端子にそれぞれ直流電圧を印加する第1及び第2の電圧源による印加電圧をそれぞれ調整する電圧制御手段と、電流測定端子に接続された電流測定手段の測定値を取得する電流値取得手段と、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で掃引させた場合に電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得する除去粒径取得手段と、除去粒径取得手段の取得した閾値をもとに、粒径が閾値以下の帯電粒子を環状空間に流入させないような電界を発生させるための電圧値を算出する除去電圧算出手段とを備え、電圧制御手段は、第2の電圧源による印加電圧を除去電圧算出手段の算出した電圧値に制御することを特徴とする。
【0018】
この発明によれば、除去粒径取得手段が、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で自動的に掃引させ、この間に電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得し、この閾値をもとに除去電圧算出手段がフィルタ電極に印加する電圧値を算出しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に設定でき、高い測定精度で帯電粒子量を評価できるという効果がある。例えば粒子数の極大値が5つ存在する場合に粒径の小さい方から4番目の極大値に対応した粒径の粒子数を測定したいのであれば、小さい方から4番目の極大値に対応した粒径が粒径の計測範囲の最大値となるように印加電圧を設定すれば、小さい方から3番目の極大値に対応する粒径が閾値に設定されるから、印加電圧の設定によって任意の極大値を閾値に設定でき、所望の粒径の粒子数を測定することが可能になる。
【0019】
請求項5の発明は、互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配して形成される同心円筒状電極の両導体間に直流電圧を印加し、両導体間の環状空間に軸方向に沿って流れる気流を生成するとともに、気流によって両導体間の環状空間に帯電粒子を流し、両導体間に流れる電流の電流値から帯電粒子量を評価する帯電粒子量評価方法であって、両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得し、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定することを特徴とする。
【0020】
この発明によれば、両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に取得することができ、且つ、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定しているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価方法を提供できるという効果がある。
【発明の効果】
【0021】
請求項1の発明によれば、第2電圧印加手段がフィルタ電極に電圧を印加して、第1の同心円筒状電極の外部空間であって気流の上流側に、粒径が所定の閾値以下の帯電粒子を同心円筒状電極の環状空間に流入させないような電界を発生させているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価装置を実現できるという効果がある。
【0022】
請求項6の発明によれば、極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得しているので、除去すべき帯電粒子の粒径が不明な場合でも、除去対象の帯電粒子の粒径を自動的に取得することができ、且つ、同心円筒状電極の外部空間であって気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定しているので、閾値よりも大きい粒径の帯電粒子数を測定する際に、閾値以下の帯電粒子の数を積算して求めることがなく計測精度が高く且つ再現性の良い帯電粒子量評価方法を提供できるという効果がある。
【発明を実施するための最良の形態】
【0023】
以下に本発明の実施の形態を図面に基づいて説明する。
【0024】
(実施形態1)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態1を図1〜図4に基づいて説明する。
【0025】
本実施形態の帯電粒子量評価装置1は、第1の同心円筒状電極(以下同心円筒状電極と略称す)2と、気流発生手段たる吸気ファン3と、電流計4と、第1の電圧源(以下電圧源と略称す)5と、フィルタ電極6と、第2の電圧源(以下電圧源と略称す)7と、絶縁部材8と、コントローラ10とを主要な構成として備えている。
【0026】
同心円筒状電極2は、互いに半径の異なる円筒状の第1内側導体2a(以下内側導体と略称す)および第1外側導体(以下外側導体と略称す)2bを同心に配して構成される。内側導体2aおよび外側導体2bは帯電粒子を引き寄せやすく、且つ、両導体間に流れる電流を測定しやすいように導電率の高い材料で形成するのが好ましく、例えば真鍮の表面にクロムめっきを施して形成される。
【0027】
内側導体2aは中空ではなく、接地端子21と電流測定端子22とを備え、接地端子21に接続された接地線25を介してグランドに接地される。この内側導体2aの保持は、帯電して電流が流れることによって誤差が生じるのを防止するために、高い絶縁性を有する保持部材(図示せず)を介して外側導体2b内に保持されており、保持部材の材料としては、例えば高絶縁性の三フッ化塩化エチレン樹脂を用いるのが好ましい。
【0028】
外側導体2bは中空円筒状であって、電圧端子23と電流測定端子24とを備え、電圧端子23を介して電圧源5の直流電圧が印加される。また内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間に電流計4が接続されている。ここに、内側導体2aの接地端子21と外側導体2bの電圧端子23とで第1の電圧印加端子が構成される。
【0029】
ここで、帯電粒子の粒径および移動度と外側導体2bに印加した印加電圧と同心円筒状導体2の外形寸法の関係を図7に基づいて説明する。
【0030】
空気中の帯電粒子が等しい移動度を持っていると仮定し、同心円筒状導体2の吸気側において外側導体2bの縁の点Pから流入したイオンが、導体2a,2b間の電界を受けて点Sで捕捉されたものとすると、同心円筒状導体2の筒内に流入してくる帯電粒子は全て内側導体2aに捕捉されることになる。なお帯電粒子が捕捉される点Sの位置は外側導体2bへの印加電圧や気流の流量を調整することで変化する。
【0031】
ところで、実際の空気中には様々な移動度を持った帯電粒子が存在しており、ある印加電圧および流量の条件下で点Pから流入し、内側導体2aにおいて出口側の縁の点Tで捕捉される帯電粒子の移動度を臨界移動度と呼ぶ。この臨界移動度は、内側導体2aで捕捉可能な帯電粒子と、内側導体2aで捕捉できない帯電粒子の境界を示し、臨界移動度よりも移動度の大きな帯電粒子は内側導体2aで全て捕捉されるが、臨界移動度よりも移動度の小さい帯電粒子は一部が捕捉されずに、同心円筒状導体2の出口から外部へ流出することになる。
【0032】
例えば図7中の点Rから流入した帯電粒子が点Tで捕捉されたものとすると、移動度が同じ帯電粒子で、点Rを通る同心円C1と外側導体2bとの間の領域から流入する帯電粒子は同心円筒状導体2の出口から流出することになり、同心円C1と内側導体2aの間の領域(図中の斜線部)から流入した帯電粒子のみが内側導体2aで捕捉されることになる。
【0033】
ここで、帯電粒子の臨界移動度kcは、外側導体2bへの印加電圧がV、気流の流量がφの時に以下の式(1)を用いて表される。
【0034】
kc=φ×ln(r0/r1)/(2π×L×V) …(1)
但し、r0は外側導体2bの半径、r1は内側導体2aの半径、Lは同心円筒状導体2の軸方向の全長である。また移動度kcと帯電粒子の粒径Dpとの関係は以下の式(2)で表される。
【0035】
kc=np×e×Cc/(3π×μ×Dp) …(2)
但し、npは帯電粒子の荷電数、eは電気素量、Ccはカニンガム補正係数、μは空気の粘性係数である。また、カニンガム補正係数Ccは粒径Dpの関数であり、臨界移動度kcと粒径Dp及び印加電圧Vは上記の式(1)と式(2)を連立して求めることができる。なお、粒径Dpと印加電圧Vとの関係を求める際には、カニンガム補正係数Ccが粒径Dpにより変化するため、式(1)と式(2)を連立して臨界移動度kcを消去した式から数値的に算出する。
【0036】
また同心円筒状導体2の大きさ(全長Lおよび半径r0,r1)も式(1)と式(2)とで決まり、測定したい粒径により同心円筒状導体2の大きさが決定される。本実施形態の評価装置1では図3(a)に示すように粒径の測定範囲が0.6〜28nmであり、粒径のピークが10nmから20nmの間、例えば14nmにあるものとする。なお図3(a)(b)の横軸は粒径を、縦軸は単位体積当たりの粒子数を示している。ここで、帯電粒子の荷電数npを1と仮定すると、式(2)より電気移動度は5.49〜0.000274cm/V・sとなる。また流量φを50L/min、印加電圧Vを0〜60Vとすると、式(1)より同心円筒状導体2の全長Lは52cm、内側導体2aの半径r1は4.5cm、外側導体2bの半径r0は4.8cmとなる。なお導体2bの厚みは2mmとする。
【0037】
またフィルタ電極6の大きさは除去したい帯電粒子の粒径範囲によって決定されるのでるが、吸気ファン3によって生成された気流をなるべく乱さないようにするために、同心円筒状導体2の内側導体2aおよび外側導体2bの半径と、フィルタ電極6の内側導体6aおよび外側導体6bの半径とをそれぞれ略同じ値とし、同心円筒状導体2とフィルタ電極6との連結部位に凹凸ができないように連結するのが好ましい。ここで、除去したい粒径の範囲を2nm以下に設定する場合、粒径が2nmの帯電粒子の移動度は、上述の式(2)より0.514cm/V・sとなる。但し、流量φは同心円筒状導体2と同じく50L/minであり、フィルタ電極6の長さは8.0cmとした。また、内側導体6aおよび外側導体6bの半径は、同心円筒状導体2の内側導体2aおよび外側導体2bの半径と略同じ値に設定され、内側導体6aの半径が4.5cm、外側導体6bの半径が4.8cm、厚さが2mmであるので、上述の式(1)より印加電圧は2.08Vとなる。
【0038】
一方、吸気ファン3は、同心円筒状電極2に対して気流の出口側(図1中の右側)に配置され、内側導体2aと外側導体2bの間の環状空間2cの空気を吸引することによって、この環状空間2c内に軸方向に沿って流れる気流を生成している。吸気ファン3の回転数は一定に保たれ、気流の流量を一定にしている。ここで、両導体2a,2b間の空間(環状空間2c)内に層流を生成するために、吸気ファン3の備える回転羽根(図示せず)の径が外側導体2bの径よりも大きく形成されており、回転羽根の回転面が同心円筒状電極2の中心軸方向と略直交し、且つ、回転羽根の回転軸と同心円筒状電極2の中心軸とが同一直線上に存在するように吸気ファン3が配置され、同心円筒状電極2と吸気ファン3との間に気流の流れを乱す凹凸が出来ないように接続されている。なお両導体2a,2bの間の空間に層流を生成するのは、同心円筒状電極2の入口側(図1中の左側)から両導体2a,2bの間の空間に流入した帯電粒子を同心円筒状電極2の軸方向と平行に進ませることによって、帯電粒子を一定速度で移動する状態にして電界を作用させるためである。
【0039】
電流計4は、内側導体2aの電流測定端子22と外側導体2bの電流測定端子24との間に接続されるデジタル式の電流計であり、電流の測定値は後述の電流値取得部12によって自動的に取得される。なお内側導体2aと外側導体2bとの間に流れる電流から帯電粒子の粒子数を求めることができ、両導体2a,2b間に流れる電流をiとすると、帯電粒子の荷電数npを1と仮定しているので、帯電粒子の個数nは以下の式(3)で表される。なお、荷電数npが1でないときには、式(3)の電気素量eに荷電数npを乗じることにより算出できる。
【0040】
=i/(e×φ) …(3)
但し、eは電気素量、φは気流の流量である。
【0041】
また電圧源5は、電圧端子23を介して外側導体2bに直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の電圧制御部11によって印加電圧が自動的に制御される。なお、電圧源5による印加電圧の極性は正又は負に切り替えることが可能であり、電圧源5による印加電圧が正の電圧であれば正の帯電粒子を計測でき、印加電圧が負の電圧であれば負の帯電粒子を計測することができる。
【0042】
フィルタ電極6は、同心円筒状電極2の外部空間において、同心円筒状電極2内部の環状空間2cに流れる気流の上流側に配置され、粒径が所定の閾値以下の帯電粒子を環状空間2cに流入させないような電界を発生させている。このフィルタ電極6は、同心円筒状電極2と同様の構成を有し、互いに半径の異なる円筒状の第2内側導体(以下内側導体と略称す)6aおよび第2外側導体(以下外側導体と略称す)6bを同心に配した同心円筒状電極で構成される。内側導体6aおよび外側導体6bは所望の粒径範囲の帯電粒子を引き寄せ、電流として除去しやすいように、導電率の高い材料で形成するのが好ましく、例えば真鍮の表面にクロムめっきを施して形成される。
【0043】
内側導体6aは接地端子61を備え、接地端子61に接続された接地線63を介してグランドに接地される。この内側導体6aは、帯電して電流が流れることによって誤差が生じるのを防止するために、高い絶縁性を有する保持部材(図示せず)を介して外側導体6b内に保持されており、保持部材の材料としては、例えば高絶縁性の三フッ化塩化エチレン樹脂を用いるのが好ましい。また外側導体6bは電圧端子62を備え、電圧端子62を介して電圧源7の直流電圧が印加される。ここに、内側導体6aの接地端子61と外側導体6bの電圧端子62とで第2の電圧印加端子が構成される。
【0044】
このフィルタ電極6は、二重円筒状の絶縁部材8を介して同心円筒状電極2に連結されているが、絶縁部材8によって気流を乱さないようにするため、凹凸ができないように同心円筒状電極2と略平行に保持されていれば、フィルタ電極6はどのような形態で保持されていても良い。なおフィルタ電極6を保持する保持部材は、帯電して電流が流れることで誤差が発生するのを防止するために、この保持部材を接地しておくことが好ましい。
【0045】
電圧源7は、電圧端子62を介して外側導体6bに直流電圧を印加する可変電源であり、自動制御で測定が行えるように後述の電圧制御部11によって印加電圧が自動的に制御される。なお、正負何れの極性の帯電粒子でも除去できるように、電圧源7による印加電圧の極性は正又は負に切り替えることが可能である。
【0046】
絶縁部材8は、同心円筒状電極2とフィルタ電極6との間を連結する部材であり、帯電粒子を含む気流が連結部位を通過する際に乱されずに層流となるよう、同心円筒状電極2の入口側の端部で、内側導体2a,6a間、および、外側導体2b,6b間を凹凸無く平行に接続するものである。なお絶縁部材8が帯電すると、帯電粒子を引き寄せてしまい、電流が流れて誤差が発生するため、絶縁性能の高い材料で形成するのが好ましく、例えばエンジニアリングプラスチックの一種であるポリアセタール樹脂で形成されている。
【0047】
次にコントローラ10の構成について説明する。コントローラ10は電圧制御部11と電流値取得部12と演算処理部13とを主要な構成として備える。
【0048】
電圧制御部11は、後述の粒径算出部15から入力された印加電圧の電圧値および極性に基づいて電圧源5の印加電圧を自動的に制御する。また電圧制御部11は、後述の除去電圧算出部17から入力された印加電圧の電圧値および極性に基づいて電圧源7の印加電圧を自動的に制御しており、電圧源7の印加電圧を設定すると同時に、粒径分布を再度測定させるための粒径分布取得信号を粒径算出部15に対して出力する機能も備えている。
【0049】
電流値取得部12は、電流計4から電流の測定値を自動的に取得し、取得した電流値を粒径算出部15に出力する。
【0050】
演算処理部13は入力部14と粒径算出部15と除去粒径算出部16と除去電圧算出部17とを備え、電圧制御部11を用いて電圧源5,7の印加電圧を設定したり、電流値取得部12から得られた電流値をもとに帯電粒子の粒径分布を求める機能を有している。尚、演算処理部13は例えばマイクロコンピュータを用いて構成され、粒径算出部15、除去粒径算出部16及び除去電圧算出部17はマイクロコンピュータの演算機能によって実現される。
【0051】
入力部14は、測定しようとする帯電粒子の測定範囲、極性及び粒径のスイープ幅などの測定条件をユーザが入力するためのものであり、入力された測定条件は粒径算出部15に出力される。
【0052】
粒径算出部15は、入力部14から入力された測定条件に従い、測定対象の帯電粒子の粒径と移動度の関係から、外側導体2bに印加する電圧を算出して算出結果を電圧制御部11に出力するとともに、電流値取得部12から取得した電流値をもとに、電圧源5の印加電圧により設定される粒径以下の帯電粒子の個数を算出する。粒径算出部15では、電圧制御部11を用いて電圧源5の印加電圧をスイープさせることで、測定対象の粒径を所定のスイープ幅ずつ変化させており、測定対象の粒径をスイープ幅だけ変化させる毎に粒子数を測定することによって、帯電粒子の粒子数の粒径分布を求めることができる。さらに、粒径算出部15は計測したい帯電粒子の極性を電圧制御部11に出力するとともに、除去したい帯電粒子の極性を電圧制御部11に出力する。また粒径算出部15は、電圧制御部11から粒径分布取得信号を取得すると、一度設定した粒径の測定範囲で再度粒径分布を計測し、計測した粒径分布を電子データとして記憶部(図示せず)に記憶させるとともに、図示しない出力装置(プリンタやモニタ装置など)に粒径分布を出力する。
【0053】
除去粒径算出部16は、粒径算出部15から得られた帯電粒子の粒径分布をもとに、粒子数が極大となる時の粒径の内、2番目に大きい粒径を除去対象の帯電粒子の最大粒径(閾値)として求め、この粒径を除去電圧算出部17に出力する。また粒径算出部15から入力された測定対象の帯電粒子の極性を、除去対象の帯電粒子の極性として除去電圧算出部17に出力する。
【0054】
除去電圧算出部17は、除去粒径算出部16から入力された除去対象の帯電粒子の最大粒径(閾値)をもとに、フィルタ電極6の外側導体6bに印加する電圧を算出し、印加電圧の算出値と極性を電圧制御部11に出力する。
【0055】
次に本実施形態の帯電粒子量評価装置1の動作を図2のフロー図に従って説明する。
【0056】
先ず吸気ファン3の電源を投入して、回転羽根を回転させ、同心円筒状電極2およびフィルタ電極6の内側導体2a,6aと外側導体2b,6bとの間の空間に軸方向に沿って流れる流量が50L/minの層流を発生させる。
【0057】
次に電圧源5,7およびコントローラ10の電源を投入する。但し電源投入時には電圧源5,7の電圧はゼロに設定されている。尚、吸気ファン3の電源と連動して、電圧源5,7およびコントローラ10の電源を投入させても良い。
【0058】
コントローラ10が動作を開始すると、測定担当者が入力部14を用いて帯電粒子の粒径の測定範囲および極性と、粒径のスイープ幅などの測定条件を入力する(ステップS1)。以下では粒径の測定範囲が0.6〜28nm、極性が負に設定され、スイープ幅が0.6〜2nmの粒径範囲では0.2nm、2〜28nmの粒径範囲では2nmに設定された場合について説明する。なお、電流計において電流の向きを考慮すれば、印加する電圧の極性の入力を不要にすることもできる。
【0059】
粒径算出部15は、入力部14から入力された測定条件をもとに、上述の粒径、移動度及び印加電圧の関係式(1)(2)を連立して解くことによって、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求めている(ステップS2)。
【0060】
次に粒径算出部15は粒径の最小値に対応した印加電圧の電圧値及び極性を電圧制御部11に出力する(ステップS3)。今回の測定条件では粒径の最小値は0.6nmである。
【0061】
このとき、電圧制御部11が電圧源5の印加電圧を設定して、粒径の最小値に対応した印加電圧が外側導体2bに印加される(ステップS4)。外側導体2bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を測定したい場合は外側導体2bに印加する電圧の極性を負極性とする。これによって、内側導体2aから外側導体2bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体2aに引き寄せられる。そして、電圧源5の印加電圧で設定された粒径以下の帯電粒子は内側導体2aに取り込まれて、内側導体2aと外側導体2bとの間に電流が流れる(ステップS5)。なお図1中の矢印aはフィルタ電極6によって除去される帯電粒子の流れる経路を示し、矢印bは同心円筒状電極2に流入する帯電粒子が流れる経路を示している。
【0062】
内側導体2aに取り込まれた帯電粒子によって電流が流れると、その電流値は電流計4によって測定され、その測定値は電流値取得部12によって自動的に取得される(ステップS6)。
【0063】
電流値取得部12は取得した電流値を粒径算出部15に出力し、粒径算出部15において、上述の式(3)を用いて最小粒径以下の帯電粒子の数を算出し、測定対象の帯電粒子の粒径および個数を図示しない記憶部に記憶させる(ステップS7)。
【0064】
測定対象の帯電粒子の粒径と個数とを記憶させると、粒径算出部15では全ての測定範囲について測定を終了したか否かを判断し(ステップS8)、測定が終わっていなければ、粒径を所定のスイープ幅だけ増加させた場合の印加電圧の電圧値及び極性を電圧制御部11に出力した後(ステップS9)、上述のステップS4〜S7の処理を繰り返す。尚、0.6〜2nmの粒径範囲ではスイープ幅を0.2nmとしているので、最小粒径の次は粒径が0.8nmの時の印加電圧の電圧値を出力する。
【0065】
以上のようにして粒径を0.6nmから28nmまで所定のスイープ幅ずつスイープさせる毎に、各々の粒径の設定値で上記の処理S4〜S7を繰り返すことによって粒子数を算出して、粒径分布(粒径に対する個数の分布)を求めており、ステップS8において全ての測定範囲で測定を終了したと判断されると、粒径算出部15は粒径分布の算出結果を除去粒径算出部16に出力する(ステップS10)。
【0066】
除去粒径算出部16は粒径算出部15から入力された粒径分布をもとに粒径ピークを探索する。ここで、図3(a)に示す粒径分布の例では粒径が1.4nmと14nmの時に粒子数が極大になっており、粒子数が極大になる時の粒径の内、2番目に大きい粒径(この場合は1.4nm)を除去対象の帯電粒子の最大径(閾値)に設定し、除去電圧算出部17に出力する(ステップS11)。
【0067】
ここに、除去電圧算出部17では上述の式(1)、式(2)を連立して解くことによって、除去したい帯電粒子の粒径(閾値)に対応する印加電圧を算出することができ、算出結果を印加電圧の設定値として電圧制御部11に出力する(ステップS12)。
【0068】
電圧制御部11では、除去電圧算出部17から入力された印加電圧の設定値および極性に基づいて電圧源7の印加電圧を設定すると同時に、粒径算出部15に粒径分布取得信号を出力する(ステップS13)。このとき、電圧源7によりフィルタ電極6の外側導体6bに所定電圧の直流電圧が印加される。外側導体6bに印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、負の帯電粒子を除去したい場合は外側導体6bに印加する電圧の極性を負極性とする。これによって、内側導体6aから外側導体6bに電界が発生し、この電界により負の帯電粒子はグランドに接地された内側導体6aに引き寄せられる。そして、粒径が電圧源7の印加電圧で設定された閾値以下となる帯電粒子は内側導体6aに取り込まれ、電流として除去されるので、粒径が閾値以下の帯電粒子はフィルタ電極6によって除去されることになる。
【0069】
このようにフィルタ電極6によって小粒径の帯電粒子を除去した状態で、電圧制御部11から粒径算出部15に粒径分布取得信号が出力されると、粒径算出部15では、上述したステップS3〜S10の処理を実行することによって粒径分布を再度測定しており、粒径が閾値以下の帯電粒子を除外した粒径分布を得ることができ、小粒径の帯電粒子の影響を除外した粒径分布の測定結果を記憶部に記憶させるとともに、出力装置に測定結果を出力する(ステップS14)。図3(b)はフィルタ電極6に所定の電圧を印加して、粒径が1.4nm以下の帯電粒子を除去した場合の粒径分布の測定結果を示しており、1.4nmのピークが無くなっていることが判る。
【0070】
以上説明したように本実施形態の帯電粒子量評価装置1では、同心円筒状電極2の外部空間において気流の上流側にフィルタ電極6を配置してあり、除去すべき粒径に対応した電圧値および極性の印加電圧を外側導体6bに印加することによって、所定の粒径以下の帯電粒子を内側導体6aに引き寄せ、内側導体6aに取り込むことで電流として除去することができる。したがって、粒径が1nm程度の負イオンのような粒径の小さい帯電粒子が存在するために、空気中に含まれる帯電粒子の粒径分布が粒径ピークを複数有している場合にも、電気移動度の差によって所定の粒径以下の帯電粒子をフィルタ電極6で除去することができるから、大粒径の帯電粒子を測定する際のS/N比を向上させることができ、計測の再現性および信頼性を向上させることが可能になる。
【0071】
なお本実施形態ではフィルタ電極6の外側導体6bに電圧を印加していない状態で、同心円筒状電極2の外側導体2bに印加する電圧をスイープさせて粒子数の粒径分布を求めるとともに、粒径分布に現れる極大点(粒径ピーク)を探索して、不要な極大点(粒径ピーク)に対応する粒径を求めることで、除去すべき帯電粒子の最大粒径(粒径の閾値)を決定しているが、予め除去したい帯電粒子の粒径が得られている場合には測定担当者が入力部14を用いて除去対象の粒径に対応した電圧源7の印加電圧を直接入力しても良い。
【0072】
またフィルタ電極6を内側導体6aと外側導体6bとの同心円筒状電極で構成しているので、除去すべき帯電粒子は内側導体6a又は外側導体6bに引き寄せられ、電流として除去されるから、測定対象以外の帯電粒子を空間に残さずに除去することで測定精度を向上させることができ、帯電粒子の空間分布を正確に検出できる。
【0073】
そのうえフィルタ電極6の内側導体6aおよび外側導体6bの半径は、同心円筒状電極2の内側導体2aおよび外側導体2bの半径とそれぞれ略同一の半径に設定されているので、同心円筒状電極2とフィルタ電極6との連結部分に凹凸ができることはなく、また同心円筒状電極2およびフィルタ電極6はそれぞれの内側導体2a,6aと外側導体2b,6bとを重ね合わせた状態で絶縁部材8を介して連結されているので、連結部分において不連続な点が発生することはない。したがって、フィルタ電極6を通過して同心円筒状電極2に気体が流入する際に気流が乱されることがないから、小粒径の帯電粒子を除去しつつ、帯電粒子の粒径分布を正確に測定することができる。
【0074】
なお、フィルタ電極6のサイズは除去したい帯電粒子の粒径によって決定されるため、フィルタ電極6の内側導体6aおよび外側導体6bの半径が、同心円筒状電極2の内側導体2aおよび外側導体2bの半径と異なる値に設定される場合もあるが、その場合でも同心円筒状電極で構成することで除去すべき帯電粒子を空間に残さずに除去できる。例えば図4に示すようにフィルタ電極6の内側導体6aの半径が同心円筒状電極2の内側導体2aの半径よりも小さい半径となる場合もあるが、フィルタ電極6の外側導体6bの半径を同心円筒状電極2の外側導体2bの半径と略同一の半径として、フィルタ電極6の形状を同心円筒状電極2と略同様の形状に形成することで、乱流の発生を低減することができる。
【0075】
また本実施形態では、入力部14を用いて測定したい帯電粒子の粒径範囲および極性とスイープ幅とを設定すると、コントローラ10が電圧源5の印加電圧を自動的に変化させて帯電粒子数の粒径分布を測定し、粒子数が極大となる粒径が複数ある場合は2番目に大きい粒径を除去すべき帯電粒子の最大粒径(閾値)に設定し、粒径が閾値以下の帯電粒子を除去しているので、除去すべき帯電粒子の粒径範囲が不明な場合でも、除去すべき帯電粒子の最大粒径を自動的に設定することが可能なので、フィルタ電極6に印加する電圧を測定担当者が自分で設定する手間を省くことが出来る。ここで、図3(a)には極大値が2つだけの例を示しているが、粒子数の極大値が5つ存在する場合に粒径の小さい方から4番目の極大値に対応した粒径の粒子数を測定したいのであれば、小さい方から4番目の極大値に対応した粒径が粒径の計測範囲の最大値となるように電圧源5の印加電圧を設定すれば、小さい方から3番目の極大値に対応する粒径が閾値に設定されるから、電圧源5による印加電圧の設定によって任意の極大値を閾値に設定でき、所望の粒径の粒子数を測定することが可能になる。
【0076】
なお本実施形態においてフィルタ電極6の内側導体6aと外側導体6bとの間に流れる電流を測定する電流計(図示せず)を設けても良く、同心円筒状電極2で測定される粒径の帯電粒子とは異なる粒径の帯電粒子を同時に測定することができる。
【0077】
また本実施形態では同心円筒状電極2およびフィルタ電極6の内側導体2a,6aを接地するとともに、外側導体2b,6bに電圧源5,7の直流電圧を印加しているが、同心円筒状電極2の内側導体2aに電圧を印加して、外側導体2bを接地しても、上述と同様に帯電粒子の測定が行える。またフィルタ電極6の内側導体6aに電圧を印加して、外側導体6bを接地しても、上述と同様に所定の粒径以下の帯電粒子を除去することが出来る。
【0078】
また同心円筒状電極2の内側導体2aは電流測定端子24を、外側導体2bは電圧端子23及び電流測定端子24を、フィルタ電極6の外側導体6bは電圧端子62をそれぞれ備えているので、手動で測定する場合には電流計4や電圧源5,7を帯電粒子量評価装置1自体に一体化しなくても良く、別構成の電流計4や電圧源5,6を同心円筒状電極2およびフィルタ電極6の端子に接続して、測定を行うことが可能である。
【0079】
(実施形態2)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態2を図5に基づいて説明する。上述の実施形態1では同心円筒状電極2と同様の形状を有するフィルタ電極6を用いているが、本実施形態では平板状のフィルタ電極6’を用いている。尚、フィルタ電極6’以外の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
【0080】
フィルタ電極6’は平板状であって、同心円筒状電極2の外部空間において、同心円筒状電極2の内部を流れる気流の上流側に配置されている。またフィルタ電極6’には電圧源7によって除去したい帯電粒子と同一極性の電圧が印加され、除去したい帯電粒子に斥力を与えて、同心円筒状電極2の内部に流入させないような電界を発生させており、所定の粒径以下の帯電粒子は電界による斥力を受けて吹き飛ばされ、所定の粒径よりも大きな帯電粒子のみ同心円筒状電極2の内部に流入することができる。図中の矢印aは所定の粒径以下の帯電粒子が流れる経路、矢印bは所定の粒径よりも大きな帯電粒子が流れる経路をそれぞれ示している。ここで、フィルタ電極6’は、除去したい粒径の帯電粒子に斥力を与えて吹き飛ばすことができるように、帯電しやすい良導体で形成するのが好ましく、またフィルタ電極6’の支持部材は帯電する可能性があるため、感電などの事故を防止するために絶縁体で支持部材を形成することが好ましい。
【0081】
本実施形態の帯電粒子量評価装置1の動作を以下に説明する。先ず吸気ファン3の電源を投入して、回転羽根を回転させ、同心円筒状電極2の内側導体2aと外側導体2bとの間の空間に軸方向に沿って流れる流量が50L/minの層流を発生させる。
【0082】
次に電圧源5,7およびコントローラ10の電源を投入する。但し電源投入時には電圧源5,7の電圧はゼロに設定されている。尚、吸気ファン3の電源と連動して、電圧源5,7およびコントローラ10の電源を投入しても良い。
【0083】
コントローラ10が動作を開始すると、測定担当者が入力部14を用いて測定対象の帯電粒子の粒径範囲および極性や、粒径のスイープ幅などの測定条件を入力する。粒径算出部15は、入力部14から入力された測定条件をもとに、上述の粒径、移動度及び印加電圧の関係式(1)(2)を連立して解くことによって、測定対象の粒径範囲に対応する印加電圧の変動範囲と、粒径のスイープ幅に対応した印加電圧のスイープ幅を算出しており、粒径を最小値から最大値まで所定のスイープ幅で変化させる際に各々の粒径に対応した印加電圧を求める。
【0084】
そして、粒径算出部15が印加電圧の電圧値及び極性を電圧制御部11に出力し、電圧制御部11が電圧源5の印加電圧を設定して、印加電圧を所定の電圧範囲内でスイープさせる毎に、粒径算出部15が電流値取得部12の取得した電流値に基づいて粒子数を算出することで、粒子数の粒径分布を求めており、粒径分布の算出結果を除去粒径算出部16に出力する。
【0085】
除去粒径算出部16では粒径算出部15から入力された粒径分布をもとに粒子数が極大となる時の粒径を探索し、粒子数が極大となるときの粒径の内、2番目に大きい粒径を除去対象の帯電粒子の最大粒径(閾値)に設定し、除去電圧算出部17に出力する。
【0086】
除去電圧算出部17では上述の式(1)、式(2)を連立して解くことによって、除去したい帯電粒子の粒径に対応する印加電圧を算出し、電圧制御部11に出力する。
【0087】
電圧制御部11では、除去電圧算出部17から入力された印加電圧の設定値および極性に基づいて電圧源7の印加電圧を設定すると同時に、粒径算出部15に粒径分布取得信号を出力する。このとき、電圧源7によりフィルタ電極6’に所定電圧の直流電圧が印加される。フィルタ電極6’に印加される電圧の極性は測定対象の帯電粒子の極性と同極性であり、これによって除去したい帯電粒子に斥力を与え、同心円筒状電極2の外側に吹き飛ばしている。
【0088】
このようにフィルタ電極6’によって小粒径の帯電粒子を除去した状態で、電圧制御部11から粒径算出部15に粒径分布取得信号が出力されると、粒径算出部15では、上述と同様の処理を行って再度粒径分布を測定しており、粒径が閾値以下の帯電粒子を除外した粒径分布を得ることができる。
【0089】
以上説明したように本実施形態では簡単な形状(平板状)のフィルタ電極6’を、同心円筒状電極2の外部空間であって、同心円筒状電極2の内部を流れる気流の上流側に配置しており、フィルタ電極6’に除去したい帯電粒子と同極性の電圧を印加することで、除去したい帯電粒子に斥力を作用させて、同心円筒状電極2の外側に吹き飛ばしているので、所定の粒径以下の帯電粒子を除去することができる。したがって、粒径が1nm程度の負イオンのような粒径の小さい帯電粒子が存在するために、空気中に含まれる帯電粒子の粒径分布が粒径ピークを複数有している場合にも、電気移動度の差によって所定の粒径以下の帯電粒子をフィルタ電極6’で除去することができるから、大粒径の帯電粒子を測定する際のS/N比を向上させることができ、計測の再現性および信頼性を向上させることが可能になる。
【0090】
なお本実施形態ではフィルタ電極6’を平板状に形成しているが、フィルタ電極6’の形状および寸法は同心円筒状電極2に流入する気流を乱さないのであれば、どのような形状および寸法に形成しても良い。例えばフィルタ電極6’を、同心円筒状電極2の外側導体2bと同一半径の半円筒形に形成しても良く、気流の流れを乱さずに同心円筒状電極2の内部に帯電粒子源から帯電粒子を含む気流を流入させることが出来る。
【0091】
また本実施形態では除去したい帯電粒子の極性と同極性の印加電圧をフィルタ電極6’に印加しているが、除去したい帯電粒子の極性と逆極性の印加電圧をフィルタ電極6’に印加しても良く、除去したい帯電粒子をフィルタ電極6’側に引き寄せて、フィルタ電極6’に取り込むことで電流として除去することができる
(実施形態3)
本発明に係る帯電粒子量評価方法を用いた帯電粒子量評価装置の実施形態3を図6に基づいて説明する。上述の実施形態1では同心円筒状電極2と同様の形状を有するフィルタ電極6を用いているが、本実施形態では略管状であって、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの形状に形成されたフィルタ電極6”を用いている。尚、フィルタ電極6”以外の構成は実施形態2と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
【0092】
フィルタ電極6”は、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの形状に形成されたテーパ部65と、テーパ部65の小径側の端部から延長形成された直管部64とで構成され、同心円筒状電極2の外部空間であって、同心円筒状電極2の内部を流れる気流の上流側に配置されている。
【0093】
フィルタ電極6”には電圧源7によって除去したい帯電粒子と同一極性の電圧が印加され、帯電粒子に斥力を与えて、除去したい粒径の帯電粒子を直管部64内に流入させないような電界を発生させており、所定の粒径以下の帯電粒子は電界による斥力を受けて吹き飛ばされ、所定の粒径よりも大きな帯電粒子のみテーパ部65を通して直管部64内に流入することができる。図中の矢印aは所定の粒径以下の帯電粒子が流れる経路、矢印bは所定の粒径よりも大きな帯電粒子が流れる経路をそれぞれ示している。ここで、フィルタ電極6”は、除去したい粒径の帯電粒子に斥力を与えて吹き飛ばすことができるように、帯電しやすい良導体で形成するのが好ましく、またフィルタ電極6”の支持部材は帯電する可能性があるため、感電などの事故を防止するために絶縁体で形成するのが好ましい。
【0094】
本実施形態の動作は実施形態2で説明した帯電粒子量評価装置1と同様であるのでその説明は省略する。
【0095】
本実施形態ではフィルタ電極6”にテーパ部65を設けることによって、同心円筒状電極2に近い側ほど断面積が小さくなるような先細りの管状電極に形成しており、テーパ部65によって、粒径が閾値以下の帯電粒子を除いた気流の通り道を確保しており、帯電粒子の空間分布への影響を少なくできる。また直管部64の半径は、同心円筒状電極2の外側導体2bの半径と略同一の半径に形成されており、直管部64と外側導体2bとの連結部分は凹凸ができないように絶縁部材などを介して連結するのが好ましく、連結部分の凹凸を無くすことで気流に乱れが発生するのを抑制できる。なお直管部64と外側導体2bとを連結できない場合には、直管部64の半径を同心円筒状電極2の外側導体2bの半径と略同じか、それよりも若干大きめの寸法に形成すれば良く、フィルタ電極6”と同心円筒状電極2との境目で気流が乱れるのを抑制できる。
【0096】
なお、本発明の精神と範囲に反することなしに、広範に異なる実施形態を構成することができることは明白なので、この発明は、特定の実施形態に制約されるものではない。
【図面の簡単な説明】
【0097】
【図1】実施形態1の帯電粒子量評価装置の概略構成図である。
【図2】同上の動作を説明するフローチャートである。
【図3】(a)(b)は同上を用いて測定された粒径分布図である。
【図4】同上の他の構成の概略構成図である。
【図5】実施形態2の帯電粒子量評価装置の概略構成図である。
【図6】実施形態3の帯電粒子量評価装置の概略構成図である。
【図7】従来の帯電粒子量評価装置の概略構成図である。
【符号の説明】
【0098】
1 帯電粒子量評価装置
2 同心円筒状電極
2a,6a 内側導体
2b,6b 外側導体
2c 環状空間
3 吸気ファン
4 電流計
5 電圧源
6 フィルタ電極
7 電圧源
10 コントローラ

【特許請求の範囲】
【請求項1】
互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配置して構成された第1の同心円筒状電極と、第1内側導体と第1外側導体との間の環状空間に軸方向に沿って気流を発生させる気流発生手段と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に直流電圧を印加するための第1の電圧印加端子と、第1内側導体および第1外側導体にそれぞれ設けられ両導体間に流れる電流を測定するための電流測定端子と、前記第1の同心円筒状電極の外部空間であって前記気流の上流側に配置され、当該フィルタ電極により粒径が所定の閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧が印加される第2の電圧印加端子が設けられたフィルタ電極を備えて成ることを特徴とする帯電粒子量評価装置。
【請求項2】
前記フィルタ電極は、互いに半径が異なる円筒状の第2内側導体および第2外側導体を同心に配置して構成された第2の同心円筒状電極からなることを特徴とする請求項1記載の帯電粒子量評価装置。
【請求項3】
前記第1内側導体と前記第2内側導体、および、前記第1外側導体と前記第2外側導体はそれぞれ半径が略同一に形成されており、第1および第2の同心円筒状電極は、それぞれの内側導体と外側導体とを重ね合わせた状態で、第1の同心円筒状電極の上流側の端部において絶縁部材を介して互いに連結されたことを特徴とする請求項2記載の帯電粒子量評価装置。
【請求項4】
前記第1及び第2の電圧印加端子にそれぞれ直流電圧を印加する第1及び第2の電圧源による印加電圧をそれぞれ調整する電圧制御手段と、前記電流測定端子に接続された電流測定手段の測定値を取得する電流値取得手段と、電圧制御手段により第1の電圧源による印加電圧を所定の電圧範囲で掃引させた場合に前記電流値取得手段の取得した電流値が極大となるときの粒径の内で2番目に大きい粒径を上記閾値として取得する除去粒径取得手段と、除去粒径取得手段の取得した閾値をもとに、粒径が閾値以下の帯電粒子を前記環状空間に流入させないような電界を発生させるための電圧値を算出する除去電圧算出手段とを備え、電圧制御手段は、第2の電圧源による印加電圧を除去電圧算出手段の算出した電圧値に制御することを特徴とする請求項1乃至3の何れかに記載の帯電粒子量評価装置。
【請求項5】
互いに半径が異なる円筒状の第1内側導体および第1外側導体を同心に配して形成される同心円筒状電極の両導体間に直流電圧を印加し、前記両導体間の環状空間に軸方向に沿って流れる気流を生成するとともに、前記気流によって両導体間の環状空間に帯電粒子を流し、両導体間に流れる電流の電流値から帯電粒子量を評価する帯電粒子量評価方法であって、両導体間に流れる帯電粒子の粒子数の粒径分布を測定し、粒子数が極大となる粒径の内、2番目に大きい粒径を除去すべき粒径の閾値として取得し、同心円筒状電極の外部空間であって前記気流の上流側に配置されたフィルタ電極に上記閾値をもとに設定した印加電圧を印加して、粒径が上記閾値以下の帯電粒子を両導体間の環状空間に流入させないような電界を発生させた状態で、両導体間に流れる帯電粒子の粒子数の粒径分布を再度測定することを特徴とする帯電粒子量評価方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−300837(P2006−300837A)
【公開日】平成18年11月2日(2006.11.2)
【国際特許分類】
【出願番号】特願2005−125597(P2005−125597)
【出願日】平成17年4月22日(2005.4.22)
【出願人】(000005832)松下電工株式会社 (17,916)
【Fターム(参考)】