説明

核酸分析デバイス及びそれを用いた核酸分析装置

【課題】
本発明の目的は、塩基伸長反応によってDNA二本鎖中に取り込まれるヌクレオチドに付随する蛍光色素一分子と、未反応基質の蛍光分子と、を識別することに関する。
【解決手段】
本発明は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、光照射により局在型表面プラズモンが発生し、かつ、試料中の核酸を分析するための核酸プローブや核酸合成酵素が前記表面プラズモンの発生部位に配置されていることに関する。本発明により、表面プラズモンによる蛍光増強効果を効率よく引き起こし、かつ、DNAプローブや核酸合成酵素を蛍光増強効果が及ぶ領域に固定できる為、蛍光分子付き未反応基質を除去しなくとも、塩基伸長反応を計測することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、核酸分析デバイス及びそれを用いた核酸分析装置に関する。
【背景技術】
【0002】
核酸分析デバイスとして、DNAやRNAの塩基配列を決定する新しい技術が開発されてきている。
【0003】
現在、通常用いられている電気泳動を利用した方法においては、予め配列決定用のDNA断片又はRNA試料から逆転写反応を行い合成したcDNA断片試料を調製し、周知のサンガー法によるジデオキシ反応を実行した後、電気泳動を行い、分子量分離展開パターンを計測して解析する。
【0004】
これに対し、近年、非特許文献1にあるように、基板にDNAなどを固定してその塩基配列を決定する方法が提案されている。基板表面にランダムに分析すべき試料DNA断片を1分子ずつ捕捉し、ほぼ1塩基ずつ伸長させて、その結果を蛍光計測より検出することにより塩基配列を決定するものである。具体的には、DNAポリメラーゼの基質として鋳型DNAに取り込まれてDNA鎖伸長反応を保護基の存在により停止することができかつ検出され得る標識を持つ4種のdNTPの誘導体(MdNTP)を用いてDNAポリメラーゼ反応を行わせる工程、次いで取り込まれたMdNTPを蛍光等で検出する工程、及びMdNTPを伸長可能な状態に戻す工程を1サイクルとし、それを繰り返すことにより試料DNAの塩基配列を決定する。本技術では、DNA断片を1分子ずつ配列決定することができるため、同時に数多くの断片を解析することができ、解析スループットを大きくすることができる。また、本方式では、単一DNA分子毎に塩基配列が決定できる可能性があるため、従来技術の問題であったクローニングやPCR等での試料DNAの精製,増幅が不要にできる可能性があり、ゲノム解析や遺伝子診断の迅速化が期待できる。
【0005】
【非特許文献1】P.N.A.S. 2003, Vol. 100, pp. 3960-3964.
【非特許文献2】Physical Review Letters 2006, 96, pp 113002-113005.
【非特許文献3】Anal. Chem. vol. 78, 6238-6245.
【非特許文献4】Nanotechnology, 2007, vol. 18, pp 044017-044021.
【非特許文献5】J. Comput. Theor. Nanosci. 2007, vol. 4, pp 686-691.
【非特許文献6】Nanotechnology, 2006, vol.17, pp 475-482.
【非特許文献7】P.N.A.S. 2006, vol. 103, pp 19635-19640.
【発明の開示】
【発明が解決しようとする課題】
【0006】
基板上における伸長反応を用いて塩基配列を解析する場合、前記非特許文献1で開示された方式に代表されるように、一塩基伸長反応・未反応基質の洗浄・計測を一サイクルとした、いわば、逐次反応方式のものが一般的である。単一DNA分子毎に塩基配列を解析する場合、プローブDNA上の、一塩基伸長反応によってDNA二本鎖中に取り込まれたヌクレオチドに付随した蛍光色素一分子の蛍光を計測することになるが、通常の蛍光測定では、プローブDNA上に補足された蛍光分子とその近傍に浮遊している未反応のヌクレオチドに付随している蛍光色素を識別することはできない。そのため、一塩基ずつ伸長したところで、未反応基質を洗浄することが不可欠であった。この洗浄工程が入ることで、基板上に複雑な流路や送液装置及び廃液処理装置を形成する必要があること、反応試薬も大量に消費してしまうこと、さらに、トータルの解析に必要な反応時間も長くなるという問題があった。
【0007】
プローブDNA上に補足された蛍光色素一分子と未反応基質の蛍光分子とを識別するためには、プローブDNA上に補足された蛍光色素だけが強く光り、浮遊する色素が光らない・あるいは無視されるほど弱く光るような条件を作り出さねばならない。
【0008】
本発明の目的は、塩基伸長反応によってDNA二本鎖中に取り込まれるヌクレオチドに付随する蛍光色素一分子と、未反応基質の蛍光分子と、を識別することに関する。
【課題を解決するための手段】
【0009】
そこで、発明者らは鋭意検討した結果、プローブDNA上や核酸合成酵素に局在表面プラズモンに基づく強い蛍光増強場を形成することで、塩基伸長反応によってDNA二本鎖中に取り込まれるヌクレオチドに付随する蛍光色素と浮遊する色素を識別して計測できる方法を見出した。特に、強い蛍光増強場を作り出す金属構造体の形状と、その局在化された増強場内にプローブDNAや核酸合成酵素を固定する方法を鋭意検討し、それらを両立しうる方法を見出した。
【0010】
本発明は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、光照射により局在型表面プラズモンが発生し、かつ、試料中の核酸を分析するための核酸プローブや核酸合成酵素が前記表面プラズモンの発生部位に配置されていることに関する。
【発明の効果】
【0011】
本発明により、表面プラズモンによる蛍光増強効果を効率よく引き起こし、かつ、DNAプローブや核酸合成酵素を蛍光増強効果が及ぶ領域に固定できる為、蛍光分子付き未反応基質を除去しなくとも、塩基伸長反応を計測することが可能となる。
【発明を実施するための最良の形態】
【0012】
本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、光照射により局在型表面プラズモンが発生し、かつ、試料中の核酸を分析するための核酸プローブが前記表面プラズモンの発生部位に配置された金属構造体を有することを特徴とする核酸分析デバイスである。
【0013】
また、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、平滑な支持基体上に、前記支持基体表面に対して垂直な方向に、金属体,絶縁層,金属体の順に積み重なった構成をとり、前記絶縁層に、試料中の核酸を分析するための核酸プローブを有することを特徴とする核酸分析デバイスである。
【0014】
さらに、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、平滑な支持基体上に、頂点を有する形状の金属構造体と、前記金属以外の材料から成る薄膜層を有し、前記頂点を含む金属構造体の一部分が前記薄膜層から露出し、前記一部分以外の前記金属構造体は前記薄膜層の中に埋もれた構成をとり、前記露出した金属構造体表面に、試料中の核酸を分析するための核酸プローブを有することを特徴とする核酸分析デバイスである。
【0015】
さらに、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスにおいて、平滑な支持基体上に、頂点を有する形状の金属構造体と、前記金属以外の材料から成る薄膜層を、前記頂点を含む金属構造体の一部分が前記薄膜層から露出し、かつ、前記一部分以外の前記金属構造体は前記薄膜層の中に埋もれた構造とし、前記露出した金属構造体表面に、試料中の核酸を分析するための核酸プローブを固定し、その後、薄膜層を除去することで作製されることを特徴とする核酸分析デバイスである。
【0016】
さらに、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、光照射により局在型表面プラズモンが発生する金属構造体を有し、試料中の核酸を分析するための核酸合成酵素が、前記局在型表面プラズモンの発生部位に配置されている核酸分析デバイスである。
【0017】
さらに、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、平滑な支持基板を備え、前記支持基板上において、前記支持基板表面に対して垂直な方向に、金属体,絶縁層、及び金属体が順に積み重なっており、前記絶縁層に、試料中の核酸を分析するための核酸合成酵素を有する核酸分析デバイスである。
【0018】
さらに、本実施例は、蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、平滑な支持基板を備え、前記支持基板上に、頂点を有する形状の金属構造体と、前記金属以外の材料から成る薄膜層を備え、前記金属構造体の一部分が、前記薄膜層から露出し、前記露出した金属構造体表面に、試料中の核酸を分析するための核酸合成酵素を有する核酸分析デバイスである。
【0019】
さらに、本実施例は、前記記載の核酸分析デバイスにおいて、前記構造体が円錐形であることを特徴とする核酸分析デバイスである。
【0020】
さらに、本実施例は、前記記載の核酸分析デバイスにおいて、前記構造体が多面体であることを特徴とする核酸分析デバイスである。
【0021】
さらに、本実施例は、前記記載の核酸分析デバイスにおいて、前記金属として金,銀,白金から選ばれる貴金属を用いたことを特徴とする核酸分析デバイスである。
【0022】
さらに、本実施例は、前記記載の核酸分析デバイスにおいて、前記金属構造体を支持基体上にアレイ状に配置したことを特徴とする核酸分析デバイスである。
【0023】
さらに、本実施例は、試料に光を照射する手段と発光検出手段を有し、前記記載の核酸分析デバイスに対して核酸試料をハイブリダイゼーションさせ、蛍光色素を有するヌクレオチドと核酸合成酵素を前記デバイス上に共存させることで、該デバイス上で核酸伸長反応を起こし、伸長反応中に核酸鎖中に取り込まれた蛍光色素の蛍光測定を行うことで、前記核酸試料の塩基配列情報を取得することを特徴とする核酸分析装置である。
【0024】
さらに、本実施例は、核酸分析デバイスに対して、蛍光色素を有するヌクレオチド,プライマ、及び核酸試料を供給する手段と、前記核酸分析デバイスに光を照射する手段と、前記核酸分析デバイス上において前記ヌクレオチド,前記プライマ、及び前記核酸試料が共存することにより起きる核酸伸長反応により核酸鎖中に取り込まれた蛍光色素の蛍光を測定する発光検出手段とを備え、前記核酸試料の塩基配列情報を取得することを特徴とする核酸分析装置である。
【0025】
以下、上記及びその他の本発明の新規な特徴と効果について、図を参照して説明する。
【0026】
ここでは、本発明を完全に理解してもらうため、特定の実施形態について詳細な説明を行うが、本発明はここに記した内容に限定されるものではない。
【実施例1】
【0027】
本実施例のデバイスの概念を図1を用いて説明する。プローブDNA上に補足された蛍光色素101と未反応基質の蛍光分子102とを識別するためには、プローブDNA上に補足された蛍光色素101と、浮遊する未反応の蛍光色素102に照射される光の強度を変えるか、あるいは、プローブDNA上の色素101だけの輻射過程を効率よく起こるようにする必要がある。実施例は、後者の考え方に基づくものであり、Physical Review Letters 2006, 96, pp 113002-113005(非特許文献2)に報告されているように、局在型表面プラズモンが分子の光吸収による電子遷移と励起一重項から基底状態への輻射遷移の両方の確率を高めるという物理現象に基づくものである。局在型表面プラズモンの蛍光増強効果は数倍から数十倍程度見込むことができる。その影響が及ぶ範囲は10nmから20nm程度であり、プローブDNAを固定した金属構造体の表面で局在型表面プラズモンが発生すれば、プローブDNAに取り込まれた色素だけが蛍光増強の恩恵を受け、浮遊する色素とは数倍から数十倍以上の蛍光強度の差がもたらされる。局在型表面プラズモンが発生する部位及び影響が及ぶ範囲が10から20nm程度と極めて局在化しているため、そのような部位にプローブDNAを固定することは極めて難しく、まして、平滑基板上にそのような局在型表面プラズモンを発生する部位を数万から数十万個も作製することに関しては、発明者らが知る限り、今まで報告例はない。本実施例は、局在型表面プラズモンが発生する部位にプローブDNAを簡便に固定化する方法を見出し、かつ、平滑基板103上にそのような局在型表面プラズモンを発生する部位を数万から数十万個も作製することを可能とする方法を提供するものである。
【0028】
表面プラズモンによる蛍光増強の現象については、Anal. Chem. vol. 78, 6238-6245(非特許文献3)に報告されているようなナノ・メートルオーダーの銀の島構造を用いたものや、Nanotechnology, 2007, vol. 18, pp 044017-044021.(非特許文献4)に報告されているような金の直径数十ナノ・メートルの球状微粒子を用いたものが知られている。
【0029】
一つ一つのプローブDNA分子に対して島状構造を有するパッドや球状微粒子をガラス基板等の平滑基板上に数万から数十万個配置することはほとんど不可能である。特に、プローブDNA分子を所定の箇所に固定することは不可能である。
【0030】
そこで、発明者らは、強力な表面プラズモンを生成し、かつ、表面プラズモン発生部位近傍にプローブDNA分子を固定化しうる構造を鋭意検討した。さらに、製造コストを考えると、半導体や配線基板の製造に用いられている薄膜プロセスを活用して製造できる構造となることも好ましいと考え、構造を検討した。
【0031】
金ナノ微粒子が近接していると、その間の間隙には、強力な局在表面プラズモンが発生することが、J. Comput. Theor. Nanosci. 2007, vol. 4, pp 686-691(非特許文献5)において計算シミュレーションにより予測されている。しかしながら、金ナノ微粒子を近接させてペアを作らせ、その微粒子間の距離を制御しながら金ナノ微粒子ペアを平滑基板上に格子状に並べ、かつ、ペアを構成する金微粒子間にDNAプローブを固定することは、非常に困難である。本発明者らは、鋭意検討した結果、金属構造体の間に絶縁層を挟み、その絶縁層の厚みを制御することで金属構造体間の間隔を制御し、かつ、その絶縁層にプローブDNA分子を固定した構造体を考案した。
【0032】
金属構造体の間に挿入する絶縁層は、SiO2などの無機材料でもポリイミドに代表されるような有機材料を用いても良い。何れの場合にも、金属表面との化学的な性質の差を用いて、適した官能基を選択し、それを絶縁層に付与するか、あるいはプローブDNA分子末端に前記官能基を修飾しておき、それを金属構造体と反応させることで所望のプローブDNA分子付き金属構造体を製造できる。絶縁層の膜厚は1nmから20nm程度が好ましいが、この条件に縛られるものではない。金属構造体は、マスクを通した蒸着・スパッタリング、あるいは蒸着・スパッタリングにより薄膜を形成した後、ドライあるいはウエットエッチングにより製造することが出来る。金属,絶縁物,金属を連続的に蒸着・スパッタリングで製膜した後、エッチング等で形状を所望のものに作ることも出来るし、マスクを通して、金属,絶縁物,金属を蒸着・スパッタリングで積層することでも製造できる。あるいは、金属箔を絶縁物で挟んで接着したあと平滑基板に積層物を接着し、エッチング等で成形することで所望の金属積層体を製造することも可能である。金属構造体の適切な大きさは、照射する光の波長によって異なる。すなわち、表面プラズモンの発生に適する共鳴周波数は、金属構造体表面の自由電子群と光との相互作用によるものである。励起光を可視光とすると、金属構造体の大きさは、幅・高さともに、30から1000nm程度が適しているが、この条件に縛られるものではない。金属としては、光がもたらす電場によって金属中により大きな反分極場(光による印加電場とは反対の位相を持つ電場)ができることが強力な局在型表面プラズモン形成につながるため、より大きな負の誘電率を持つ金属が好ましく、金,銀,白金等の貴金属が望ましい。
【0033】
また、強力な表面プラズモンが発生する構造として、先端が先鋭化した微小な針が知られている。例えば、Nanotechnology, 2006, vol.17, pp 475-482(非特許文献6)では、先端を先鋭化すればするほど表面プラズモンが強く発生する可能性が計算シミュレーションにより予測されている。しかしながら、先端が先鋭な金属の針を平滑基板上に格子状に並べ、かつ先端にDNAプローブを固定することは、非常に困難である。本発明者らは、鋭意検討した結果、先端を先鋭化した金属構造体であり、先端だけを露出するように前記金属構造体を前記金属とは異なる材料で覆い、前記金属とそれを覆う材料のプローブDNA分子との接着性の差を利用することで、金属先端部にだけプローブDNA分子を固定した構造体を考案した。先端を先鋭化した構造体としては、円錐型や角を多数有する多面体が好ましいが、この条件に縛られるものではない。前記構造体を覆う材料としては、SiO2などの無機材料や高分子などの有機材料が適している。製造方法としては、裾広がりの大きなテーパーを有するマスクを通して金属を蒸着・スパッタリングで製膜する方法が考えられる。金属構造体を製造した後、全面にSiO2などの無機材料や高分子などの有機材料の薄膜を形成する。薄膜の形成方法として、蒸着・スパッタリングや塗液による塗工が適している。製膜する厚みを制御することで、先端部を露出することが可能である。
あるいは、先端部が覆われるほど厚く薄膜を形成した後、エッチングにより、先端部を露出することもできる。露出部にプローブDNA分子を固定するには、金属構造体表面と薄膜表面との化学的性質の差を利用するのが良い。たとえば、金属が金で金属を覆う膜がSiO2の場合には、プローブDNAの末端に予めチオール基を修飾して置くことで、プローブDNA水溶液をSiO2被覆膜形成後にアプライすると、金露出部のみにプローブDNAが固定される。金属構造体の適切な大きさは、照射する光の波長によって異なる。すなわち、表面プラズモンの発生に適する共鳴周波数は、金属構造体表面の自由電子群と光との相互作用によるものである。励起光を可視光とすると、金属構造体の大きさは、幅・高さともに、30から1000nm程度が適しているが、この条件に縛られるものではない。また、上記方法により、先端部にDNAプローブを固定した後、金属構造体を覆う薄膜を除去しても、表面プラズモンによる効果は同等である。金属構造体を覆う薄膜が、核酸分析デバイスとしての特性に悪影響を与える場合には、除去することが好ましい。
【0034】
近接した二つの金構造体の間にDNAプローブを固定した核酸分析デバイスの製造方法を図2を用いて説明する。平滑な支持基体201上に2種類の電子線用ポジ型レジスト202,203を別々にスピンコート法により塗工する。平滑な支持基体としては、ガラス基板,サファイア基板,樹脂基板等が用いられる。デバイスとしたときに、金属構造体を形成した面と反対側の裏面より励起光を照射する必要がある場合には、光透過性に優れた石英基板やサファイア基板を用いればよい。2種類の電子線用ポジ型レジストとしては、例えば、ポリメチルメタクリレートと、ラジカル的な切断により解重合しやすい構造を有する高分子レジストの組み合わせを用いることができる。後者のレジストとしては、170〜200℃のホットプレートで2〜5分程度でプリベイクが行え、かつ、加速電圧20KVで電子線量が20〜50μC/cm2で描画できることが実用上好ましく、例えば、ZEP−520A(日本ゼオン社製)を挙げることができる。基板上のマーカーの位置を用いて位置合わせを行ったうえ2回電子線直描露光を行って、各々のレジストに基板側のレジスト202の方がレジスト203よりの穴径が大きいスルーホールを形成する。例えば、各々直径300nm及び250nmのスルーホールを形成する。このスルーホールをテーパーが大きいデポジション用のマスクとして活用する。スルーホールは並行処理で解析できる核酸の分子数に依存するが、1μm程度のピッチで形成することが、製造上の簡便さ・歩留まりの高さと並行処理で解析できる核酸の分子数を勘案すると適している。スルーホール形成領域も、並行処理で解析できる核酸の分子数によるが、検出装置側の位置精度,位置分解能にも大きく依存する。例えば、1μmピッチで反応サイト(金属構造体)を構成した場合、スルーホール形成領域を1mm×1mmとすると、100万反応サイトを形成できる。スルーホールを形成後、金属構造体の組成にしたがって、チタン204,金205,チタン206,SiO2膜207,チタン208,金209をスパッタリングで製膜する。チタンはサファイア−金,金−SiO2間の接着を補強する意味で入れることが好ましく、クロム等の他の金属を使用することができる。2層レジストを剥離後、金209をエッチングすることで、チタン208を露出させる。金209のエッチングはウエットエッチングが好ましく、エッチング液にはよう素系のエッチング液が好ましい。よう素系のエッチング液は、よう素とよう化物(よう化カリウムやよう化アンモニウム)からなり、液性が中性で扱い易く、成分濃度によるエッチング速度の制御も容易であるという利点を有する。例として、AURUM−301(関東化学社製)を挙げることができる。次に、ドライエッチングにより、チタン208,SiO2膜207,チタン206をエッチングし、下層の金205を露出させる。このエッチングには、アルゴンプラズマエッチングが好ましい。次に、もう一度、金のウエットエッチングで、下層の金205の横幅を100nmから500nm程度になるまでエッチングする。この金205の最終的な大きさは、局在型表面プラズモンを生成させるために照射する光の波長によって調節する必要がある。例えば、500nm程度の光を用いる場合には、横幅は50nmから500nm程度、高さは50nmから500nm程度が効果的である。最後に、SiO2膜207にDNAプローブを固定する。固定方法には種々の方法が考えられるが、例としてアミノシラン処理を用いる方法を記述する。アミノシラン処理により、SiO2膜207にアミノ基を導入する。その後、ビオチン−スクシンイミド(Pierce社製NHS−Biotin)を反応させた後、ストレプトアビジンを反応させ、次に、予めビオチンを末端に修飾しておいたDNAプローブ210を反応させることで、近接した二つの金構造体の間にDNAプローブを固定した核酸分析デバイスを完成することができる。DNAプローブの長さには、特別な制限はないが、あまり長く、あるいは極端に短くすると、DNAが金構造体に隠れてしまい、核酸試料とのハイブリダイゼーション効率が悪くなる恐れがある。20から50塩基長が好ましい。上記製造方法は、金以外の銀や白金を用いた場合にも、同様に作製されることは言うまでもない。
【0035】
次に、金の円錐形の先端部にDNAプローブを固定した構造の核酸分析デバイスの製造方法を、図3を用いて説明する。平滑な支持基体301上に2種類の電子線用ポジ型レジスト302,303を別々にスピンコート法により塗工する。平滑な支持基体としては、ガラス基板,サファイア基板,樹脂基板等が用いられる。デバイスとしたときに、金属構造体を形成した面と反対側の裏面より励起光を照射する必要がある場合には、光透過性に優れた石英基板やサファイア基板を用いればよい。2種類の電子線用ポジ型レジストとしては、例えば、ポリメチルメタクリレートとラジカル的な切断により解重合しやすい構造を有する高分子レジストの組み合わせを用いることができる。後者のレジストとしては、170〜200℃のホットプレートで2〜5分程度でプリベイクが行え、かつ、加速電圧20KVで電子線量が20〜50μC/cm2で描画できることが実用上好ましく、例えば、ZEP−520A(日本ゼオン社製)を挙げることができる。基板上のマーカーの位置を用いて位置合わせを行ったうえ2回電子線直描露光を行って、各々のレジストに基板側の電子線用ポジ型レジスト302の方が電子線用ポジ型レジスト303よりも穴径が大きいスルーホールを形成する。例えば、各々直径300nm及び100nmのスルーホールを形成する。このスルーホールをテーパーが大きいデポジション用のマスクとして活用する。スルーホールを形成後、金属構造体の組成にしたがって、チタン304,金305をスパッタリングで製膜する。チタンはサファイア−金間の接着を補強する意味で入れることが好ましく、クロム等の他の金属を使用することができる。形成される金のスパッタ膜305は図3に示すように、円錐型となる。この円錐型の形状をコントロールするには、2層レジストの各々の膜厚と穴径を変えることが有効である。2層レジストを剥離後、SiO2膜306をスパッタリングで製膜する。次に、反応性イオンエッチング(CF4/O2使用)により、SiO2膜306をエッチングして、金305の先端部を露出する。次にヒドロキシシラン処理により、SiO2膜306上にヒドロキシ基を導入し、非特異的吸着を防止する。最後に、末端にチオール基を修飾したDNAプローブ307を反応させることで、金の円錐形の先端部にDNAプローブを固定した構造の核酸分析デバイスを完成することができる。上記製造方法は、金以外の銀や白金を用いた場合にも、同様に作製されることは言うまでもない。
【0036】
核酸分析デバイスの好ましい構成の一例について図4を参照しながら説明する。光透過性支持基体401の上に、金属構造体が格子状に配置されている領域402が複数搭載されている。金属構造体は、先に述べた、近接した二つの金構造体の間にDNAプローブを固定した金属構造体や、金の円錐形の先端部にDNAプローブを固定した構造の金属構造体が該当する。配置の間隔は、解析しようとする核酸試料,蛍光検出装置の仕様によって適切に設定できる。例えば、25mm×75mmのスライドガラスを光透過性支持基体401とし、1マイクロ・メートル間隔で格子状に金属構造体を配置した領域402を5mm×8mmとすると、1領域当たり4000万種類の核酸分子を解析でき、その領域を8個程度、光透過性支持基体401(スライドガラス)上に搭載することができる。したがって、例えば、RNAの発現解析に用いる場合には、一細胞当たり約40万分子のRNAが発現していることから、RNAの発現頻度解析をデジタルカウンティングのように十分に正確に行うことができ、一枚の基板上で8解析程度行うことができる。前記のように、複数の反応領域を光透過性支持基体401の上に設けるには、予め流路を設けた反応チャンバー403を光透過性支持基体401の上にかぶせることで達成できる。反応チャンバー403は、流路の形成には流路407の溝を予め掘ったPDMS(Polydimethylsiloxane)等の樹脂基体からなり、デバイス上に張り合わせて使用することになる。具体的に述べると、核酸試料,反応酵素,バッファー,ヌクレオチド基質等を保存・温度管理する温調ユニット404,反応液を送り出す分注ユニット405,液の流れを制御するバルブ406,廃液タンク408から構成される。必要に応じ、温調機を配置し、温度制御を行う。反応終了時には、洗浄液が反応チャンバー403の流路を通じて供給され、廃液タンク408に収納される。
【実施例2】
【0037】
核酸分析装置の実施例について説明する。核酸分析デバイスを用いた核酸分析装置の好ましい構成の一例について図5を参照しながら説明する。
【0038】
本実施例では、核酸分析デバイスに対して、蛍光色素を有するヌクレオチド,核酸合成酵素、及び核酸試料を供給する手段と、核酸分析デバイスに光を照射する手段と、核酸分析デバイス上においてヌクレオチド,核酸合成酵素、及び核酸試料が共存することにより起きる核酸伸長反応により核酸鎖中に取り込まれた蛍光色素の蛍光を測定する発光検出手段と、を備える。より具体的には、カバープレート501と検出窓502と溶液交換用口である注入口503と排出口504から構成される反応チャンバーに前記のデバイス505を設置する。なお、カバープレート501と検出窓502の材質として、PDMS(Polydimethylsiloxane)を使用する。また、検出窓502の厚さは0.17mmとする。YAGレーザ光源(波長532nm,出力20mW)507およびYAGレーザ光源(波長355nm,出力20mW)508から発振するレーザ光510および509を、レーザ光509のみをλ/4板511によって円偏光し、ダイクロイックミラー512(410nm以下を反射)によって、前記2つのレーザ光を同軸になるよう調整した後、レンズ513によって集光し、その後、プリズム514を介してデバイス505へ臨界角以上で照射する。本実施例によれば、レーザ照射により、デバイス505表面上に存在する金属構造体において局在型表面プラズモンが発生し、金属構造体に結合したDNAプローブにより捕捉された標的物質の蛍光体は蛍光増強場内に存在することになる。蛍光体はレーザ光で励起され、その増強された蛍光の一部は検出窓502を介して出射される。また、検出窓502より出射される蛍光は、対物レンズ515(×60,NA1.35,作動距離0.15mm)により平行光束とされ、光学フィルタ516により背景光及び励起光が遮断され、結像レンズ517により2次元CCDカメラ518上に結像される。
【0039】
逐次反応方式の場合には、蛍光色素付きヌクレオチドとして、P.N.A.S. 2006, vol. 103, pp 19635-19640(非特許文献7)に開示されているような、リボースの3′OHの位置に3′−O−アリル基を保護基として入れ、また、ピリミジンの5位の位置にあるいはプリンの7位の位置にアリル基を介して蛍光色素と結びつけたものが使用できる。アリル基は光照射あるいはパラジウムと接触することで切断されるため、色素の消光と伸長反応の制御を同時に達成することが出来る。逐次反応でも、未反応のヌクレオチドを洗浄で除去する必要はない。さらに、洗浄工程が必要ないことからリアルタイムで伸長反応を計測することも可能である。この場合には、前記ヌクレオチドにおいて、リボースの3′OHの位置に3′−O−アリル基を保護基として入れる必要は無く、光照射で切断可能な官能基を介して色素と結びついているヌクレオチドを用いれば良い。
【0040】
上記のように、本実施例の核酸分析デバイスを用いて核酸分析装置を組上げることで、洗浄工程を入れることなく、解析時間の短縮化,デバイス及び分析装置の簡便化が図れ、逐次反応方式のみならず、リアルタイムで塩基の伸長反応を計測することも可能となり、従来技術に対して大幅なスループットの改善が図れる。
【実施例3】
【0041】
局在表面プラズモンによる蛍光増強場は、通常、大きくても構造体の直径程度であり、より具体的には、20nm以下の大きさである。一方、核酸の大きさは10塩基長で3.4nmであり、20nmの増強場に相当する核酸は20÷3.4×10≒58.8塩基長となる。従って、実施例1のデバイスでは、伸長した核酸を丸め込んだり、蛍光増強場を広げたりする等の工夫を施さないと、58塩基長よりも長い塩基配列決定が難しくなる。読み取り塩基長が短いと、得られた配列情報をDBに照合した時の照合率が低くなってしまう。
【0042】
そこで、本実施例では、実施例1及び2とは異なり、試料中の核酸を分析するための核酸合成酵素が前記表面プラズモンの発生部位に配置されている。蛍光増強効果が及ぶ領域に核酸合成酵素を固定できる為、より長い塩基長の読み取りが可能となる。以下、実施例1及び2との相違を中心に説明する。
【0043】
本実施例のデバイスの概念を図6を用いて説明する。核酸合成酵素605に補足された蛍光色素101と未反応基質の蛍光分子102とを識別するためには、核酸合成の色素101だけの輻射過程を効率よく起こるようにする必要がある。局在型表面プラズモンの蛍光増強効果が及ぶ範囲は10nmから20nm程度であり、核酸合成酵素605を固定した金属構造体の表面で局在型表面プラズモンが発生すれば、核酸合成酵素605に取り込まれた色素だけが蛍光増強の恩恵を受け、浮遊する色素とは数倍から数十倍以上の蛍光強度の差がもたらされる。本実施例は、局在型表面プラズモンが発生する部位に核酸合成酵素605を簡便に固定化する方法を見出し、かつ、平滑な支持基板103上にそのような局在型表面プラズモンを発生する部位を数万から数十万個も作製することを可能とする方法を提供するものである。
【0044】
本実施例では、金属構造体の間に絶縁層を挟み、その絶縁層の厚みを制御することで金属構造体間の間隔を制御し、かつ、その絶縁層に核酸合成酵素を固定している。
【0045】
金属構造体の間に挿入する絶縁層は、SiO2などの無機材料でもポリイミドに代表されるような有機材料を用いても良い。何れの場合にも、金属表面との化学的な性質の差を用いて、適した官能基を選択し、それを絶縁層に付与するか、あるいは核酸合成酵素内に存在する官能基、または核酸合成酵素に導入された新たな官能基子を金属構造体と反応させることで所望の核酸合成酵素付き金属構造体を製造できる。
【0046】
また、先端を先鋭化した金属構造体とし、先端だけを露出するように前記金属構造体を前記金属とは異なる材料で覆い、前記金属とそれを覆う材料の核酸合成酵素との接着性の差を利用することで、金属先端部にだけ核酸合成酵素を固定してもよい。
【0047】
露出部に核酸合成酵素を固定するためには、金属構造体表面と薄膜表面との化学的性質の差を利用するのが良い。たとえば、金属が金で金属を覆う膜がSiO2の場合には、核酸合成酵素内に存在する官能基、または核酸合成酵素に導入された新たな官能基と金の表面に導入された官能基を反応することで金露出部のみに核酸合成酵素が固定される。金属構造体の適切な大きさは、照射する光の波長によって異なる。すなわち、表面プラズモンの発生に適する共鳴周波数は、金属構造体表面の自由電子群と光との相互作用によるものである。励起光を可視光とすると、金属構造体の大きさは、幅・高さともに、30から1000nm程度が適しているが、この条件に縛られるものではない。また、上記方法により、先端部に核酸合成酵素を固定した後、金属構造体を覆う薄膜を除去しても、表面プラズモンによる効果は同等である。金属構造体を覆う薄膜が、核酸分析デバイスとしての特性に悪影響を与える場合には、除去することが好ましい。
【0048】
核酸合成酵素は核酸を伸長することができれば特に制限はない。この様なものとして、例えば、核酸がDNAである場合は、各種のDNAポリメラーゼが挙げられる。一方、核酸がRNAである場合は、各種のRNAポリメラーゼが挙げられる。
【0049】
近接した二つの金構造体の間に核酸合成酵素を固定した核酸分析デバイスの製造方法であるが、SiO2膜に核酸合成酵素を固定するまでは実施例1と同等なので省略する。SiO2膜207に核酸合成酵素を固定する方法には種々の方法が考えられるが、例としてアミノシラン処理を用いる方法を記述する。アミノシラン処理により、SiO2膜207にアミノ基を導入する。その後、二価性試薬であるN−(4−Maleimidobutyryloxy)succinimide(同仁化学研究所社生GMBS)を反応させた後、核酸合成酵素を反応させることで、近接した二つの金構造体の間に核酸合成酵素を固定した核酸分析デバイスを完成することができる。核酸合成酵素を固定化する方法について、先の方法は1例にすぎず、その他ニトロセルロース,ポリアクリルアミドなどとの物理吸着を利用する方法,ヒスチジンとニッケルイオンやコバルトイオンとの特異的な親和を利用する方法、またはビオチンとアビジンの結合を利用する方法などを用いることができる。尚、金属構造体として銀や白金を用いた場合にも、同様に作製することができる。
【0050】
次に、金の円錐形の先端部に核酸合成酵素を固定した構造の核酸分析デバイスの製造方法であるが、金の円錐形の先端部に核酸合成酵素を固定するまでは実施例1と同等なので省略する。
【0051】
実施例2と同様に、反応性イオンエッチング(CF4/O2使用)により、SiO2膜306をエッチングして、金305の先端部を露出する。次にヒドロキシシラン処理により、SiO2膜306上にヒドロキシ基を導入し、非特異的吸着を防止する。そして、アミノアルカンチオールを用いてSAM(Self-Assembled Monolayer)膜を形成して金表面上にアミノ基を導入した後、N−(4−Maleimidobutyryloxy)succinimide(同仁化学研究所社生GMBS)を用いてチオール基と反応可能な官能基を導入する。最後に、核酸合成酵素307内に存在するチオール基と前記官能基を反応することで金の円錐形の先端部に核酸合成酵素を固定した構造の核酸分析デバイスを完成することができる。核酸合成酵素を固定化する方法について、先の方法は1例にすぎず、その他ニトロセルロース,ポリアクリルアミドなどとの物理吸着を利用する方法,ヒスチジンとニッケルイオンやコバルトイオンとの特異的な親和を利用する方法、またはビオチンとアビジンの結合を利用する方法などを用いることができる。尚、金属構造体として銀や白金を用いた場合にも、同様に作製することができる。
【0052】
尚、本実施例で説明した核酸分析デバイスは、実施例2と同等な核酸分析装置で分析することができる。実施例2との相違は、核酸合成酵素がプライマに置換えされることだけである為、ここでは説明を省略する。尚、この場合、当該装置は、核酸分析デバイスに対して、蛍光色素を有するヌクレオチド,プライマ、及び核酸試料を供給する手段と、核酸分析デバイスに光を照射する手段と、核酸分析デバイス上においてヌクレオチド,プライマ、及び核酸試料が共存することにより起きる核酸伸長反応により核酸鎖中に取り込まれた蛍光色素の蛍光を測定する発光検出手段と、を備えることとなる。
【0053】
また、各実施例は適宜組み合わせることが可能である。
【図面の簡単な説明】
【0054】
【図1】本発明の核酸分析デバイスの概念を説明するための図である。
【図2】本発明の核酸分析デバイスの製造方法の一例を説明するための図である。
【図3】本発明の核酸分析デバイスの製造方法の一例を説明するための図である。
【図4】本発明の核酸分析デバイスの構成の一例を説明するための図である。
【図5】本発明の核酸分析デバイスを用いた核酸分析装置の一例を説明するための図である。
【図6】本発明の核酸分析デバイスの概念を説明するための図である。
【符号の説明】
【0055】
101 蛍光色素
102 未反応基質の蛍光色素
103 平滑基板
104 金属構造体
105 DNAプローブ
201,301 平滑な支持基体
202,203,302,303 電子線用ポジ型レジスト
204,206,208,304 チタン
205,209 金
207,306 SiO2
305 金のスパッタ膜
401 光透過性支持基体
402 格子状に金属構造体を配置した領域
403 反応チャンバー
404 温調ユニット
405 分注ユニット
406 バルブ
407,506 流路
408 廃液タンク
501 カバープレート
502 検出窓
503 注入口
504 排出口
505 デバイス
507,508 YAGレーザ光源
509,510 レーザ光
511 λ/4板
512 ダイクロイックミラー
513 レンズ
514 プリズム
515 対物レンズ
516 光学フィルタ
517 結像レンズ
518 2次元CCDカメラ
605 核酸合成酵素

【特許請求の範囲】
【請求項1】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
光照射により局在型表面プラズモンが発生する金属構造体を有し、
試料中の核酸を分析するための核酸プローブが、前記局在型表面プラズモンの発生部位に配置されている核酸分析デバイス。
【請求項2】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
平滑な支持基体を備え、
前記支持基体上において、前記支持基体表面に対して垂直な方向に、金属体,絶縁層、及び金属体が順に積み重なっており、
前記絶縁層に、試料中の核酸を分析するための核酸プローブを有する核酸分析デバイス。
【請求項3】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
平滑な支持基体を備え、
前記支持基板上に、頂点を有する形状の金属構造体と、前記金属以外の材料から成る薄膜層を備え、
前記金属構造体の一部分が、前記薄膜層から露出し、
前記露出した金属構造体表面に、試料中の核酸を分析するための核酸プローブを有する核酸分析デバイス。
【請求項4】
請求項3記載の核酸分析デバイスにおいて、
前記金属構造体が円錐形であることを特徴とする核酸分析デバイス。
【請求項5】
請求項3記載の核酸分析デバイスであって、
前記金属構造体が多面体であることを特徴とする核酸分析デバイス。
【請求項6】
請求項1から5のいずれか1項に記載の核酸分析デバイスにおいて、
前記金属構造体として、金,銀、又は白金から選ばれる貴金属が用いられていることを特徴とする核酸分析デバイス。
【請求項7】
前記請求項1から6のいずれか1項に記載の核酸分析デバイスにおいて、
前記金属構造体が、前記支持基体上にアレイ状に配置されていることを特徴とする核酸分析デバイス。
【請求項8】
請求項1から7のいずれか1項に記載の核酸分析デバイスを用いる核酸分析装置であって、
核酸分析デバイスに対して、蛍光色素を有するヌクレオチド,核酸合成酵素、及び核酸試料を供給する手段と、
前記核酸分析デバイスに光を照射する手段と、
前記核酸分析デバイス上において前記ヌクレオチド,前記核酸合成酵素、及び前記核酸試料が共存することにより起きる核酸伸長反応により核酸鎖中に取り込まれた蛍光色素の蛍光を測定する発光検出手段と、を備え、
前記核酸試料の塩基配列情報を取得することを特徴とする核酸分析装置。
【請求項9】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
光照射により局在型表面プラズモンが発生する金属構造体を有し、
試料中の核酸を分析するための核酸合成酵素が、前記局在型表面プラズモンの発生部位に配置されている核酸分析デバイス。
【請求項10】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
平滑な支持基板を備え、
前記支持基板上において、前記支持基板表面に対して垂直な方向に、金属体,絶縁層、及び金属体が順に積み重なっており、
前記絶縁層に、試料中の核酸を分析するための核酸合成酵素を有する核酸分析デバイス。
【請求項11】
蛍光測定により試料中の核酸を分析する核酸分析デバイスであって、
平滑な支持基板を備え、
前記支持基板上に、頂点を有する形状の金属構造体と、前記金属以外の材料から成る薄膜層を備え、
前記金属構造体の一部分が、前記薄膜層から露出し、
前記露出した金属構造体表面に、試料中の核酸を分析するための核酸合成酵素を有する核酸分析デバイス。
【請求項12】
請求項11記載の核酸分析デバイスにおいて、
前記金属構造体が円錐形であることを特徴とする核酸分析デバイス。
【請求項13】
請求項11記載の核酸分析デバイスであって、
前記金属構造体が多面体であることを特徴とする核酸分析デバイス。
【請求項14】
請求項9から13のいずれか1項に記載の核酸分析デバイスにおいて、
前記金属構造体として、金,銀、又は白金から選ばれる貴金属が用いられていることを特徴とする核酸分析デバイス。
【請求項15】
前記請求項9から14のいずれか1項に記載の核酸分析デバイスにおいて、
前記金属構造体が、前記支持基板上にアレイ状に配置されていることを特徴とする核酸分析デバイス。
【請求項16】
請求項9から15のいずれか1項に記載の核酸分析デバイスを用いる核酸分析装置であって、
核酸分析デバイスに対して、蛍光色素を有するヌクレオチド,プライマ、及び核酸試料を供給する手段と、
前記核酸分析デバイスに光を照射する手段と、
前記核酸分析デバイス上において前記ヌクレオチド,前記プライマ、及び前記核酸試料が共存することにより起きる核酸伸長反応により核酸鎖中に取り込まれた蛍光色素の蛍光を測定する発光検出手段とを備え、
前記核酸試料の塩基配列情報を取得することを特徴とする核酸分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−45057(P2009−45057A)
【公開日】平成21年3月5日(2009.3.5)
【国際特許分類】
【出願番号】特願2008−79494(P2008−79494)
【出願日】平成20年3月26日(2008.3.26)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】