説明

微生物発電方法及び微生物発電装置

【課題】簡易かつ安価な手段で微生物発電装置の発電効率を向上させる。
【解決手段】槽体30内に2枚の板状のカチオン交換膜31,31が互いに平行に配置されることにより、該カチオン交換膜31,31同士の間に負極室32が形成され、該負極室32とそれぞれ該カチオン交換膜31を隔てて2個の正極室33,33が形成されている。正極室33に酸素含有ガスを流通させ、負極室に負極溶液Lを供給し、好ましくは負極溶液を循環させる。負極室32に供給する負極溶液として下水等の有機物含有水を用い、この有機物含有水を凝集沈殿処理して微生物を除去し、負極室に流入する外来微生物量を低減することにより、発電微生物を効率的に増殖させて、発電効率を高める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、微生物の代謝反応を利用する発電方法及び装置に関する。本発明は特に、有機物を微生物に酸化分解させる際に得られる還元力を電気エネルギーとして取り出す微生物発電方法及びその装置に関する。
【背景技術】
【0002】
近年、地球環境に配慮した発電方法へのニーズが高まり、微生物発電の技術開発も進められている。微生物発電は、微生物が有機物を資化する際に得られる電気エネルギーを取り出すことにより発電する方法である。
【0003】
一般的に、微生物発電では負極が配置された負極室内に、微生物、微生物に資化される有機物、及び電子伝達媒体(電子メディエータ)を共存させる。電子メディエータは微生物体内に入り、微生物が有機物を酸化して発生する電子を受け取って負極に渡す。負極は外部抵抗(負荷)を介して正極と電気的に導通しており、負極に渡された電子は外部抵抗(負荷)を介して正極に移動し、正極と接する電子受容体に渡される。このような電子の移動により正極と負極との間に電流が流れる。
【0004】
微生物発電では、電子メディエータが微生物体から直接、電子を取り出すため、理論上のエネルギー変換効率は高い。しかし、実際のエネルギー変換効率は低く、発電効率の向上が求められている。そこで、発電効率を高めるため、電極の材料や構造、電子メディエータの種類、及び微生物種の選択等について様々な検討及び開発が行われている(例えば特許文献1、特許文献2)。
【0005】
特許文献1には、正極室と負極室とを固体電解質よりなるアルカリイオン導電体で隔て、正極室内及び負極室内をリン酸緩衝液(バッファ)でpH7とし、正極室内のリン酸緩衝液(カソード液)に空気を吹き込んで発電を行うことが記載されている。
【0006】
特許文献2には、正極室と負極室とを区画する電解質膜に接するように、正極板として多孔質体を設置し、正極室に空気を流通させ、多孔質体の空隙中で空気と液とを接触させることが記載されている。(以下、このように正極室内に空気を流通させ、空気中の酸素を電子受容体として利用する正極を「エアーカソード」と称す場合がある。)
【0007】
エアーカソードを用いる微生物発電装置であれば、カソード液が不要で、また、正極室に単に空気を流通させるのみで良く、カソード液中への曝気の必要がないといった利点がある。
【0008】
また、特許文献3には、汚泥返流水中の有機物を微生物発電の燃料源として利用することが記載され、この汚泥返流水を固液分離槽で固液分離して固形物を除去した後、微生物発電装置の負極室に導入することが記載されている。この特許文献3には、微生物発電装置の排出水に凝集剤を添加して凝集汚泥を除去することが記載されているが、微生物発電装置の負極室に導入する汚泥返流水については、重力沈殿池で固液分離するのみであり、凝集処理する旨の記載はない。
【0009】
従来、このような微生物発電装置における発電効率の向上を目的として、
1)負極のメディエーター(例えば特許文献4)
2)負極室のpH調整
3)正極触媒の種類や触媒活性成分の担持方法
4)正極の形状
などについての検討がなされている。
【特許文献1】特開2000−133326号公報
【特許文献2】特開2004−342412号公報
【特許文献3】特開2006−81963号公報
【特許文献4】特開2006−331706号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
従来の微生物発電装置では、発電効率が小さく、実用化のためには、更なる発電効率の向上が望まれている。
特に、特許文献3のように、汚泥返流水のような有機性廃水を負極室に供給して廃水中の有機物をエネルギー源として用いることは、コスト面でも有利であるが、この場合においては、発電効率が非常に小さいものとなり、実用化のためには更なる改善が望まれる。
本発明は、簡易かつ安価な手段で微生物発電装置の発電効率を向上させることができる微生物発電方法及び微生物発電装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明(請求項1)の微生物発電方法は、負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接する正極を有する正極室とを備えた微生物発電装置の該正極室に酸素含有ガスを供給すると共に、該負極室に有機物含有水を供給して発電を行う微生物発電方法において、該負極室に供給される有機物含有水を凝集処理して該負極室に導入される微生物量を低減することを特徴とする。
【0012】
本発明(請求項2)の微生物発電方法は、請求項1において、該有機物含有水を凝集沈殿処理した後、該負極室に供給することを特徴とする。
【0013】
本発明(請求項3)の微生物発電方法は、請求項1又は2において、該有機物含有水が有機性排水又は有機性廃棄物の抽出液であることを特徴とする。
【0014】
本発明(請求項4)の微生物発電装置は、負極を有し、微生物及び電子供与体を含む液を保持する負極室と、該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接する正極を有する正極室と、該正極室に酸素含有ガスを供給する手段と、該負極室に有機物含有水を供給する手段とを備えた微生物発電装置において、該負極室に供給される有機物含有水を凝集処理して、該負極室に導入される微生物量を低減する手段を設けたことを特徴とする。
【0015】
本発明(請求項5)の微生物発電装置は、請求項4において、該負極室に導入される微生物量を低減する手段が凝集沈殿装置であることを特徴とする。
【0016】
本発明(請求項6)の微生物発電装置は、請求項4又は5において、該有機物含有水が有機性廃水又は有機性廃棄物の抽出液であることを特徴とする。
【発明の効果】
【0017】
本発明においては、負極室に供給する有機物含有水を凝集処理して負極室に導入される有機物含有水由来の微生物量を低減することにより、微生物発電装置内で発電微生物を効率的に増殖させて、発電効率を良好に高めることができる。これは以下の理由による。
【0018】
微生物発電装置の発電効率の向上のためには、
1)負極室内微生物の負極への電子の伝達
2)有機物の分解の際生成されるプロトン等のイオンの正極室への透過
を効率良く行うことが重要である。
【0019】
通常、負極室には、グラファイトフェルトやグラファイトクロス、グラファイトペレット、グラファイト成形物等を負極材として充填し、これに微生物を付着させることによって、発電微生物を負極内に維持し、かつ電子の移動を行わせている。
【0020】
しかし、この負極室に、外部から発電微生物以外の微生物(以下「外来微生物」と称す。)が流入すると、この外来微生物が負極の充填剤に付着し、増殖の遅い発電微生物に代わって、外来微生物が増殖し、負極室内の微生物の多くは、外来微生物となってしまう。即ち、発電微生物は、微生物の電子伝達系の中間から電子を負極に伝達するため、多くの有機物を分解するにもかかわらず、十分なエネルギーが得られず、分解有機物あたりの菌体生成率が極めて低い。つまり増殖が遅い。
本発明者の検討結果では、例えば、酢酸をエネルギー源とした場合、酢酸1gあたり、発電微生物は0.001〜0.005g、グルコースの場合においても、1gあたり、発電微生物は0.01〜0.05gしか増殖できないことが判明した。このように、発電微生物の増殖量は極めて小さいため、負極室に大量の外来微生物が流入すると、負極中の発電微生物量はごくわずかになってしまい、結果として発電効率の低下につながる。
【0021】
通常、上述のような負極充填材を用いた場合の微生物保持量は、最大でも20g/L程度であり、それ以上の微生物は洗浄、その他の操作で負極から取り除く必要がある。
例えば、負極室に供給する有機物含有水中に100mg/Lの外来微生物が存在すると、酢酸1000mg/Lを含む有機物含有水であっても、その95〜99%は外来微生物に変換されてしまう。これに対して、負極室に供給する有機物含有水を凝集処理して、好ましくは凝集分離により外来微生物を除去することにより、負極室内で発電微生物が効率的に増殖し、発電微生物量は、有機物含有水の凝集処理を行わない場合に比べて20〜100倍にも増殖することになる。
【0022】
本発明では、このように、外来微生物の負極室内への流入を阻止することで、発電微生物を効率的に増殖させて、発電効率を高めることができる。
【0023】
なお、前述の特許文献3では、微生物発電装置の負極室に供給する汚泥返流水を固液分離しているが、単なる固液分離では外来微生物を十分に除去することはできず、外来微生物の流入を阻止するためには、凝集剤を添加して凝集処理し、これを固液分離する必要がある。
【0024】
従って、本発明において、凝集処理は凝集分離処理、特に凝集沈殿処理であることが好ましい。
【発明を実施するための最良の形態】
【0025】
以下、図面を参照して本発明の微生物発電方法及び微生物発電装置の実施の形態を詳細に説明する。
【0026】
第2図は本発明の微生物発電方法及び装置の概略的な構成を示す模式的断面図である。
【0027】
第2図の微生物発電装置にあっては、槽体1内がイオン透過性非導電性膜2によって正極室3と負極室4とに区画されている。正極室3内には、イオン透過性非導電性膜2に接するように正極5が配置されている。
【0028】
負極室4内には、導電性多孔質材料よりなる負極6が配置されている。この負極6は、イオン透過性非導電性膜2に直に、又は1〜2層程度の微生物の膜を介して接しており、イオン透過性非導電性膜2がカチオン透過膜であれば、負極6からイオン透過性非導電性膜2にプロトン(H)が受け渡し可能となっている。
【0029】
正極室3内は、空室であり、ガス流入口7から空気などの酸素含有ガスが導入され、ガス流出口8から排出配管25を経て排ガスが流出する。23は、正極室3に酸素含有ガスを供給する配管である。
【0030】
正極室3と負極室4とを仕切るイオン透過性非導電性膜2としては、後述する通り、カチオン透過膜が好適であるが、その他のものであっても良い。
【0031】
多孔質材料よりなる負極6に微生物が担持されている。負極室4には流入口4aから負極溶液Lを導入し、流出口4bから廃液を排出させる。なお、負極室4内は嫌気性とされる。
【0032】
負極室4内の負極溶液Lは循環往口9、循環配管10、循環用ポンプ11及び循環戻口12を介して循環される。この循環配管10には、負極室4から流出してきた液のpHを測定するpH計14が設けられると共に、水酸化ナトリウム水溶液などのアルカリ添加用配管13が接続され、負極溶液LのpHが7〜9となるように、必要に応じてアルカリが添加される。
【0033】
本発明においては、この負極溶液Lとして、有機物含有水、特に、有機性廃水又は有機性廃棄物の抽出液を、凝集処理、好ましくは凝集分離処理、より好ましくは凝集沈殿処理した処理水を導入する。この凝集処理については後述する。
【0034】
正極室3内で生じた凝縮水は、図示しない凝縮水流出口から排水される。
【0035】
正極5と負極6との間に生じた起電力により、端子20,22を介して外部抵抗21に電流が流れる。
【0036】
正極室3に酸素含有ガスを通気すると共に、必要に応じポンプ11を作動させて負極溶液Lを循環させることにより、負極室4内では、
(有機物)+HO→CO+H+e
なる反応が進行する。この電子eが負極6、端子22、外部抵抗21、端子20を経て正極5へ流れる。
【0037】
上記反応で生じたプロトンHは、イオン透過性非導電性膜5Aのカチオン透過膜を通って正極5に移動する。正極5では、
+4H+4e→2H
なる反応が進行する。この正極反応で生成したHOは凝縮して凝縮水が生じる。この凝縮水には、イオン透過性非導電性膜2のカチオン透過膜を透過してきたK,Naなどが溶け込み、これにより凝縮水がpH9.5〜12.5程度の高アルカリ性となる。従って、この高アルカリ性の凝縮水を前述の負極溶液LのpH調整に利用しても良い。
【0038】
負極室4では、微生物による水の分解反応によりCOが生成することにより、pHが低下しようとする。そこで、pH計14の検出pHが好ましくは7〜9となるようにアルカリが負極溶液Lに添加される。このアルカリは、負極室6に直接に添加されてもよいが、循環水に添加することにより、負極室6内の全域を部分的な偏りなしにpH7〜9に保つことができる。
【0039】
第1図は本発明の特に好ましい形態に係る微生物発電装置の概略的な断面図である。
【0040】
第1図の微生物発電装置にあっては、略直方体形状の槽体30内に2枚の板状のイオン透過性非導電性膜31,31が互いに平行に配置されることにより、該イオン透過性非導電性膜31,31同士の間に負極室32が形成され、該負極室32とそれぞれ該イオン透過性非導電性膜31を隔てて2個の正極室33,33が形成されている。
【0041】
負極室32内には、各イオン透過性非導電性膜31と直に、又は1層〜2層程度の生物膜を介して接するように、多孔質材料よりなる負極34が配置されている。負極34は、イオン透過性非導電性膜31,31に対し軽く(例えば0.1kg/cm以下の圧力で)押し付けられるのが好ましい。
【0042】
正極室33内には、イオン透過性非導電性膜31と接して正極35が配置されている。この正極35は、パッキン36に押圧されてイオン透過性非導電性膜31に押し付けられている。正極35とイオン透過性非導電性膜31との密着性を高めるために、両者を溶着したり、接着剤で接着してもよい。
【0043】
正極35と槽体30の側壁との間は、酸素含有ガスの流通スペースとなっている。
【0044】
この正極35及び負極34は、端子37,39を介して外部抵抗38に接続されている。
【0045】
負極室32には、流入口32aから負極溶液Lが導入され、流出口32bから廃液が流出する。負極室32内は嫌気性とされる。
【0046】
負極室32内の負極溶液は、循環往口41、循環配管42、循環ポンプ43及び循環戻口44を介して循環される。各正極室33には、配管61からの酸素含有ガスがガス流入口51から流入し、排ガスがガス流出口52から配管63を経て流出する。
【0047】
負極溶液の循環配管42に、pH計47が設けられると共に、アルカリ添加用配管45が接続されている。負極室32から流出する負極溶液のpHをpH計47で検出し、このpHが好ましくは7〜9となるように水酸化ナトリウム水溶液などのアルカリが添加される。
【0048】
この第1図の微生物発電装置においても、正極室33に酸素含有ガスを流通させ、負極室32に負極溶液を流通させ、好ましくは負極溶液を循環させることにより、正極35と負極34との間に電位差が生じ、外部抵抗38に電流が流れる。
【0049】
次に、この微生物発電装置の微生物、負極溶液などのほか、酸素含有ガスや、イオン透過性非導電性膜、負極及び正極の好適な材料等について説明する。
【0050】
発電微生物は、電子供与体としての機能を有するものであれば特に制限されない。例えば、Saccharomyces、Hansenula、Candida、Micrococcus、Staphylococcus、Streptococcus、Leuconostoa、Lactobacillus、Corynebacterium、Arthrobacter、Bacillus、Clostridium、Neisseria、Escherichia、Enterobacter、Serratia、Achromobacter、Alcaligenes、Flavobacterium、Acetobacter、Moraxella、Nitrosomonas、Nitorobacter、Thiobacillus、Gluconobacter、Pseudomonas、Xanthomonas、Vibrio、Comamonas及びProteus(Proteus vulgaris)の各属に属する細菌、糸状菌、酵母などを挙げることができる。このような微生物を含む汚泥として下水等の有機物含有水を処理する生物処理槽から得られる活性汚泥、下水の最初沈澱池からの流出水に含まれる微生物、嫌気性消化汚泥等を植種として負極室に供給し、微生物を負極に保持させることができる。発電効率を高くするためには、負極室内に保持される微生物量は高濃度であることが好ましく、例えば微生物濃度は1〜50g/Lであることが好ましい。
【0051】
負極溶液Lとしての有機物含有水としては、微生物又は細胞を保持し、かつ発電に必要な組成を有する溶液が用いられる。例えば、呼吸系の発電を行う場合は、負極側の溶液としては、ブイヨン培地、M9培地、L培地、Malt Extract、MY培地、硝化菌選択培地などの呼吸系の代謝を行うのに必要なエネルギー源や栄養素などの組成を有する培地が利用できる。また、下水、有機性産業排水、生ごみ等の有機性廃棄物を用いることができる。
【0052】
負極溶液L中には、微生物又は細胞からの電子の引き抜きをより容易とするために電子メディエーターを含有させてもよい。この電子メディエーターとしては、例えば、チオニン、ジメチルジスルホン化チオニン、ニューメチレンブルー、トルイジンブルー−O等のチオニン骨格を有する化合物、2−ヒドロキシ−1,4−ナフトキノン等の2−ヒドロキシ−1,4−ナフトキノン骨格を有する化合物、ブリリアントクレジルブルー、ガロシアニン、レソルフィン、アリザリンブリリアントブルー、フェノチアジノン、フェナジンエソスルフェート、サフラニン−O、ジクロロフェノールインドフェノール、フェロセン、ベンゾキノン、フタロシアニン、あるいはベンジルビオローゲン及びこれらの誘導体などを挙げることができる。
【0053】
さらに、微生物の発電機能を増大させるような材料、例えばビタミンCのような抗酸化剤や、微生物中の特定の電子伝達系や物質伝達系のみを働かせる機能増大材料を溶解すると、さらに効率よく電力を得ることができるので好ましい。
【0054】
負極溶液Lは、必要に応じ、リン酸バッファを含有していてもよい。
【0055】
負極溶液Lとしての有機物含有水中の有機物としては、微生物によって分解されるものであれば特に制限はないが、水溶性の有機物であることが好ましい。負極溶液Lとしての有機物含有水中の有機物濃度は、発電効率を高くするために100〜10000mg/L程度の高濃度であることが好ましい。
【0056】
本発明においては、この負極溶液Lとして負極室に供給する有機物含有水として、好ましくは食品系有機廃水、飲料廃水、醸造廃水等の有機性廃水又は有機性廃棄物の抽出液を用い、この有機物含有水を凝集処理、好ましくは凝集分離、より好ましくは凝集沈澱処理した後負極室に供給する。
【0057】
ここで用いる凝集剤としては特に制限はなく、有機性廃水の処理に一般的に用いられる無機凝集剤や高分子凝集剤を用いることができる。例えば、無機凝集剤として、PAC(ポリ塩化アルミニウム)、塩化第二鉄、ポリ硫酸第二鉄、硫酸第一鉄等、カチオン性高分子凝集剤として、ポリジメチルジアリルアンモニウムクロライド、ポリアルキレンポリアミン等、アニオン性高分子凝集剤として、2−アクリルアミド−2−メチルプロパンスルホン酸単位を有するポリマー等、ノニオン性高分子凝集剤として、ポリエチレンイミン、ジシアンジアミド−ホルマリン縮合物等、従来公知の凝集剤をいずれも好適に用いることができる。これらの凝集剤は1種を単独で用いても良く、2種以上を併用しても良い。
【0058】
凝集剤の添加量は有機物含有水の性状、用いる凝集剤の種類によって異なり、一概には言えないが、通常有機物含有水に対して無機凝集剤では20〜50mg/L、高分子凝集剤では0.5〜10mg/L程度である。
なお、凝集処理に際しては、用いる凝集剤に応じて、好適pHにpH調整することが好ましい。
【0059】
凝集処理水を固液分離する固液分離手段としては、装置が簡単で運転が容易であることにより、沈殿槽が好適に用いられるが、膜分離装置であっても良い。また、沈殿槽の後段に更に濾過装置を設けて外来微生物を高度に除去しても良い。
【0060】
本発明では、このような凝集処理、好ましくは凝集分離、より好ましくは凝集沈澱処理を行うことにより、負極室に導入される有機物含有水中の外来微生物がSS濃度として50mg/L以下、特に20mg/L以下となるように十分に低減することが好ましい。
【0061】
正極室に流通させる酸素含有ガスとしては、空気が好適であるが、純酸素や、酸素を富化させた空気を用いることもできる。
この正極室からの排ガスは、必要に応じ脱酸素処理した後、負極室に通気し、負極溶液Lからの溶存酸素のパージに用いてもよい。
【0062】
イオン透過性非導電性膜としては、非導電性でイオン透過性のあるカチオン透過膜又はアニオン透過膜等のイオン透過膜であれば良く、各種イオン交換膜や逆浸透膜等を用いることができる。イオン交換膜としては、プロトン選択性の高いカチオン交換膜、又はアニオン交換膜を好適に使用でき、例えばカチオン交換膜としてはデュポン株式会社製ナフィオン(登録商標)、株式会社アストム製のカチオン交換膜であるCMB膜等が使用できる。また、アニオン交換膜としては、アストム製アニオン交換膜やトクヤマ製アニオン型電解質膜などが好適である。イオン透過性非導電性膜は、薄くて丈夫であることが好ましく、通常、その膜厚は30〜300μm、特に30〜200μm程度であることが好ましい。
【0063】
負極は、多くの微生物を保持できるよう、表面積が大きく空隙が多く形成され通水性を有する多孔体が好ましい。具体的には、少なくとも表面が粗とされた導電性物質のシートや導電性物質をフェルト状その他の多孔性シートにした多孔性導電体(例えばグラファイトフェルト、発泡チタン、発泡ステンレス等)が挙げられる。
【0064】
このような多孔質の負極を直接に又は微生物層を介してイオン透過性非導電性膜に当接させた場合、電子メディエータを用いることなく、微生物反応で生じた電子が負極に渡るようになり、電子メディエータを不要とすることができる。
【0065】
複数のシート状導電体を積層して負極としてもよい。この場合、同種の導電体シートを積層してもよく、異なる種類の導電体シート同士(例えばグラファイトフェルトと粗面を有するグラファイトシート)を積層してもよい。
【0066】
負極は全体の厚さが3mm以上40mm以下、特に5〜20mm程度であることが好ましい。積層シートによって負極を構成した場合、シート同士の合わせ面(積層面)に沿って液が流れるように、積層面を液の流入口と流出口とを結ぶ方向に配向させるのが好ましい。
【0067】
本発明では、負極室を複数の分室に分割し、各分室を直列接続することで各分室でのpH低下を抑制した上で負極室内の液のpHを調整するようにしてもよい。負極室を分割すれば、各分室での有機物分解量が小さくなる結果、炭酸ガスの生成量も小さくなるため、各分室でのpH低下を少なくできる。
【0068】
正極は、導電性基材と、該導電性基材に担持された酸素還元触媒とを有することが好ましい。
【0069】
導電性基材としては、導電性が高く、耐食性が高く、厚みが薄くても十分な導電性と耐食性、更には導電性基材としての機械的強度を有するものであれば良く、特に制限はないが、グラファイトペーパー、グラファイトフェルト、グラファイトクロス、ステンレスメッシュ、チタンメッシュ等を用いることができ、これらのうち、特に耐久性と加工のしやすさ等の点から、グラファイトペーパー、グラファイトフェルト、グラファイトクロス等のグラファイト系基材が好ましく、とりわけグラファイトペーパーが好ましい。なお、これらのグラファイト系基材はポリテトラフルオロエチレン(PTFE)等のフッ素樹脂によって疎水化されたものであっても良い。
【0070】
正極の導電性基材の厚さは、厚過ぎると酸素の透過が悪くなり、薄過ぎると、基材に必要な強度等の要求特性を満たすことができないことから、20〜3000μm程度であることが好ましい。
【0071】
酸素還元触媒としては、白金等の貴金属のほか、安価で且つ触媒活性が良好であるところから、二酸化マンガン等の金属酸化物が好適であり、その担持量は、0.01〜2.0mg/cm程度とすることが好ましい。
【0072】
なお、以上の説明では、正極室に空気等の酸素含有ガスを導入するエアーカソードを用いた微生物発電装置を例示したが、本発明の微生物発電装置は何らエアーカソードのものに限定されず、正極室内のリン酸緩衝液(カソード液)に空気を吹き込んで発電を行う形式のものであっても良い。
【実施例】
【0073】
以下、実施例及び比較例を挙げて、本発明をより具体的に説明する。
説明の便宜上まず比較例を挙げる。
【0074】
[比較例1]
7cm×25cm×2cm(厚さ)の負極室に、厚さ1cmのグラファイトフェルトを2枚重ねて充填して負極を形成した。この負極に対して、イオン透過性非導電性膜としてカチオン交換膜(デュポン株式会社製 商品名(登録商標)「ナフィオン115」)を介して正極室を形成した。正極室は7cm×25cm×0.5cm(厚さ)であり、田中貴金属社製Pt触媒(Pt担持カーボンブラック,Pt含有量50重量%)を、5重量%ナフィオン(登録商標)溶液(デュポン社製)に分散させた液を、PTFEで撥水処理した厚さ160μmのカーボンペーパー(東洋カーボン社製)に、Pt付着量が0.4mg/cmとなるように塗布し、50℃で乾燥させて得られたものを正極として、上記カチオン交換膜と密着させた。
負極のグラファイトフェルトと正極のカーボンペーパーには、ステンレス線を導電性ペーストで接着して電気引出し線とし、2Ωの抵抗で接続した。
【0075】
負極室には、下水に酢酸を1000mg/L添加し、pHを7.5に維持した、負極溶液を通液した。この負極溶液は予め、別水槽で35℃に加温し、この水槽で加温した液を負極室へ10mL/minで通液することにより、負極室の温度を35℃に加温した。なお、負極溶液の通液に先立って、他の微生物発電装置の流出液を植菌として通液した。
正極室には、常温の空気を1.0L/minの流量で通気した。
その結果、負極溶液の通液開始から3日後には発電量はほぼ一定となり、負極1mあたりの発電量は12W(発電効率12W/m)となった。
【0076】
[比較例2]
比較例1において、酢酸を添加し、pHを7.5に維持した下水を30分間静置して自然沈降分離により固液分離した上澄水を負極室に通液したこと以外は同様にして発電を行ったところ、発電効率41W/mとなった。
【0077】
[実施例1]
比較例2において、酢酸を添加し、pHを7.5に維持した下水に、凝集剤として塩化第二鉄をFeとして25mg/L添加した後、沈殿槽で固液分離し、上澄水を負極室に通液したこと以外は同様にして発電を行ったところ、発電効率は140W/mとなった。
【0078】
なお、比較例1,2及び実施例1において、負極室に負極溶液として通液された下水(酢酸添加、pH7.5)中のSS濃度と発電効率との関係を表1に示す。
【0079】
【表1】

【0080】
表1より本発明によれば、下水中の微生物を高度に凝集分離して除去することにより、下水等の有機物含有水をエネルギー源として利用する微生物発電装置の発電効率を格段に高めることができることが分かる。
【図面の簡単な説明】
【0081】
【図1】本発明の一実施形態に係る微生物発電装置の断面模式図である。
【図2】本発明の一実施形態に係る微生物発電装置の断面模式図である。
【符号の説明】
【0082】
1,30 槽体
2,31 イオン透過性非導電性膜
3,33 正極室
4,32 負極室
5,35 正極
6,34 負極

【特許請求の範囲】
【請求項1】
負極を有し、微生物及び電子供与体を含む液を保持する負極室と、
該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接する正極を有する正極室と
を備えた微生物発電装置の該正極室に酸素含有ガスを供給すると共に、該負極室に有機物含有水を供給して発電を行う微生物発電方法において、
該負極室に供給される有機物含有水を凝集処理して該負極室に導入される微生物量を低減することを特徴とする微生物発電方法。
【請求項2】
請求項1において、該有機物含有水を凝集沈殿処理した後、該負極室に供給することを特徴とする微生物発電方法。
【請求項3】
請求項1又は2において、該有機物含有水が有機性排水又は有機性廃棄物の抽出液であることを特徴とする微生物発電方法。
【請求項4】
負極を有し、微生物及び電子供与体を含む液を保持する負極室と、
該負極室に対しイオン透過性非導電性膜を介して隔てられており、該イオン透過性非導電性膜に接する正極を有する正極室と、
該正極室に酸素含有ガスを供給する手段と、
該負極室に有機物含有水を供給する手段と
を備えた微生物発電装置において、
該負極室に供給される有機物含有水を凝集処理して、該負極室に導入される微生物量を低減する手段を設けたことを特徴とする微生物発電装置。
【請求項5】
請求項4において、該負極室に導入される微生物量を低減する手段が凝集沈殿装置であることを特徴とする微生物発電装置。
【請求項6】
請求項4又は5において、該有機物含有水が有機性廃水又は有機性廃棄物の抽出液であることを特徴とする微生物発電装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−146801(P2010−146801A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−321003(P2008−321003)
【出願日】平成20年12月17日(2008.12.17)
【出願人】(000001063)栗田工業株式会社 (1,536)
【Fターム(参考)】