説明

有機圧電材料、それを用いた超音波探触子、超音波探触子及び超音波医用画像診断装置

【課題】本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、圧電特性に優れ、熱や機械刺激を電気エネルギーに変換することができる圧電性や焦電性を持つ有機圧電材料であり、特に、熱的に安定で保存性にも優れた有機圧電材料を提供することにある。
【解決手段】一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
【化1】


〔式中、Aは2価の連結基を表し、R1及びR2は水素原子又は置換基を表す。但し、複数のR2はそれぞれ同一でも異なっていても良い。pは2〜4の整数を表し、nは3〜10000の整数を表す。〕

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、縮環構造を有するポリマーを含有する有機圧電材料に関する。すなわち、マイクロホン、スピーカー用の振動板等の音響機器、各種熱センサー、圧力センサー、赤外性検出器等の測定機器、超音波探蝕子、遺伝子やタンパク等の変異を高感度に検出する振動センサー等、熱や機械刺激を電気エネルギーに変換するために用いることができる圧電性や焦電性を持つ有機圧電材料に関する。
【背景技術】
【0002】
圧焦電体としては、水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O系などの焼結体を分極処理した、いわゆる無機圧電材料が広く利用されている。しかしながら、これら無機材質の圧電材料は、弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの特徴を持っている。
【0003】
一方でポリフッ化ビニリデン(以下「PVDF」と略す。)、ポリシアノビニリデン(以下「PVDCN」と略す。)等の有機圧電材料も開発されている(特許文献1参照)。この有機圧電材料は、薄膜化、大面積化等の加工性に優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、センサーとしての使用を考えたときに、高感度な検出を可能とする特徴を持っている。一方で有機圧電材料は、耐熱性が低く高い温度ではその圧焦電特性を失うほか、弾性スティフネスなどの物性も大きく減じるため使用できる温度域に限界があった。
【0004】
このような限界に対して、ウレア結合から構成されるポリウレア樹脂組成物は、ウレア結の双極子モーメントが大きく、樹脂としての温度特性に優れるため、有機圧電材料として種々の検討が行われてきた。例えば、4,4′−ジフェニルメタンジイソシアネート(MDI)のようなジイソシアネート化合物と4,4′−ジアミノジフェニルメタン(MDA)のようなジアミン化合物を同時に蒸発させてポリ尿素膜を形成する、いわゆる蒸着重合法が開示されている(特許文献2及び特許文献3参照)。しかしながら、これらに記載されている蒸着重合法で作製するポリウレア樹脂組成物は、生成するオリゴマー又は高分子量体の分子量が不均一であるため、分極処理を施しながら高分子量化を行った場合、配向が十分でない状態でポリウレア樹脂組成物が形成される。このため、ウレア結合の双極子モーメントを十分に活用できず、有機圧電材料としては、更なる改善が求められていた。また、ウレア結合などの分極率の高い連結基を連続して複数含有するポリマーが有機圧電材料に使用された例は報告されていない。
【特許文献1】特開平6−216422号公報
【特許文献2】特開平2−284485号公報
【特許文献3】特開平5−311399号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、圧電特性に優れ、熱や機械刺激を電気エネルギーに変換することができる圧電性や焦電性を持つ有機圧電材料であり、特に、熱的に安定で保存性にも優れた有機圧電材料を提供することにある。
【課題を解決するための手段】
【0006】
本発明に係る上記課題は以下の手段により達成される。
1.一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
【0007】
【化1】

【0008】
〔式中、Aは2価の連結基を表し、R1及びR2は水素原子又は置換基を表す。但し、複数のR2はそれぞれ同一でも異なっていても良い。pは2〜4の整数を表し、nは3〜10000の整数を表す。〕
2.前記一般式(1)において、Aで表される2価の連結基が脂肪族基又は芳香族基であることを特徴とする1に記載の有機圧電材料。
3.前記一般式(1)において、R1及びR2のうち少なくとも一つがアルキル基又は芳香族基であることを特徴とする1または2に記載の有機圧電材料。
4.前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーにおいて、重量平均分子量が1,000〜100,000であることを特徴とする1から3のいずれか一項に記載の有機圧電材料。
5.超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、1から4のいずれか一項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。
6.電気信号を発生する手段と、前記電気信号を受けて超音波を被検体に向けて送信し、前記被検体から受けた反射波に応じた受信信号を生成する複数の振動子が配置された超音波探触子と、前記超音波探触子が生成した前記受信信号に応じて、前記被検体の画像を生成する画像処理手段とを有する超音波医用画像診断装置において、前記超音波探触子として、5に記載の超音波探触子を用いたことを特徴とする超音波医用画像診断装置。
【発明の効果】
【0009】
本発明により、圧電特性に優れ、熱や機械刺激を電気エネルギーに変換することができる圧電性や焦電性を持つ有機圧電材料であり、特に、熱的に安定で保存性にも優れた有機圧電材料を提供することができる。
【発明を実施するための最良の形態】
【0010】
次に、本発明を実施するための最良の形態について説明するが、本発明はこれにより限定されるものではない。
【0011】
本発明は、一般式(1)で表される繰り返し単位を、少なくとも1種類以上含むポリマーを使用することで、圧電性や焦電性に優れ、従来の課題である熱的に安定で保存性にも優れた有機圧電材料を提供できる。
【0012】
一般式(1)において、Aは2価の連結基を表す。
【0013】
Aで表される2価の連結基の種類は特に限定されず、直鎖状、分枝鎖状、又は環状、あるいはそれらの組み合わせからなる連結基を用いることができ、連結基中には任意の個数の官能基及び/又は不飽和結合を含んでいてもよく、任意の個数の炭素原子及び/又はヘテロ原子(例えば酸素原子、窒素原子、又は硫黄原子など)を含んでいてもよい。
【0014】
Aで表される2価の連結基の具体例としては、脂肪族基、芳香族基、複素環基、カルボニル基、エステル基、チオエステル基、エーテル基、チオエーテル基、アミノ基、スルホン基、スルホニル基、スルホンアミド基、イミノ基、アゾ基等及びこれらの複数個連結した基が挙げられる。
【0015】
前記脂肪族基とは、それぞれ置換または無置換の、アルキレン基、シクロアルキレン基、アルケニレン基、シクロアルケニレン基、アルキニレン基、アラルキレン基を意味する。
【0016】
Aで表される脂肪族基の具体例としては、炭素数1〜20のアルキレン基、炭素数5〜10のシクロアルキレン基、炭素数2〜20のアルケニレン基、炭素数5〜10のシクロアルケニレン基、炭素数2〜20のアルキニレン基、炭素数7〜20のアラルキレン基等が挙げられる。これらの基は任意の個所に置換基又はハロゲン原子を有してもよく、該置換基の具体例としては、アルキル基、シアノ基、アルコキシ基、ヒドロキシ基、アミノ基、カルボキシル基、カルボオキシ基、アリール基、ヘテロ環、アリールオキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基が挙げられる。
【0017】
Aで表される芳香族基は単環でも縮合環でもよく、例えば、フェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基、ナフタセニレン基、トリフェニレニレン基等、フルオリレン基挙げることができる。これらの環は任意の個所に種々の置換基を有していてもよく、好ましい置換基としては、ハロゲン原子、直鎖、分岐のアルキル基(好ましくは炭素数1〜20の、例えばメチル、エチル、プロピル、イソプロピル、ドデシル等)、アルコキシ基(好ましくは炭素数1〜20の、例えばメトキシ、エトキシ、プロポキシ、イソプロポキシ、ドデシルオキシ等)、アミノ基、脂肪族アシルアミノ基(好ましくは炭素数1〜21のアルキル基を持つもの、例えばアセチルアミノ基、ヘプチルアミノ基等)、芳香族アシルアミノ基等が挙げられる。
【0018】
Aで表される複素環基の具体例としては、ピロリレン基、インドニレン基、フラニレン基、チエニレン基、イミダゾリレン基、ピラゾリレン基、インドリジレン基、キノリニレン基、カルバゾリレン基、フェノチアジレン基、インドリレン基、ピリジニレン基、ピリダジニレン基、チアジアジニレン基、ピラニレン基、チオピラニレン基、オキサジアゾリレン基、ベンゾキノリニレン基、チアジアゾリレン基、ピロロチアゾリレン基、ピロロピリダジニレン基、テトラゾリレン基、オキサゾリレン基、ピペリジニレン基、ピロリジニレン基、イミダゾリジニレン基、ピラゾリジニレン基、ピペラジニレン基、ピリミジニレン基、ピラジニレン基、ピラゾリレン基、ピラゾリニレン基、トリアジニレン基等を挙げることができる。これらの基中の複素環は単環であっても、他の環と縮合環を形成してもよい。これらの環は任意の個所に種々の置換基を有していてもよく、置換基として好ましくは、アルキル基、アリール基、アルコキシ基などが挙げられる。
【0019】
Aとして好ましくは脂肪族基又は芳香族基であり、より好ましくは、脂肪族基であり、特に、炭素数1〜10のアルキレン基又は炭素数5〜10のシクロアルキレン基であり、更に好ましくは、炭素数1〜8のアルキレン基である。
【0020】
以下に、Aで表される2価の連結基の具体例を挙げるが、本発明はこれらに限定されない。
【0021】
【化2】

【0022】
【化3】

【0023】
一般式(1)において、R1及びR2は水素原子又は置換基を表す。pは2〜4の整数を表す。複数のR2はそれぞれ同一でも異なっていてもよい。
【0024】
R1及びR2で表される置換基の具体例としては、アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基等)、アルケニル基、シクロアルケニル基、アルキニル基(プロパルギル基等)、芳香族基(フェニル基、ナフチル基、アントラセニル基等)、複素環基(ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)等を挙げることができる。また、これらの基はさらにこれらの基で置換されていてもよい。
【0025】
R1及びR2で表される基として、好ましくは水素原子、アルキル基又は芳香族基、より好ましくは水素原子、炭素数1〜6のアルキル基又は炭素数5〜10の芳香族基、更に好ましくは水素原子、炭素数1〜4のアルキル基又はフェニル基であり、また、R1及びR2のうち少なくとも一つがアルキル基又は芳香族基であることが好ましい。
【0026】
一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーは、公知の手法により合成することができる。例えば、特開2006−306869号明細書、特開2006−117939号明細書、特開平5−320229号明細書、特開平11−246646号明細書などに記載の方法を参照して合成することができる。また、一般式(1)で表される繰り返し単位を有するマクロモノマーからポリマーを合成することもできる。
【0027】
以下に一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの具体例を挙げるが、本発明はこれらに限定されない。
【0028】
【化4】

【0029】
【化5】

【0030】
【化6】

【0031】
【化7】

【0032】
【化8】

【0033】
【化9】

【0034】
【化10】

【0035】
以下、本発明とその構成要素、及び発明を実施するための最良の形態・態様等について詳細な説明をする。
【0036】
〈有機圧電材料〉
本発明の有機圧電材料は、一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有する樹脂組成物を用いて膜を形成することにより、或いは、樹脂組成物の膜に対して更に分極処理を施すことにより、有機圧電体膜を形成することができる。
【0037】
有機圧電体膜は、当該圧電体膜に応力が加わると、それに比例して当該圧電体膜の両端面に反対符号の電荷が現れる、すなわち電気分極という現象を生じ、逆に該圧電材料を伝場に入れる(電界を加える)ことで、それに比例した歪みを生じるという性質(圧電性能)を有する。特に本発明の有機圧電材料よりなる有機圧電体膜にあっては、高分子の主鎖や側鎖の双極子モーメントの配向凍結による分極により大きな圧電効果が生じる。
【0038】
一方、当該圧電体膜にエネルギー(熱)が加わると、それに対応して当該圧電体膜内部の自発分極の大きさが変化する。このとき、当該圧電体膜表面に自発分極を中和するように存在する表面電荷は、上記自発分極ほどにすばやくエネルギー変化に対応できないことから、短時間の間ではあるが、圧電体膜表面には自発分極の変化分だけ電荷が存在することになる。このエネルギー変化に伴う電気の発生を焦電性というが、特に本発明の有機圧電材料よりなる有機圧電体膜にあっては、高分子の主鎖や側鎖の双極子モーメントの配向凍結による分極により大きな焦電性能が生じる。
【0039】
(有機圧電材料の製造方法)
本発明の有機圧電材料は、当該技術分野において従来公知の種々の方法を用いてできるが、本発明に係る微粒子を含む層を流延支持体に直接接するように流延することが、接着性の点で好ましいことが、我々の研究で明らかになった。
【0040】
本発明においては、微粒子を含有する有機圧電材料液Aと当該微粒子を含有しない有機圧電材料液Bを共流延し、且つ、当該有機圧電材料液Aが流延用支持体に直接接するように流延する態様の製造方法であることが好ましい。
【0041】
以下、この流延による方法について説明をする。
【0042】
(製造工程)
本発明の有機圧電材料の製造方法を図1で示される工程図を参照しながら説明する。
【0043】
図1は、本発明の有機圧電材料の製造装置の一例を示す工程図である。有機圧電材料有機圧電材料液を調液する有機圧電材料液タンク1には、有機圧電材料液1aが投入されており、微粒子添加液タンク2には、微粒子添加液2aが投入されている。有機圧電材料液1aは送液ポンプ4b、4cにより、インラインミキサー5a、5bまで送られ、微粒子添加液2aはポンプ4aによってインラインミキサー5aまで送られる。インラインミキサー5aで有機圧電材料液1aと微粒子添加液2aは充分混合され、スリットダイ6のスリットに送られる。
【0044】
同様に、インラインミキサー5bで、有機圧電材料液1aと添加剤液3aは充分混合され、スリットダイ6のスリットに送られる。スリットダイ6から上下表面の層は、有機圧電材料液1aと微粒子添加液2aの混合液で構成され、真ん中の層は、有機圧電材料液1aと添加剤液3aの混合液の状態で流延口から共流延され、ドラム7より連続的に移動する流延ベルト8上に流延される。流延された3層からなる有機圧電材料液層は、乾燥後、有機圧電材料の積層フィルム10として、ローラ9により流延ベルトから、剥離される。
【0045】
なお有機圧電材料の製造に当たって、上記のように3層を「共流延」しても良いし、微粒子の添加したインラインミキサー5aのみを使用して単層で流延しても良い。
【0046】
以下、有機圧電材料の製造方法に係る共流延の方法について、更に詳細な説明をする。
【0047】
「共流延」とは、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。
【0048】
本発明において、有機圧電材料が溶解している液とは、有機圧電材料が溶剤(溶媒)に溶解している状態であり、前記有機圧電材料液には、硬膜剤、可塑剤、酸化防止剤等の添加剤を加えてもよく、勿論、必要によりこの他の添加剤を加えることも出来る。有機圧電材料液中の固形分濃度としては、5〜30質量%が好ましく、更に好ましくは、10〜25質量%である。
【0049】
例えば、本発明に係る2層以上の有機圧電材料の製造においては、有機圧電材料を溶剤に溶解させた有機圧電材料液と微粒子と少量の有機圧電材料が溶解している溶液とをインラインミキサーで混合、分散して作製した有機圧電材料液Aと有機圧電材料が溶解している有機圧電材料液B(必要に応じて、別途、インラインで架橋剤等、その他の添加剤を添加される)とを複数のスリットを有するダイスリットを用いて、微粒子を含有している有機圧電材料液Aが直接、流延ベルト上に流延されるようにして、共流延(キャスト工程)し、次いで、加熱して溶剤の一部を除去(流延ベルト上の乾燥工程)した後、流延ベルトから剥離し、剥離したフィルムを乾燥(フィルム乾燥工程)することにより、本発明の2層以上の有機圧電材料が得られる。
【0050】
キャスト工程における支持体はベルト状もしくはドラム状のステンレスを鏡面仕上げした支持体が好ましく用いられる。キャスト工程の支持体の温度は一般的な温度範囲0℃〜溶剤の沸点未満の温度で、流延することができるが、0〜60℃の支持体上に流延するほうが、有機圧電材料溶液をゲル化させ剥離限界時間をあげられるため好ましく、5〜40℃の支持体上に流延することがさらに好ましい。剥離限界時間とは透明で平面性の良好なフィルムを連続的に得られる流延速度の限界において、流延された有機圧電材料液が支持体上にある時間をいう。剥離限界時間は短い方が生産性に優れていて好ましい。
【0051】
流延(キャスト)される側の支持体の表面温度は、10〜80℃、溶液の温度は、15〜60℃、更に溶液の温度を支持体の温度より0℃以上高くするのが好ましく、5℃以上に設定するのが更に好ましい。溶液温度、支持体温度は、高いほど溶媒の乾燥速度が速くできるので好ましいが、あまり高すぎると発泡したり、平面性が劣化したりする場合がある。
【0052】
支持体の温度の更に好ましい範囲は、20〜40℃、溶液温度の更に好ましい範囲は、35〜45℃である。
【0053】
また、剥離する際の支持体温度を10〜40℃、更に好ましくは、15〜30℃にすることで有機圧電材料と支持体との密着力を低減できるので、好ましい。製造時の有機圧電材料が良好な平面性を示すためには、支持体から剥離する際の残留溶媒量は、10〜80%が好ましく、更に好ましくは、20〜40%または60〜80%であり、特に好ましくは、20〜30%である。
【0054】
本発明においては、残留溶媒量は下記式で定義される。
残留溶媒量=(加熱処理前質量−加熱処理後の質量)/(加熱処理後質量)×100%
尚、残留溶媒量を測定する際の、加熱処理とは、有機圧電材料を100から200℃のいずれかの温度で1時間の加熱処理を行うことを表す。
【0055】
支持体と有機圧電材料を剥離する際の剥離張力は、通常20〜25kg/mで剥離が行われるが、薄膜である。
【0056】
本発明の有機圧電材料は、剥離の際にシワが入りやすいため、剥離できる最低張力〜17kg/mで剥離することが好ましく、更に好ましくは、最低張力〜14kg/mで剥離することである。また、有機圧電材料の乾燥工程においては、支持体より剥離した有機圧電材料を更に乾燥し、残留溶媒量を3質量%以下にすることが好ましい、更に好ましくは、0.1質量%以下である。
【0057】
乾燥工程では一般にロール懸垂方式か、ピンテンター方式で有機圧電材料を搬送しながら乾燥する方式が採られる。有機圧電材料としては、ピンテンター方式で幅を保持しながら乾燥させることが、寸法安定性を向上させるために好ましい。特に支持体より剥離した直後の残留溶剤量の多いところで幅保持を行うことが、寸法安定性向上効果をより発揮するため特に好ましい。乾燥させる手段は特に制限なく、一般的に熱風、赤外線、加熱ロール、マイクロ波等で行う。簡便さの点で、熱風で行うのが好ましい。乾燥温度は30〜200℃の範囲で3〜5段階の温度に分けて、段々高くしていくことが好ましく、50〜140℃の範囲で行うことが寸法安定性を良くするためさらに好ましい。
【0058】
(有機圧電膜)
本発明に係る有機圧電膜は、上記圧電材料を用いて、溶融法、流延法など従来公知の種々の方法で作製することができる。
【0059】
本発明においては、有機圧電膜の作製方法として、基本的には、上記高分子材料等の溶液を基板上に塗布し、乾燥して得る方法、又は上記高分子材料の原料化合物を用いて従来公知の溶液重合塗布法などにより高分子膜を形成する方法を採用することができる。
【0060】
溶液重合塗布法の具体的方法・条件については、従来公知の種々の方法等に従って行うことができる。例えば、原料の混合溶液を基板上に塗布し、減圧条件下である程度乾燥後(溶媒を除去した後)、加熱し、熱重合し、その後又は同時に分極処理をして有機圧電膜を形成する方法が好ましい。
【0061】
なお、圧電特性を上げるには、分子配列を揃える処理を加えることが有用である。手段としては、延伸製膜、分極処理などが挙げられる。
【0062】
延伸製膜の方法については、種々の公知の方法を採用することができる。例えば、上記有機高分子材料をエチルメチルケトン(MEK)などの有機溶媒に溶解した液をガラス板などの基板上に流延し、常温にて溶媒を乾燥させ、所望の厚さのフィルムを得て、このフィルムを室温で所定の倍率の長さに延伸する。当該延伸は、所定形状の有機圧電膜が破壊されない程度に一軸・二軸方向に延伸することができる。延伸倍率は2〜10倍、好ましくは2〜6倍である。
【0063】
(分極処理)
本発明に係る分極処理における分極処理方法としては、従来公知の直流電圧印加処理、交流電圧印加処理又はコロナ放電処理等の方法が適用され得る。
【0064】
例えば、コロナ放電処理法による場合には、コロナ放電処理は、市販の高電圧電源と電極からなる装置を使用して処理することができる。
【0065】
放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましい。高電圧電源の電圧としては−1〜−20kV、電流としては1〜80mA、電極間距離としては、1〜10cmが好ましく、印加電圧は、0.5〜2.0MV/mであることが好ましい。
【0066】
電極としては、従来から用いられている針状電極、線状電極(ワイヤー電極)、網状電極が好ましいが、本発明ではこれらに限定されるものではない。
【0067】
本発明の有機圧電材料は、コロナ放電により分極処理を施す場合においては、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されることが好ましい。
【0068】
当該分極処理は、水・酸素に起因する材料表面の酸化を防ぎ、圧電性を損なわないため等の理由から、窒素もしくは希ガス(ヘリウム、アルゴン等)気流下、質量絶対湿度が0.004以下の環境中で施される態様が好ましい。特に窒素気流下が好ましい。
【0069】
また、前記第1面上に接するように設置された平面電極を含む有機圧電材料、もしくは第2の面側に設けられた円柱状のコロナ放電用電極の少なくとも一方が、一定の速度で移動しながらコロナ放電が施されることが好ましい。
【0070】
なお、本願において、「質量絶対湿度」とは、乾き空気の質量mDA[kg]に対して湿り空気中に含まれる水蒸気(water vapor)の質量がm[kg]であるとき、下記式で定義される比SH(Specific humidity)をいい、単位は[kg/kg(DA)]で表される(DAはdry airの略)。但し、本願においては、当該単位を省略して表現する。
【0071】
(式):SH=m/mDA[kg/kg(DA)]
ここで、水蒸気を含む空気を「湿り空気」といい、湿り空気から水蒸気を除いた空気を「乾き空気(dry air)」という。
【0072】
なお、窒素もしくは希ガス(ヘリウム、アルゴン等)気流下での質量絶対湿度の定義は、上記の空気の場合に準じ、乾き気体の質量mDG[kg]に対して湿り気体に含まれる水蒸気の質量がm[kg]であるとき、上記式に準じて定義される比SHをいい、単位は[kg/kg(DG)]で表される(DGはdry gasの略)。但し、本願においては、当該単位を省略して表現する。
【0073】
また、「設置」とは、予め別途作製された既存の電極を有機圧電材料面上に接するように設け置くこと、又は電極構成材料を有機圧電材料面上に蒸着法等により付着させ、当該面上において電極を形成することをいう。
【0074】
なお、本発明の有機圧電材料により形成される有機圧電膜は、その形成過程において電場中で形成されること、すなわち、当該形成過程において分極処理を施すことが好ましい。このとき磁場を併用しても良い。
【0075】
本発明に係るコロナ放電処理法では、市販の高電圧電源と電極からなる装置を使用して処理することができる。
【0076】
放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましいが、高電圧電源の電圧としては正電圧・負電圧ともに1〜20kV、電流としては1〜80mA、電極間距離としては、0.5〜10cmが好ましく、印加電界は、0.5〜2.0MV/mであることが好ましい。分極処理中の有機圧電材料もしくは有機圧電膜は、50〜250℃が好ましく、70〜200℃がより好ましい。
【0077】
コロナ放電に使用する電極としては、分極処理を均一に施すために、上記のように円柱状の電極を用いることを要する。
【0078】
なお、本願において、円柱状の電極の円の直径は、0.05mm〜2cmであることが好ましい。当該円柱の長さは、分極処理を施す有機圧電材料の大きさに応じて適切な長さにすることが好ましい。例えば、一般的には、分極処理を均一に施す観点から、5cm以下であることが好ましい。
【0079】
これらの電極は、コロナ放電を行う部分では張っていることが好ましく、それらの両端に一定の加重をかける、もしくは一定の加重をかけた状態で固定するなどの方法で実現できる。また、これらの電極の構成材料としては、一般的な金属材料が使用可能だが、特にタングステンが好ましい。
【0080】
前記第1の面上に接するように設置する平面電極は、均一な分極処理を行うためには有機圧電材料に均一に密着していることが好ましい。すなわち平面電極が施された基板上に有機高分子膜または有機圧電膜を形成した後にコロナ放電を行うことが好ましい。
【0081】
なお、本発明に係る超音波振動子の製造方法としては、有機圧電(体)膜の両面に設置される電極の形成前、片側のみ電極形成後又は両側に電極形成後のいずれかで分極処理する態様の製造方法であることが好ましい。また、当該分極処理が、電圧印加処理であることが好ましい。
【0082】
(基板)
基板としては、本発明に係る有機圧電体膜の用途・使用方法等により基板の選択は異なる。本発明においては、ポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート樹脂、シクロオレフィンポリマーのようなプラスチック板又はフィルムを用いることができる。また、これらの素材の表面をアルミニウム、金、銅、マグネシウム、珪素等で覆ったものでもよい。またアルミニウム、金、銅、マグネシウム、珪素単体、希土類のハロゲン化物の単結晶の板又はフィルムでもかまわない。また基板自体使用しないこともある。
【0083】
(超音波振動子)
本発明に係る超音波振動子は、本発明の有機圧電材料を用いて形成した有機圧電膜を用いたことを特徴とする。当該超音波振動子は、超音波送信用振動子と超音波送信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)に用いられる超音波受信用振動子とすることが好ましい。
【0084】
なお、一般に、超音波振動子は膜状の圧電材料からなる層(又は膜)(「圧電膜」、「圧電体膜」、又は「圧電体層」ともいう。)を挟んで一対の電極を配設して構成され、複数の振動子を例えば1次元配列して超音波探触子が構成される。
【0085】
そして、複数の振動子が配列された長軸方向の所定数の振動子を口径として設定し、その口径に属する複数の振動子を駆動して被検体内の計測部位に超音波ビームを収束させて照射すると共に、その口径に属する複数の振動子により被検体から発する超音波の反射エコー等を受信して電気信号に変換する機能を有している。
【0086】
以下、本発明に係る超音波受信用振動子と超音波送信用振動子それぞれについて詳細に説明する。
【0087】
〈超音波受信用振動子〉
本発明に係る超音波受信用振動子は、超音波医用画像診断装置用探触子に用いられる超音波受信用圧電材料を有する振動子であって、それを構成する圧電材料が、本発明の有機圧電材料を用いて形成した有機圧電膜を用いた態様であることが好ましい。
【0088】
なお、超音波受信用振動子に用いる有機圧電材料ないし有機圧電膜は、厚み共振周波数における比誘電率が10〜50であることが好ましい。比誘電率の調整は、当該有機圧電材料を構成する化合物が有する前記置換基R、CF基、CN基のような極性官能基の数量、組成、重合度等の調整、及び上記の分極処理によって行うことができる。
【0089】
なお、本発明の受信用振動子を構成する有機圧電体膜は、複数の高分子材料を積層させた構成とすることもできる。この場合、積層する高分子材料としては、上記の高分子材料の他に下記の比誘電率の比較的低い高分子材料を併用することができる。
【0090】
なお、下記の例示において、括弧内の数値は、高分子材料(樹脂)の比誘電率を示す。
【0091】
例えば、メタクリル酸メチル樹脂(3.0)、アクリルニトリル樹脂(4.0)、アセテート樹脂(3.4)、アニリン樹脂(3.5)、アニリンホルムアルデヒド樹脂(4.0)、アミノアルキル樹脂(4.0)、アルキッド樹脂(5.0)、ナイロン−6−6(3.4)、エチレン樹脂(2.2)、エポキシ樹脂(2.5)、塩化ビニル樹脂(3.3)、塩化ビニリデン樹脂(3.0)、尿素ホルムアルデヒド樹脂(7.0)、ポリアセタール樹脂(3.6)、ポリウレタン(5.0)、ポリエステル樹脂(2.8)、ポリエチレン(低圧)(2.3)、ポリエチレンテレフタレート(2.9)、ポリカーポネート樹脂(2.9)、メラミン樹脂(5.1)、メラミンホルムアルデヒド樹脂(8.0)、酢酸セルロース(3.2)、酢酸ビニル樹脂(2.7)、スチレン樹脂(2.3)、スチレンブタジエンゴム(3.0)、スチロール樹脂(2.4)、フッ化エチレン樹脂(2.0)等を用いることができる。
【0092】
なお、上記比誘電率の低い高分子材料は、圧電特性を調整するため、或いは有機圧電体膜の物理的強度を付与するため等の種々の目的に応じて適切なものを選択することが好ましい。
【0093】
〈超音波送信用振動子〉
本発明に係る超音波送信用振動子は、上記受信用圧電材料を有する振動子との関係で適切な比誘電率を有する圧電体材料により構成されることが好ましい。また、耐熱性・耐電圧性に優れた圧電材料を用いることが好ましい。
【0094】
超音波送信用振動子構成用材料としては、公知の種々の有機圧電材料及び無機圧電材料を用いることができる。
【0095】
有機圧電材料としては、上記超音波受信用振動子構成用有機圧電材料と同様の高分子材料を用いることできる。
【0096】
無機材料としては、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム[K(Ta,Nb)O]、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)、又はチタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、チタン酸バリウムストロンチウム(BST)等を用いることができる。
【0097】
尚、PZTはPb(Zr1−nTi)O(0.47≦n≦1)が好ましい。
【0098】
〈電極〉
本発明に係る圧電(体)振動子は、圧電体膜(層)の両面上又は片面上に電極を形成し、その圧電体膜を分極処理することによって作製されるものである。有機圧電材料を使用した超音波受信用振動子を作製する際には、分極処理を行う際に使用した前記第1面の電極をそのまま使用してもよい。当該電極は、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、スズ(Sn)などを主体とした電極材料を用いて形成する。
【0099】
電極の形成に際しては、まず、チタン(Ti)やクロム(Cr)などの下地金属をスパッタ法により0.02〜1.0μmの厚さに形成した後、上記金属元素を主体とする金属及びそれらの合金からなる金属材料、さらには必要に応じ一部絶縁材料をスパッタ法、蒸着法その他の適当な方法で1〜10μmの厚さに形成する。これらの電極形成はスパッタ法以外でも微粉末の金属粉末と低融点ガラスを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成することもできる。
【0100】
さらに、圧電体膜の両面に形成した電極間に、所定の電圧を供給し、圧電体膜を分極することで圧電素子が得られる。
【0101】
(超音波探触子)
本発明に係る超音波探触子は、超音波送信用振動子と超音波受信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)であり、受信用振動子として、本発明に係る上記超音波受信用振動子を用いることを特徴とする。
【0102】
本発明においては、超音波の送受信の両方をひとつの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて探触子内に構成される。
【0103】
送信用振動子を構成する圧電材料としては、従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。
【0104】
本発明に係る超音波探触子においては、送信用振動子の上もしくは並列に本発明の超音波受信用振動子を配置することができる。
【0105】
より好ましい実施形態としては、超音波送信用振動子の上に本発明の超音波受信用振動子を積層する構造が良く、その際には、本発明の超音波受信用振動子は他の高分子材料(支持体として上記の比誘電率が比較的低い高分子(樹脂)フィルム、例えば、ポリエステルフィルム)の上に添合した形で送信用振動子の上に積層してもよい。その際の受信用振動子と他の高分子材料と合わせた膜厚は、探触子の設計上好ましい受信周波数帯域に合わせることが好ましい。実用的な超音波医用画像診断装置および生体情報収集に現実的な周波数帯から鑑みると、その膜厚は、40〜150μmであることが好ましい。
【0106】
なお、当該探触子には、バッキング層、音響整合層、音響レンズなどを設けても良い。また、多数の圧電材料を有する振動子を2次元に並べた探触子とすることもできる。複数の2次元配列した探触子を順次走査して、画像化するスキャナーとして構成させることもできる。
【0107】
(超音波医用画像診断装置)
本発明に係る上記超音波探触子は、種々の態様の超音波診断装置に用いることができる。例えば、図2及び図3に示すような超音波医用画像診断装置において好適に使用することができる。
【0108】
図2は、本発明の実施形態の超音波医用画像診断装置の主要部の構成を示す概念図である。この超音波医用画像診断装置は、患者などの被検体に対して超音波を送信し、被検体で反射した超音波をエコー信号として受信する圧電体振動子が配列されている超音波探触子(プローブ)を備えている。また当該超音波探触子に電気信号を供給して超音波を発生させるとともに、当該超音波探触子の各圧電体振動子が受信したエコー信号を受信する送受信回路と、送受信回路の送受信制御を行う送受信制御回路を備えている。
【0109】
更に、送受信回路が受信したエコー信号を被検体の超音波画像データに変換する画像データ変換回路を備えている。また当該画像データ変換回路によって変換された超音波画像データでモニタを制御して表示する表示制御回路と、超音波医用画像診断装置全体の制御を行う制御回路を備えている。
【0110】
制御回路には、送受信制御回路、画像データ変換回路、表示制御回路が接続されており、制御回路はこれら各部の動作を制御している。そして、超音波探触子の各圧電体振動子に電気信号を印加して被検体に対して超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波探触子で受信する。
【0111】
なお、上記送受信回路が「電気信号を発生する手段」に相当し、画像データ変換回路が「画像処理手段」に相当する。
【0112】
上記のような超音波診断装置によれば、本発明の圧電特性及び耐熱性に優れかつ高周波・広帯域に適した超音波受信用振動子の特徴を生かして、従来技術と比較して画質とその再現・安定性が向上した超音波像を得ることができる。
【実施例】
【0113】
以下、実施例を用いて、本発明を具体的に説明するが、本発明はこれらに限定されない。
【0114】
なお、実施例において得られた重合体の重量平均分子量は、以下の測定条件にて測定した。
【0115】
GPC本体:ビスコテック社製
カラム:東ソー(株)製AWM−H 2本(温度40℃)
溶離液:30mM臭化リチウム/N−メチルピロリジノン
流速:0.4ml/分
検出器:ビスコテック社製TDA 302(濃度検出器および90°光散乱検出器および粘度検出器(温度40℃))RALLS法
サンプル濃度:5mgを溶離液10mlに溶解して200μlを注入
校正用サンプル:ポリスチレン標準サンプル(PS115K(商品名、アメリカンポリマースタンダード社製))
〔合成例1〕P−1の合成
300ml3頭フラスコにアンモニア10.2gとアセトン100mlを入れ、氷水浴により冷却したところに、1,5−ジイソシアナトペンタン46.2gを15分かけて滴下した。室温で2時間かき混ぜた後、メタノール100ml中に加えた。この溶液をヘプタン300mlに流し込み、得られた固体をろ過し、減圧乾燥した。収率75%、重量平均分子量22,000、分子量分布は2.7であった。
【0116】
〔合成例2〕P−23の合成
300ml3頭フラスコに尿素37.4gとジメトキシエタン100mlを入れ、氷水浴により冷却したところに、1,3−ビス(イソシアナトメチル)シクロヘキサン60.6gを30分かけて滴下した。室温で3時間かき混ぜた後、メタノール100ml中に加えた。この溶液をヘプタン300mlに流し込み、得られた固体をろ過し、減圧乾燥した。収率88%、重量平均分子量12,000、分子量分布は1.8であった。
【0117】
〔実施例1〕
(樹脂組成物膜の作製)
あらかじめ表面にアルミ蒸着を行った25μmのポリイミドフィルムに、一般式(1)表されるポリマーを、乾燥膜圧が7μmになるように塗布し、乾燥した。次に、上記ポリマーの膜が形成された基板の表面にアルミ電極を蒸着で取り付けた後、高圧電源装置HARB−20R60(松定プレシジョン(株)製)を用いて、100MV/mの電場を印加しながら200℃まで5℃/minの速度で昇温させ、200℃で15分間保持した後に、電圧を印加したまま室温まで徐冷してポーリング処理を施し、本発明の樹脂組成物膜−1〜14を作製した。
(比較樹脂組成物膜の作製)
前記一般式(1)で表されるポリマーの代わりに表1に示す比較ポリマーA〜Cを用いた以外は同様の方法で、比較樹脂組成物膜A〜Cを作製した。
【0118】
【表1】

【0119】
(樹脂組成物膜の評価)
得られた樹脂組成物膜について、共振法により室温及び100℃まで加熱した状態で圧電特性の評価を行った。その結果を表2に示す。なお圧電特性は、PVDF膜について室温で測定した時の値を100%とした相対値として示す。
【0120】
表2に示した結果から明らかなように、本発明のポリマーにより形成された有機圧電体膜の圧電特性は、比較例に比べ優れていることが分かる。
【0121】
【表2】

【0122】
(超音波探触子の作製と評価)
〈送信用圧電材料の作製〉
成分原料であるCaCO、La、BiとTiO、及び副成分原料であるMnOを準備し、成分原料については、成分の最終組成が(Ca0.97La0.03)Bi4.01Ti15となるように秤量した。次に、純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて8時間混合し、十分に乾燥を行い、混合粉体を得た。得られた混合粉体を、仮成形し、空気中、800℃で2時間仮焼を行い仮焼物を作製した。次に、得られた仮焼物に純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて微粉砕を行い、乾燥することにより圧電セラミックス原料粉末を作製した。微粉砕においては、微粉砕を行う時間および粉砕条件を変えることにより、それぞれ粒子径100nmの圧電セラミックス原料粉末を得た。それぞれ粒子径の異なる各圧電セラミックス原料粉末にバインダーとして純水を6質量%添加し、プレス成形して、厚み100μmの板状仮成形体とし、この板状仮成形体を真空パックした後、235MPaの圧力でプレスにより成形した。次に、上記の成形体を焼成した。最終焼結体の厚さは20μmの焼結体を得た。なお、焼成温度は、それぞれ1100℃であった。1.5×Ec(MV/m)以上の電界を1分間印加して分極処理を施した。
【0123】
〈受信用積層振動子の作製〉
前記有機圧電体膜と厚さ50μmのポリエステルフィルムをエポキシ系接着剤にて貼り合わせた積層振動子を作製した。その後、上記と同様に分極処理をした。
【0124】
次に、常法に従って、上記の送信用圧電材料の上に受信用積層振動子を積層し、かつバッキング層と音響整合層を設置し超音波探触子を試作した。
【0125】
なお、比較例として、上記受信用積層振動子の代わりに、比較樹脂組成物膜−Aを用い、上記超音波探触子と同様の探触子を作製した。
【0126】
次いで、上記2種の超音波探触子について受信感度と絶縁破壊強度の測定をして評価した。
【0127】
なお、受信感度については、5MHzの基本周波数fを発信させ、受信2次高調波fとして10MHz、3次高調波として15MHz、4次高調波として20MHzの受信相対感度を求めた。受信相対感度は、ソノーラメディカルシステム社(Sonora Medical System,Inc:2021Miller Drive Longmont,Colorado(0501 USA))の音響強度測定システムModel805(1〜50MHz)を使用した。
【0128】
絶縁破壊強度の測定は、負荷電力Pを5倍にして、10時間試験した後、負荷電力を基準に戻して、相対受信感度を評価した。感度の低下が負荷試験前の1%以内のときを良、1%を超え10%未満を可、10%以上を不良として評価した。
【0129】
上記評価において、本発明に係る受信用圧電(体)積層振動子を具備した超音波探触子は、比較例に対して約1.3倍の相対受信感度を有しており、かつ絶縁破壊強度は良好であることを確認した。すなわち、本発明の超音波受信用振動子は、図3に示したような超音波医用画像診断装置に用いる探触子にも好適に使用できることが確認された。
【図面の簡単な説明】
【0130】
【図1】本発明の有機圧電材料の製造装置の一例を示す工程図
【図2】超音波医用画像診断装置の主要部の構成を示す概念図
【図3】超音波医用画像診断装置の外観構成図
【符号の説明】
【0131】
1 有機圧電材料液タンク
1a 有機圧電材料液
2 粒子添加液タンク
2a 粒子添加液
3 添加剤液タンク
3a 添加剤液
4a、4b、4c、4d ポンプ
5a、5b インラインミキサー
6 スリットダイ
7 ドラム
8 流延ベルト
9 ローラ
10 有機圧電材料
P1 受信用圧電材料(膜)
P2 支持体
P3 送信用圧電材料(膜)
P4 バッキング層
P5 電極
P6 音響レンズ
S 超音波医用画像診断装置
S1 超音波医用画像診断装置の本体
S2 超音波探触子
S3 操作入力部
S4 表示部

【特許請求の範囲】
【請求項1】
一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
【化1】

〔式中、Aは2価の連結基を表し、R1及びR2は水素原子又は置換基を表す。但し、複数のR2はそれぞれ同一でも異なっていても良い。pは2〜4の整数を表し、nは3〜10000の整数を表す。〕
【請求項2】
前記一般式(1)において、Aで表される2価の連結基が脂肪族基又は芳香族基であることを特徴とする請求項1に記載の有機圧電材料。
【請求項3】
前記一般式(1)において、R1及びR2のうち少なくとも一つがアルキル基又は芳香族基であることを特徴とする請求項1または2に記載の有機圧電材料。
【請求項4】
前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーにおいて、重量平均分子量が1,000〜100,000であることを特徴とする請求項1から3のいずれか一項に記載の有機圧電材料。
【請求項5】
超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、請求項1から4のいずれか一項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。
【請求項6】
電気信号を発生する手段と、前記電気信号を受けて超音波を被検体に向けて送信し、前記被検体から受けた反射波に応じた受信信号を生成する複数の振動子が配置された超音波探触子と、前記超音波探触子が生成した前記受信信号に応じて、前記被検体の画像を生成する画像処理手段とを有する超音波医用画像診断装置において、前記超音波探触子として、請求項5に記載の超音波探触子を用いたことを特徴とする超音波医用画像診断装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2009−263473(P2009−263473A)
【公開日】平成21年11月12日(2009.11.12)
【国際特許分類】
【出願番号】特願2008−113523(P2008−113523)
【出願日】平成20年4月24日(2008.4.24)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】