説明

植物栽培方法及び植物栽培装置

【課題】栽培液に二酸化炭素のナノバブルを供給することで、植物の光合成の促進を図るようにした植物栽培方法及び植物栽培装置を提供する。
【解決手段】 栽培液2に浮上配置された栽培床3に植物苗20を配置して生育させる植物栽培方法において、二酸化炭素のナノバブルを栽培液2に供給して植物苗20にその根部22から吸収させる。係る構成によれば、二酸化炭素ナノバブルが植物の根から細胞内に取り込まれ、葉の気孔からの二酸化炭素の吸入との相乗作用によって、葉緑素への二酸化炭素の吸収量が増加し、植物の光合成が促進される。また、栽培液2が投入された栽培水槽1と植物苗20を支持する栽培床3と、二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを栽培液2に供給するナノバブル供給装置10を備えた植物栽培装置によれば、二酸化炭素ナノバブルを栽培液2に効率良く供給でき、二酸化炭素の吸収量が増加し、植物の光合成が促進される。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、水耕栽培において植物の光合成作用を高めてその生育の促進を図るようにした植物栽培方法及びこの栽培方法に適した植物栽培装置に関するものである。
【背景技術】
【0002】
植物の生育は、葉細胞中の葉緑素において、太陽光から吸収した光エネルギーを使い、葉の気孔から吸収した大気中の二酸化炭素(CO2)と根から吸収した水を用いて酸素と糖類を作り出す、いわゆる光合成に支配される。従って、植物の生育を促進するためには、光合成作用を高めることが有効である(非特許文献1参照)。
【0003】
ところで、上掲の非特許文献1にも示されるように、植物の光合成は、光の強さ(光エネルギーの大きさ)、環境温度、環境中の二酸化炭素濃度によって変化することが知られている。また、光が強い条件下では、光合成速度には環境温度は殆ど関与せず、専ら光の強さと二酸化炭素濃度に支配され、強い光の下で二酸化炭素濃度を高めることで光合成速度が高められることも知られている。このことは、例えば、光の強さを適正に保持した場合、光合成速度は二酸化炭素濃度のみに支配され、二酸化炭素濃度が高いほど光合成速度が高められる(光合成が促進される)ということになる。
【0004】
このような栽培環境における二酸化炭素濃度を高める技術として、例えば、特許文献1には、イチゴ等のハウス栽培において、植物の栽培環境に二酸化炭素を供給してその濃度を高める技術が示されている。
【0005】
また、特許文献2には、二酸化炭素濃度の高い空気を栽培液中に供給して、植物の根の周りの酸素濃度を高めると同時に、二酸化炭素によって栽培液の酸化を抑制(即ち、栽培液のPH調整)する技術が示されている。
【0006】
一方、非特許文献2には、マイクロバブル及びナノバブルの生成、及び液中にナノバブルを供給する技術が提案されている。ここで、マイクロバブルは直径が50μm以下の微細気泡である。また、ナノバブルは、マイクロバブルよりもさらに微細な気泡(直径が1μm以下)であって、マイクロバブルが水中で圧壊する過程において生成される。このナノバブルは非常に不安定であってナノバブルを長期に亘って液中に保持することが技術的に困難とされていたが、近年の研究によって、ナノバブルの安定化技術が開発されたことから、その活用法が求められている。
【0007】
なお、このようなナノバブルの安定性の原因については未だ研究段階にあって明確な結論はでていないものの、実験結果等から、非特許文献2においては以下のように推論している。
【0008】
第1の推論は、電解質イオンを含む水の中でマイクロバブルの圧壊する過程で、水中のイオン類が気泡周囲に凝縮することで静電気的な反発力を生じて気泡が完全に消滅するのが抑制され、これによってナノバブルが安定的に存在するというものであり、第2の推論は、濃縮したイオン類が気泡を包み込む殻として作用することで、内部の気体の散逸が防止され、これによってナノバブルが安定的に存在するというものである。
【0009】
ナノバブルの安定化技術の開発に伴う上記要求に応えるべく、マイクロバブルとかナノバブルを水耕栽培に利用する技術が開発され、これが提案されるに至った(例えば、特許文献3、特許文献4参照)。
【0010】
特許文献3に示される技術は、空気をマイクロバブルとして栽培液に供給した場合における該栽培液に対する酸素の溶解度は、空気をそのまま栽培液に供給した場合における酸素の溶解度に比して、格段に高いとの知見に基づいて、空気をマイクロバブルとして栽培液に供給することで、該栽培液中の溶存酸素量を増加させて植物の根からの酸素吸入を促進させる技術である。
【0011】
特許文献4に示される技術は、オゾンをマイクロバブルとかナノバブルとして栽培液中に供給し、オゾンの有する殺菌性を利用して栽培液の殺菌・除菌を行なう技術である。
【先行技術文献】
【非特許文献】
【0012】
【非特許文献1】NHK高校講座 生物 「第38回 第6部 環境と植物の反応 光合成と環境条件」 http://www.nhk.or.jp/kokokoza/tv/seibutsu/archive/resume038.html
【非特許文献2】独立行政法人産業総合研究所 プレスリリース 「世界で初めてナノバブルの製造・安定化技術を確立」 http://www.aist.go.jp/aist-j/press-relesse/pr2004/pr20040315/pr20040315.html
【特許文献】
【0013】
【特許文献1】特開2009−213414号公報
【特許文献2】特開平11−000066号公報
【特許文献3】特開2002−142582号公報
【特許文献4】特開2008−206448号公報
【発明の概要】
【発明が解決しようとする課題】
【0014】
ところで、植物の光合成を促進させるには、植物の葉への二酸化炭素の取込量を増加させることが有効であることは既述の通りであり、またその手法としては、栽培環境の二酸化炭素濃度を増加させる手法が主流であって、ナノバブルを利用して植物の根から二酸化炭素を取り込む技術は提案されていない。なお、ナノバブルを栽培液中に供給する技術はあるものの、ここに示されるものは、水への溶解度の高い酸素をナノバブルとして供給することで溶存酸素量を増加させるものであって、植物の光合成の促進に直接結びつくものではない。
【0015】
そこで本願発明は、栽培液に二酸化炭素のナノバブルを供給することで、植物の光合成の促進を図るようにした植物栽培方法及び植物栽培装置を提供することを目的としてなされたものである。
【課題を解決するための手段】
【0016】
本願発明ではかかる課題を解決するための具体的手段として次のような構成を採用している。
【0017】
本願の第1の発明では、栽培液2の液面部分に配置された栽培床3にその根部22を上記栽培液2に浸漬させた状態で植物苗20を配置して上記植物苗20を生育させる植物栽培方法において、二酸化炭素のナノバブルを上記栽培液2に供給して上記植物苗20にその根部22から上記栽培液2中の水分、養分等とともに吸収させることを特徴としている。
【0018】
本願の第2の発明では、上記第1の発明に係る植物栽培方法において、上記二酸化炭素のナノバブルを含んだナノバブル含有液11を生成し、このナノバブル含有液11を上記栽培液2に供給することを特徴としている。
【0019】
本願の第3の発明では、上記第1又は第2の発明に係る植物栽培方法において、上記植物苗20の上方側に配置した照明器9からの照明光を上記植物苗20に照射することを特徴としている。
【0020】
本願の第4の発明に係る植物栽培装置では、栽培液2が投入された栽培水槽1と、上記栽培液2の液面部分に配置され且つ植物苗20をその根部22を上記栽培液2に浸漬させた状態で支持する栽培床3と、二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液2に供給するナノバブル供給装置10を備えたことを特徴としている。
【発明の効果】
【0021】
本願発明では次のような効果が得られる。
【0022】
(a)本願の第1の発明に係る植物栽培方法によれば、栽培液2の液面部分に配置された栽培床3にその根部22を上記栽培液2に浸漬させた状態で植物苗20を配置して上記植物苗20を生育させる植物栽培方法において、二酸化炭素のナノバブルを上記栽培液2に供給して上記植物苗20にその根部22から上記栽培液2中の水分、養分等とともに吸収させるようにしている。
【0023】
この場合、ナノバブルはその安定性に優れ長期に亘って栽培液2中に残存し、しかもその直径が1μm以下と超微細であって、水、養分等とともに植物の根の細胞内に取り込まれ得ることから、葉の気孔からの二酸化炭素の吸入作用と、根からの二酸化炭素の吸入作用の相乗効果によって、葉緑素への二酸化炭素の吸収量が増加し、それだけ植物の光合成が促進され、結果的に植物の生育促進が図られることになる。
【0024】
(b) 本願の第2の発明に係る植物栽培方法によれば、上記(a)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明では、二酸化炭素のナノバブルを含んだナノバブル含有液11を生成し、このナノバブル含有液11を上記栽培液2に供給するようにしているので、例えば、ナノバブルを栽培液2に直接供給する場合に比して、上記栽培液2内におけるナノバブルの分布状態が均等化され、栽培植物を可及的に均等に生育させることができ、延いては栽培植物の品質向上が期待できる。
【0025】
(c) 本願の第3の発明に係る植物栽培方法によれば、上記(a)又は(b)に記載の効果に加えて次のような特有の効果が得られる。即ち、この発明では、植物苗20の上方側に配置した照明器9からの照明光を上記植物苗20に照射するようにしているので、屋内での植物栽培に適した植物栽培方法を提供できる。しかも、植物の光合成には、光エネルギーが大きく且つ二酸化炭素濃度が高いほど光合成速度が大きくなる、という特性があることから、二酸化炭素濃度と照明光の強さの関係を適宜設定することで、光合成速度を調整して植物の生育状態(例えば、植物の収穫時期)を管理することが容易となる。
【0026】
(d) 本願の第4の発明に係る植物栽培装置によれば、栽培液2が投入された栽培水槽1と、上記栽培液2の液面部分に配置され且つ植物苗20をその根部22を上記栽培液2に浸漬させた状態で支持する栽培床3と、二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液2に供給するナノバブル供給装置10を備えているので、二酸化炭素のナノバブルを上記栽培水槽1内の上記栽培液2に効率良く供給することができる。この場合、ナノバブルはその安定性に優れ長期に亘って栽培液2中に残存し、しかもその直径が1μm以下と超微細であって、水、養分とともに植物の根の細胞内に取り込まれ得ることから、葉の気孔からの二酸化炭素の吸入作用と根からの二酸化炭素の吸入作用の相乗効果によって、葉緑素への二酸化炭素の吸収量が確実に増加し、それだけ植物の光合成が促進され、その結果、植物の生育促進効果の高い植物栽培装置を提供することができる。
【図面の簡単な説明】
【0027】
【図1】本願発明の実施の形態に係る植物栽培方法の実施に供される植物栽培装置のシステム図である。
【発明を実施するための形態】
【0028】
以下、本願発明を好適な実施形態に基づいて具体的に説明する。
【0029】
図1には、本願発明の実施形態に係る植物栽培方法の実施に供される植物栽培装置の一例として、栽培施設内で使用される植物栽培装置の全体システム構成を示しており、同図において符号1は所定大きさをもつ栽培水槽である。
【0030】
上記栽培水槽1内には所定量の栽培液2が投入されており、さらに、この栽培液2の液面側には栽培床3が浮上載置されている。
【0031】
上記栽培床3は、所要の浮力をもつ板状体で構成され、その平面方向の内側には該栽培床3を板厚方向へ貫通して複数個の植物支持孔3aが所定間隔で設けられている。
【0032】
上記栽培床3の上記植物支持孔3aには、植物苗20が植栽された苗カップ4が収納配置されている。上記植物苗20は、その葉部21が上記苗カップ4から上方へ延び上がる一方、その根部22は上記苗カップ4から下方へ延びて上記栽培液2にその全体が浸漬されている。
【0033】
また、上記栽培水槽1には、循環ポンプ32を備えるとともにその吸込端が貯留タンク31内の栽培液2中に位置する供液管5と、その吐出端が上記貯留タンク31に接続された排液管6が、それぞれ設けられており、上記循環ポンプ32の運転によって上記栽培液2は上記栽培水槽1と上記貯留液タンク31の間で循環される。なお、上記貯留液タンク31には後述のナノバブル供給装置10のナノバブル発生装置7からナノバブル含有液が供給されるため、実際的には、上記循環ポンプ32によって上記栽培水槽1に還流されるのは、栽培液2とナノバブル含有液の混合液12とされる。
【0034】
一方、上記栽培水槽1には、次述のナノバブル供給装置10が付設されている。このナノバブル供給装置10は、上記貯留タンク31と、ナノバブル発生装置7と二酸化炭素供給源8、上記循環ポンプ32(特許請求の範囲中の「混合液供給部」に該当する)及び循環ポンプ33を備えて構成される。
【0035】
上記ナノバブル発生装置7は、上記循環ポンプ33を備えた吸込管34から供給される上記貯留タンク31内の栽培液2と、二酸化炭素供給源8から供給される二酸化炭素を受けて、ナノバブル含有液11を生成し且つこのナノバブル含有液11を吐出管35を通して上記貯留タンク31の栽培液2に供給してこれに混合させる。従って、上記貯留タンク31内には上記栽培水槽1から還流した上記栽培液2と上記ナノバブル発生装置7から供給されるナノバブル含有液11が混合した混合液12とされる。
【0036】
そして、上記混合液12は、上記循環ポンプ32によって上記供液管5から上記栽培水槽1内に供給される。この結果、上記栽培水槽1内の栽培液2は、二酸化炭素ナノバブルが高濃度に混入した栽培液2となるが、この二酸化炭素ナノバブルは安定したものであって、その圧壊に至るまでの期間が長い(例えば、数ヶ月)ため、上記ナノバブル供給装置10を常時運転せずとも、上記栽培水槽1内の栽培液2は長期間に亘って高濃度の二酸化炭素ナノバブルを含んだ液として存在することになる。なお、上記循環ポンプ32は、特許請求の範囲中の「混合液供給部」に該当する。
【0037】
このように二酸化炭素ナノバブルを含んだ栽培液2に浮かべられた上記栽培床3に上記植物苗20を載置し、且つ上記照明器9からの照明光を上記植物苗20に照射することで、該植物苗20の生育促進が図られる。
【0038】
即ち、上記植物苗20の根部22が浸漬される上記栽培水槽1の栽培液2が二酸化炭素ナノバブルを含む液であり、またこの二酸化炭素ナノバブルは安定性に優れ長期に亘って圧壊されることなく上記栽培液2中に残存し、しかもその直径が1μm以下と超微細であることから、水とか養分とともに上記植物苗20の根部22の表面から浸透圧等の作用によって根の細胞内に取り込まれる。細胞内に取り込まれた二酸化炭素ナノバブルは、その周囲に存在する電解質イオンの溶媒である水の量が、上記栽培液2内に在るときに比して激減することから、該二酸化炭素ナノバブルの周囲に凝縮していたイオン類の殻が崩壊消滅し、その内部の二酸化炭素が水、養分等とともに根部22から葉部21に移動し、これによって植物苗20の根部22からの二酸化炭素の吸入が実現される。
【0039】
従って、上記植物苗20においては、自然界での本来的な二酸化炭素の吸入作用、即ち、葉部21の気孔からの二酸化炭素の吸入に加えて、上記根部22からも二酸化炭素が取り込まれるため、この根部22からの取り込み分だけ、上記植物苗20の葉部21への二酸化炭素の吸収量が格段に増加し、それだけ葉緑素における光合成が促進され、結果的に上記植物苗20の生育促進が図られるものである。
【0040】
また、この場合、二酸化炭素のナノバブルを含んだナノバブル含有液11を直接上記栽培水槽1内の栽培液2に供給するのではなく、先ず上記貯留タンク31において上記栽培水槽1から還流する栽培液2に上記ナノバブル含有液11を供給して混合し、この混合液12を上記栽培水槽1内の栽培液2に供給することで、該栽培液2内における二酸化炭素ナノバブルの分布状態が可及的に均等化され、植物苗20を均等に生育させることができ、延いては植物苗20の品質向上が期待できる。
【0041】
尚、本願発明は、この実施形態のように、二酸化炭素のナノバブルを含んだナノバブル含有液11を上記貯留タンク31内の栽培液2に供給し、該貯留タンク31を介して上記栽培水槽1内の栽培液2に供給する構成に限定されるものではなく、二酸化炭素のナノバブルを含んだナノバブル含有液11を上記栽培水槽1内の栽培液2に直接供給するように構成することもできる。
【0042】
さらに、この実施形態では、上記栽培水槽1内の栽培液2を、上記排液管6を介して上記貯留タンク31の還流させるように構成しているが、本願発明は係る構成に限定されるものではなく、例えば、上記栽培水槽1内の栽培液2を他の栽培水槽1間において循環させ、該各栽培水槽1における栽培液2の量が減じたとき、この減量分に対応する量だけ、上記貯留タンク31内の栽培液2を上記栽培水槽1に供給するように構成することもできる。
【符号の説明】
【0043】
1 ・・栽培水槽
2 ・・栽培液
3 ・・栽培床
4 ・・苗カップ
5 ・・供液管
6 ・・排液管
7 ・・ナノバブル発生装置
8 ・・二酸化炭素供給源
9 ・・照明器
10 ・・ナノバブル供給装置
11 ・・ナノバブル含有液
12 ・・混合液
20 ・・植物苗
21 ・・葉部
22 ・・根部
31 ・・貯留タンク
32 ・・循環ポンプ(混合液供給部)
33 ・・循環ポンプ
34 ・・吸込管
35 ・・吐出管

【特許請求の範囲】
【請求項1】
栽培液(2)の液面部分に配置された栽培床(3)にその根部(22)を上記栽培液(2)に浸漬させた状態で植物苗(20)を配置して上記植物苗(20)を生育させる植物栽培方法であって、
二酸化炭素のナノバブルを上記栽培液(2)に供給して上記植物苗(20)にその根部(22)から上記栽培液(2)中の水分、養分等とともに吸収させることを特徴とする植物栽培方法。
【請求項2】
請求項1において、
上記二酸化炭素のナノバブルを含んだナノバブル含有液(11)を生成し、このナノバブル含有液(11)を上記栽培液(2)に供給することを特徴とする植物栽培方法。
【請求項3】
請求項1又は2において、
上記植物苗(20)の上方側に配置した照明器(9)からの照明光を上記植物苗(20)に照射することを特徴とする植物栽培方法。
【請求項4】
栽培液(2)が投入された栽培水槽(1)と、
上記栽培液(2)の液面部分に配置され且つ植物苗(20)をその根部(22)を上記栽培液(2)に浸漬させた状態で支持する栽培床(3)と、
二酸化炭素の供給を受けてナノバブルを発生しこの二酸化炭素のナノバブルを上記栽培液(2)に供給するナノバブル供給装置(10)を備えたことを特徴とする植物栽培装置。

【図1】
image rotate


【公開番号】特開2011−110028(P2011−110028A)
【公開日】平成23年6月9日(2011.6.9)
【国際特許分類】
【出願番号】特願2009−272251(P2009−272251)
【出願日】平成21年11月30日(2009.11.30)
【出願人】(391040973)徳寿工業株式会社 (8)
【Fターム(参考)】