説明

掘削工具の製造方法及び掘削工具

【課題】上面外周側一部分にダイヤモンド焼結体で構成されたカッタを配置した切刃チップを、工具本体の取付部に強固に固定できる掘削工具の製造方法及び掘削工具を提供する。
【解決手段】工具本体の取付部3に切刃チップ11が装着された掘削工具の製造方法であって、切刃チップ11は超硬合金製の切刃基体12とダイヤモンド焼結体製のカッタ14とを有し、切刃チップ11の上面外周の20%以上50%未満をカッタ14が占め、カッタ14と切刃基体12とが接合される第1接合工程の後に、切刃基体12と取付部3とが接合される第2接合工程を有し、第2接合工程において、カッタ14の温度がダイヤモンド焼結体の劣化温度よりも低く、かつ、カッタ14と切刃基体12との接合部分の温度が第1接合工程の接合温度よりも低く維持されるとともに、切刃基体12と取付部3との接合部分の温度が、劣化温度よりも高くされていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、坑井などの掘削に使用される掘削工具の製造方法及び掘削工具に関するものである。
【背景技術】
【0002】
油井その他の坑井などの掘削の際に用いられる掘削工具として、合金鋼で構成され円柱状に形成された工具本体の先端側に、取付部としてタングステンカーバイト基超硬合金で構成されたポスト(以下、超硬ポストという)が所定の配列でろう付けや焼き嵌めなどによって固定され、これら超硬ポストのそれぞれに、ダイヤモンド焼結体で構成されたカッタを有する切刃チップがろう付けされたものや、取付部として工具本体の先端に形成したタングステンカーバイド合金製のマトリックス部に、上記切刃チップが直接ろう付けされたものが知られている。
上記の掘削工具は、掘削機械に取り付けられ、モーター等の回転駆動体に接続され、工具本体の回転軸回りに回転されるとともに、掘削工具先端側の被掘削材中に送り込まれることによって、工具本体先端に装着された切刃チップで被掘削材である岩盤等を掘削して穿孔加工するものである。
【0003】
一般に、上記の掘削工具の先端部にろう付けされる切刃チップは、掘削する際の衝撃荷重に対応するために、略円形平板状に形成されており、切刃チップの上面外周がすべてPCD(多結晶ダイヤモンド)等のダイヤモンド焼結体で構成されているものが広く使用されている。このような切刃チップが超硬ポストやマトリックス部にろう付けされた掘削工具では、切刃チップの上面外周のうちの一部のみが掘削に使用され、ダイヤモンド焼結体の未使用部分が存在してしまう。
【0004】
ダイヤモンド焼結体は、超高圧で焼結することにより製造されるためにコストが非常に高く、未使用部分のダイヤモンド焼結体を再利用することが多い。上記の掘削工具では、一度ろう付けされた切刃チップを取り外し、回転させ、再度ろう付けして使用しているが、工具本体をろう材が溶融する温度まで加熱する必要があり、切刃チップの着脱に多大な時間と労力が必要であった。また、一度使用した工具本体や超硬ポストを再利用するため、この工具本体や超硬ポストが掘削作業時に変形や破損等した場合には、切刃チップを精度良くろう付けできず、再使用できなくなるといった問題があった。
【0005】
上記のような状況から、非特許文献1では、Co金属を焼結助剤とする円形平板状をなすダイヤモンド焼結体から構成される切刃チップを装着した掘削工具の製作コストの低減を図るため、例えば中心角120°の扇形ダイヤモンド焼結体を有する切刃チップをマトリックス部に直接接合した掘削工具が開示されている。(非特許文献1参照。)
このような切刃チップが装着された掘削工具では、ダイヤモンド焼結体の未使用部分がなくなるとともに、切刃チップを着脱して使用する必要がないので、切刃チップの着脱作業をなくすことができる。また、ダイヤモンド焼結体の使用量が少ないので、この切刃チップの製造コストを低減することができる。
【非特許文献1】T.Ohno, et al.“Cost reduction of polycrystalline diamond compact bits through improved durability” Geothermics, vol.31, pp.245-262,2002
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところで、焼結助剤としてCoを用いた一般ダイヤモンド焼結体は、5〜6GPaの高圧下で、1500℃で30分保持の熱処理を施して焼結したもので製造コストが高いため、その高コストを相殺できる石油井等の掘削に専ら使用されている。
上記の一般ダイヤモンド焼結体によってカッタが構成されていた場合には、ダイヤモンド焼結体が約800℃で劣化して、その硬度が著しく低下してしまうので、ダイヤモンド焼結体部分の実質的温度を800℃以下に維持して接合する必要がある。したがって、従来は、接合温度を800℃以下として接合していた。
【0007】
切刃チップを超硬ポストあるいはマトリックス部にろう付けにて接合する場合には、高融点のろう材は低融点のろう材に比べて接合強度が高いため、切刃チップと超硬ポストあるいはマトリックス部との接合強度は、ろう付け温度(接合温度)が高いほど高くなり、ろう付け温度が低いほど低くなってしまう。したがって、上述のようにろう付け温度(接合温度)を低くした場合には、掘削抵抗によって切刃チップの脱落が生じやすいといった問題があった。
また、扇形のカッタ自体を直接超硬ポストやマトリックス部にろう付けした場合には、接合面積が小さいため、強固に接合することができず、カッタが脱落及び破損してしまい、掘削工具として使用できなくなるといった問題があった。
【0008】
この発明は、上述した事情に鑑みてなされたものであって、上面外周側一部分にダイヤモンド焼結体で構成されたカッタを配置した切刃チップを、工具本体の取付部に強固に固定できる掘削工具の製造方法及び掘削工具を提供することを目的とするものである。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明は以下の手段を提案している。
請求項1記載の掘削工具の製造方法は、円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具の製造方法であって、前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、前記カッタと前記切刃基体とが接合される第1接合工程と、該第1接合工程の後に、前記切刃基体と前記取付部とが接合される第2接合工程とを有し、該第2接合工程において、前記カッタの温度が前記カッタを構成する前記ダイヤモンド焼結体の劣化温度よりも低く、かつ、前記カッタと前記切刃基体との接合部分の温度が前記第1接合工程の接合温度よりも低く維持されるとともに、前記切刃基体と前記取付部との接合部分の温度が、前記劣化温度よりも高くされていることを特徴とする。
【0010】
上記の構成の掘削工具の製造方法では、カッタと切刃基体とを接合する第1接合工程の後に切刃基体と取付部を接合する第2接合工程を有し、この第2接合工程において、カッタ部分の温度がカッタを構成するダイヤモンド焼結体の劣化温度よりも低い温度に維持されているので、この第2接合工程でのカッタの劣化が防止される。
また、カッタと切刃基体との接合部分の温度が第1接合工程の接合温度よりも低い温度に維持されているので、カッタと切刃基体との接合部分の接合強度が低下することが防止される。
さらに、切刃基体と取付部との接合部分の温度が、ダイヤモンド焼結体の劣化温度よりも高くされているので、切刃基体と取付部とを強固に固定できる。
また、切刃チップの上面外周のうちカッタが占める割合が20%以上50%未満とされているので、切刃チップのうち切刃基体が占める割合が大きく、カッタが切刃基体によって支持される。
なお、カッタと切刃基体とを接合する第1接合工程における接合方法については、特に制限はなく、ダイヤモンド焼結体が実質的に劣化しないように接合されていればよい。
【0011】
請求項2に記載の掘削工具の製造方法は、前記第2接合工程において、前記カッタの温度を前記ダイヤモンド焼結体の前記劣化温度よりも低く、かつ、前記カッタと前記切刃基体との接合部分の温度を前記第1接合工程の接合温度よりも低く維持する手段として熱交換器を使用し、前記切刃基体と前記取付部との接合部分の温度を前記劣化温度よりも高くする手段として局所加熱手段を使用することを特徴とする。
この掘削工具の製造方法では、熱交換器によってカッタ及びカッタと切刃基体との接合部分の温度が低く維持されているので、カッタの劣化やカッタと切刃基体との接合部分の接合強度の低下が防止される。また、局所加熱手段によって切刃基体と取付部との接合部分の温度がダイヤモンド焼結体の劣化温度よりも高くされる。
【0012】
請求項3に記載の掘削工具は、円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具であって、前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、前記カッタと前記切刃基体との間に第1接合層が形成され、前記切刃基体と前記取付部との間には、前記カッタと前記切刃基体との間に第1接合層が形成され、前記切刃基体と前記取付部との間には、第2接合層が形成され、該第2接合層は、前記ダイヤモンド焼結体の劣化温度よりも高い温度にて形成されることを特徴とする。
【0013】
上記の構成の掘削工具は、切刃基体と取付部との間の第2接合層が、カッタを構成するダイヤモンド焼結体の劣化温度よりも高い温度にて形成されるので、切刃基体と取付部とが高い接合強度で接合される。
また、カッタの下面側に超硬合金からなる着座部が設けられているので、切刃基体とカッタとの接合が同じ超硬合金同士となる。
【発明の効果】
【0014】
請求項1に記載の発明によれば、第2接合工程において、切刃基体と工具本体とがダイヤモンド焼結体の劣化温度よりも高温で接合され、切刃チップが工具本体に強固に固定されているので、被掘削材掘削時の衝撃力による切刃チップの脱落を防止することができる。
また、第2接合工程においてカッタが劣化することが防止されているので、カッタの硬度が著しく低下することが防止され、このカッタを掘削に使用できる。また、カッタと切刃基体との接合部分の接合強度の低下が防止されているので、掘削抵抗によってカッタが切刃基体から外れてしまうことを防止できる。
【0015】
また、切刃チップの上面外周のうちカッタが占める割合が20%以上50%未満とされているので、温度を低く維持する部分の体積が小さく、カッタの温度を確実にダイヤモンド焼結体の劣化温度よりも低く維持することができる。
また、切刃チップのうちの切刃基体が占める割合が大きくされているが、切刃基体を構成する超硬合金の熱伝導率は、カッタを構成するダイヤモンド焼結体の熱伝導率よりも著しく小さいので、切刃基体と取付部との接合部分を加熱した際の熱がカッタにまで伝わることが抑えられ、カッタの温度をダイヤモンド焼結体の劣化温度よりも低く維持することができる。
【0016】
請求項2に記載の発明によれば、熱交換器と局所加熱手段によって、カッタの劣化やカッタと切刃基体との接合部分の接合強度低下が防止されるとともに、切刃基体と取付部との接合部分の温度がダイヤモンド焼結体の劣化温度よりも高くされるので、カッタが劣化することなく切刃チップを取付部に強固に固定することができ、被掘削材掘削時の衝撃力による切刃チップの脱落を確実に防止することができる。
また、切刃チップの上面外周のうちカッタが占める割合が20%以上50%未満とされているので、第2接合工程で使用される熱交換器を小さく構成することができる。
【0017】
請求項3に記載の発明によれば、切刃基体と取付部とが高い接合強度で接合されているので、掘削抵抗によって切刃チップが工具本体から脱落しない掘削工具を提供することができる。また、切刃基体とカッタとの接合が同じ超硬合金同士となるので、切刃基体とカッタとの接合強度をより高くすることができる。
また、切刃チップの上面外周のうちダイヤモンド焼結体で構成されたカッタの占める割合が20%以上50%未満とされているので、高価なダイヤモンド焼結体部分が少なく、切刃チップの製造コストを低減することができる。また、掘削作業において、カッタの未使用部分がなくなるので、この切刃チップを再利用する必要がない。
【0018】
したがって、本発明によれば、上面外周側一部分にダイヤモンド焼結体で構成されたカッタを配置した切刃チップを、工具本体の取付部に強固に固定できる掘削工具の製造方法及び掘削工具を提供することができる。
【発明を実施するための最良の形態】
【0019】
以下に、本発明の実施形態について添付した図面を参照して説明する。
図1に、本発明の実施形態である掘削工具を、図2に、掘削工具の先端部に具備される超硬ポストと切刃チップを示す。
【0020】
掘削工具1は、例えばJIS・SCH415に規定される合金鋼等からなり外形が円柱状に形成された工具本体2と、工具本体2の先端面に所定の配列で複数設けられた超硬ポスト3とを有する。本実施形態においては、図1に示すように、径方向に等間隔で4つ、周方向に等間隔で4つ配置されている。この超硬ポスト3が取付部とされ、工具本体2に対してろう付けや焼き嵌めなどの手段によって装着されている。
【0021】
超硬ポスト3は、図2に示すように柱状に形成されており、タングステンカーバイド基超硬合金によって構成されている。超硬ポスト3の上部には、超硬ポスト3の上方に向かうに従い、該超硬ポスト3の径方向内側に近づく傾斜面が設けられており、この傾斜面が、切刃チップ11の取付面3Aとされている。そして、超硬ポスト3は、超硬ポスト3の軸線Mが工具本体2の回転軸Lと平行するように、かつ、取付面3Aが工具本体2の回転方向T前方側を向くように取り付けられている。
【0022】
図3、図4に、上記の超硬ポスト3に装着される切刃基体及び切刃チップを示す。
切刃チップ11は、超硬合金からなる切刃基体12と、この切刃基体12の凹部13に支持されるカッタ14とを具備しており、切刃チップ11全体として略一定厚みの円形平板状をなしている。
切刃基体12は、図3に示すように円形平板状に形成されており、その下面12Aが超硬ポスト3の取付面3Aとろう付けされるろう付け面で、この下面12Aに対向する上面12Bが、掘削方向を向く面である。
【0023】
この上面12Bの外周一部分には、カッタ14を支持するための凹部13が形成され、この凹部13は、カッタ14の外形と同形状で、本実施形態では、平面視において切刃基体12の中心を同じく中心とする扇形とされており、凹部13の底面は、切刃基体12の下面12A及び上面12Bと平行となるように形成されている。この凹部13は、焼結成形された円形平板状の超硬合金材を放電加工することによって形成される。
【0024】
そして、この凹部13は、外周側に向けて漸次間隔が広がるV字状をなす一対の支持面13A、13Bを有しており、これら支持面13A、13Bがカッタ14に加わる掘削時の衝撃力を受けることになる。凹部13がこのようなクサビ形状の支持面13A、13Bを有していることにより、カッタ14に加わる衝撃力が切刃基体12において広く分散され、切刃チップ11の衝撃力に対する強度が増すことになる。
【0025】
また、切刃基体12は、一般的な超硬合金、例えば結合材としてCoを用いたタングステンカーバイド基超硬合金によって一体に形成されている。本実施形態においては、切刃基体12は、結合材であるCoを9.5質量%含有し、残りがタングステンカーバイドと不可避不純物からなる超硬合金によって一体に形成されている。上記の超硬合金は、次のように製造される。原料粉末として、9.5質量%のCo粉末と、0.5質量%のTiCと、平均粒径3μmのWC粉末とを用いる。これらの原料粉末をボールミルで84時間湿式混合し、乾燥後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中で1400℃で1時間の焼結を行うことで上記の超硬合金が得られる。
上記の超硬合金は高い強度と高い靱性を有しており、この切刃基体12は、掘削作業時に切刃チップ11に加わる熱的衝撃及び機械的衝撃を吸収する衝撃吸収体となる。
【0026】
カッタ14は、切刃チップ11において掘削作業時に被掘削材と接触する部分に設けられるものであり、本実施形態においては、切刃チップ11の上面外周のうちの1/4を占めるように配置されている。すなわち、カッタ14は、図3に示すように上面視して扇形に形成され、この扇形の2つの直線がなす角度が90°となっている。
【0027】
そして、カッタ14の下面側は着座部15で、この着座部15は、切刃基体12と略同じ材質の超硬合金によって構成されている。
一方、カッタ14の上面側はカッタ本体16で、このカッタ本体16は、焼結助剤としてCoを用いた一般ダイヤモンド焼結体で構成されている。
【0028】
上記のカッタ14は、次のように製造される。原料粉末として平均粒径25μmのダイヤモンド粉末を、円板状に形成されたコバルト(Co)を結合材とするタングステンカーバイド基超硬合金母材の上に成形し、この成形体を超高圧・高温発生装置を用いてダイヤモンド安定領域(5.5GPa、1500℃、30分間保持)まで、加圧、加熱する。この超高圧・高温処理の際に、超硬合金側のCoがダイヤモンド粉末側に溶浸し、最終的にダイヤモンドと超硬合金とが一体成形された円形平板状の焼結体を得る。
【0029】
その後、この焼結体に、ダイヤモンド砥石による研磨を施して粗加工してから、さらにレーザー加工又はワイヤー放電加工によって所望の形状に切り出すことにより、扇形のカッタ14を得ることができる。ここで、カッタ14は、超硬合金からなる着座部15とダイヤモンド焼結体からなるカッタ本体16とを具備することになる。また、本実施形態では、カッタ14が扇形に形成され、扇形の2つの直線がなす角度が90°となっているので、円形平板状の焼結体を1/4に切断することにより、一個の焼結体から4つのカッタ14を作成することができる。
【0030】
次に、上記の切刃基体12とカッタ14とを接合する方法及び切刃基体12と超硬ポスト3とを接合する方法について説明する。
まず、第1接合工程として、切刃基体12の凹部13とカッタ14の着座部15とを銀ろう材を使用してろう付けする。この銀ろう材の組成は、Ag45%、Cu15%、Zn16%、Cd24%であり、融点は605℃から620℃である。この銀ろう材を使用して、650℃でろう付けする。この第1接合工程によって、切刃基体12の凹部13とカッタ14の着座部15との間に銀ろう材からなる第1接合層21が形成される。
【0031】
次に、第2接合工程として、超硬ポスト3の取付面3Aと切刃基体12の下面12Aとを接合するが、この第2接合工程が本発明に係る部分である。
図5、図6に第2接合工程の説明図を示す。まず、切刃基体12と超硬ポスト3の取付面3Aとの間にTi活性ろう材を配置する。このTi活性ろう材の組成は、Ag70%、Cu28%、Ti2%であり、融点は780℃から800℃である。
熱交換器31を、切刃チップ11の側面のうちカッタ14が配置された部分に配備し、局所加熱手段として誘導加熱コイル32を切刃基体12と超硬ポスト3の取付面3Aとの間のTi活性ろう材の近傍に配備する。
【0032】
そして、誘導加熱コイル32によって切刃基体12と超硬ポスト3の取付面3Aとの間に配置されたTi活性ろう材を局部的に加熱するとともに、熱交換器31によってカッタ本体16及び第1接合層21とを冷却することにより、切刃基体12と超硬ポスト3の取付面3Aとの間の部分は850℃まで加熱されて切刃基体12と超硬ポスト3の取付面3Aとがろう付けされるとともに、カッタ本体16及び第1接合層21部分が600℃以下に保持される。この第2接合工程によって、超硬ポスト3の取付面3Aと切刃基体12の下面12Aとの間にTi活性ろう材からなる第2接合層22が形成される。
【0033】
このとき、超硬ポスト3の取付面3Aは、図1及び図2に示すように、工具本体2の回転方向T前方側に向くとともに超硬ポスト3の上方に向かうに従い超硬ポスト3の径方向内側に後退するように傾斜しているので、切刃基体12は工具本体2の回転方向T前方側を向くとともに、掘削工具1先端側に向かうに従い回転方向Tの後方側に後退するように配置される。また、切刃基体12の凹部13が、掘削工具1の先端側に向くようにろう付けされている。さらに、第1接合工程にて、切刃基体12の凹部13が、掘削工具1の先端側に向くようにろう付けされているので、ダイヤモンド焼結体からなるカッタ本体16が掘削工具1の先端側に向くように配置される。
【0034】
上記の構成の掘削工具1は、掘削機械に取り付けられ、モーター等の回転駆動体に接続され、工具本体2の回転軸L回りに回転されるとともに、掘削工具1先端側の被掘削材中に送り込まれることによって、工具本体2先端部の超硬ポスト3に装着された切刃チップ11で被掘削材である岩盤等を掘削して穿孔加工するものである。ここで、上記の掘削工具1では、ダイヤモンド焼結体からなるカッタ本体16が、掘削工具1の先端部に向けて配置されているので、このカッタ本体16によって被掘削材が掘削される。
【0035】
上記の掘削工具1の切刃基体12と超硬ポスト3とを接合する第2接合工程では、熱交換器31によってカッタ本体16及び第1接合層21部分が600℃以下に保持され、誘導加熱コイル32によって切刃基体12と超硬ポスト3の取付面3Aとの間の部分が850℃まで加熱されて切刃基体12と超硬ポスト3の取付面3AとがTi活性ろう材によってろう付けされるので、カッタ本体16の劣化や第1接合層21の接合強度の低下を防止できるとともに、切刃基体12と超硬ポスト3との接合強度を高くでき、掘削時の掘削抵抗によって切刃チップ11が超硬ポスト3から脱落したり破損したりすることを防止できる。
【0036】
また、上記の第2接合工程においては、カッタ14の温度及び第1接合層21の温度を低く維持するための熱交換器31が必要であるが、本実施形態では、カッタ14が切刃チップ11の上面外周の1/4を占めるように配置されているので、熱交換器31の大きさを小さくすることができるとともに、温度を低く維持する部分の体積が小さいので、確実に温度を600℃以下に維持できる。
また、熱伝導率の低い超硬合金製の切刃基体12によってカッタ14の側面と底面とが支持されているので、誘導加熱コイル32によって第2接合層22部分を加熱した際に、この第2接合層22部分からカッタ14にまで熱が伝わることが防止され、カッタ14の温度上昇を抑えることができる。
【0037】
また、第1接合工程では、切刃基体12の凹部13とカッタ14の着座部15とが略同じ材質の超硬合金で構成され、同種材料同士での接合となるので、接合強度を高くでき、掘削抵抗によってカッタ14が切刃基体12から脱落することを防止できる。また、ダイヤモンド焼結体からなるカッタ本体16が切刃チップ11の上面外周の1/4を占めるように配置されているので、高価なダイヤモンド焼結体の使用量が少なく切刃チップ11の製造コストを低減できる。
【0038】
なお、本実施形態においては、カッタ本体16を、コバルト(Co)を焼結助剤として使用した一般ダイヤモンド焼結体で構成したもので説明したが、これに限定されることはなく、例えば焼結助剤としてSiC等のセラミックスを用いたダイヤモンド焼結体で構成したものや、焼結助剤として使用したCoを化学的処理により除去したダイヤモンド焼結体で構成されたものであっても良い。
また、取付部として超硬ポスト3を設け、この超硬ポスト3に切刃チップ11を装着しているが、これに限定されることはなく、例えば取付部として超硬合金製のマトリックス部を設け、切刃チップ11をマトリックス部に直接接合したものであっても良い。
【0039】
また、カッタ14が切刃チップ11の上面外周の1/4(25%)を占める切刃チップ11で説明したが、これに限定されることはなく、例えば、上面外周の1/3(33%)を占めるものであっても良い。上面外周の1/3を占めるものでは、円形平板状の焼結体から3つのカッタを作成することができる。
また、カッタ14及び切刃基体12の凹部13が、扇形のもので説明したが、切刃チップ11の上面の外周側一部にカッタ本体16が配置されていれば良く、切刃基体12の凹部13の部分が例えば三日月状に形成されていても良い。
【0040】
また、切刃チップ11が円周方向で4つ、径方向に4つ配置された掘削工具1で説明したが、これに限定されることはなく、例えば、工具本体2が円筒状に形成され、この工具本体2の先端部に切刃チップ11が装着されたコアビット等の掘削工具であっても良い。また、切刃チップ11の配置は、掘削工具の形状・サイズ、切刃チップのサイズ及び被掘削材の材質などを考慮して決定することが好ましい。
【0041】
さらに、第2接合工程において、熱交換器31をカッタ14の側面に配置したもので説明したが、これに限定されることはなく、例えば図7に示すように、熱交換器31をカッタ14の上部に配置してもよい。
また、局所加熱手段として誘導加熱コイル32を用いて説明したが、他の局所加熱手段、例えばレーザー加熱装置や抵抗加熱装置等であってもよい。
【0042】
また、第1接合工程において、ろう付け温度650℃で接合するものとして説明したが、第1接合工程における接合方法については特に制限はなく、ダイヤモンド焼結体で構成されたカッタ14が実質的に劣化しないように接合されていればよい。例えば、第2接合工程で用いた熱交換器31及び局所加熱手段を用いて、ダイヤモンド焼結体を劣化温度以下に維持したままで、接合部分のみを局所加熱して接合してもよい。
【0043】
また、第1接合層21を銀ろう材で構成したもので説明したが、第1接合層21の材質や構造に制限はない。
また、第2接合層22をTi活性ろう材で構成したもので説明したが、これに限定されることはなく、カッタ本体16を構成するダイヤモンド焼結体の劣化温度よりも高い温度で形成される接合層であればよい。
【図面の簡単な説明】
【0044】
【図1】本発明の実施形態である掘削工具の先端部の斜視図である。
【図2】図1の掘削工具の先端部に設けられた超硬ポスト及び切刃チップの側面図である。
【図3】図2の超硬ポストにろう付けされる切刃基体の説明図である。
【図4】図1の掘削工具に装着される切刃チップの説明図である。
【図5】第2接合工程の説明図(側面図)である。
【図6】第2接合工程の説明図(上面図)である。
【図7】本発明の他の実施形態における第2接合工程の説明図である。
【符号の説明】
【0045】
1 掘削工具
2 工具本体
3 超硬ポスト(取付部)
11 切刃チップ
12 切刃基体
13 凹部
14 カッタ
15 着座部
16 カッタ本体
21 第1接合層
22 第2接合層
31 熱交換器
32 誘導加熱コイル(局所加熱手段)

【特許請求の範囲】
【請求項1】
円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具の製造方法であって、
前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、
前記カッタと前記切刃基体とが接合される第1接合工程と、該第1接合工程の後に、前記切刃基体と前記取付部とが接合される第2接合工程とを有し、
該第2接合工程において、前記カッタ部分の温度が前記ダイヤモンド焼結体の劣化温度よりも低く、かつ、前記カッタと前記切刃基体との接合部分の温度が前記第1接合工程の接合温度よりも低く維持されるとともに、前記切刃基体と前記取付部との接合部分の温度が、前記劣化温度よりも高くされていることを特徴とする掘削工具の製造方法。
【請求項2】
前記第2接合工程において、前記カッタの温度を前記ダイヤモンド焼結体の前記劣化温度よりも低く、かつ、前記カッタと前記切刃基体との接合部分の温度を前記第1接合工程の接合温度よりも低く維持する手段として熱交換器を使用し、前記切刃基体と前記取付部との接合部分の温度を前記劣化温度よりも高くする手段として局所加熱手段を使用することを特徴とする請求項1に記載の掘削工具の製造方法。
【請求項3】
円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具であって、
前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、
前記カッタと前記切刃基体との間に第1接合層が形成され、前記切刃基体と前記取付部との間には、第2接合層が形成され、
該第2接合層は、前記ダイヤモンド焼結体の劣化温度よりも高い温度にて形成されることを特徴とする掘削工具。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate