説明

樹脂組成物およびそれを用いた光学補償フィルム

【課題】光学補償フィルムに適する樹脂組成物、それを用いた位相差特性に優れた光学補償フィルムおよび光学補償フィルムの製造方法を提供する。
【解決手段】下記一般式(1)で示されるセルロース系樹脂30〜99重量%およびフマル酸ジエステル残基単位60モル%以上を含むフマル酸ジエステル重合体70〜1重量%を含有することを特徴とする樹脂組成物、それを用いた光学補償フィルム並びに光学補償フィルムの製造方法。


(式中、R、R、Rはそれぞれ独立して水素又は炭素数1〜12のアシル基を示す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物およびそれを用いた光学補償フィルムに関するものであり、より詳しくは、樹脂組成物および位相差特性に優れた液晶ディスプレイ用の光学補償フィルムに関する。
【背景技術】
【0002】
液晶ディスプレイは、マルチメディア社会における最も重要な表示デバイスとして、携帯電話、コンピューター用モニター、ノートパソコン、テレビまで幅広く使用されている。液晶ディスプレイには表示特性向上のため多くの光学フィルムが用いられている。特に光学補償フィルムは、正面や斜めから見た場合のコントラスト向上、色調の補償など大きな役割を果たしている。
【0003】
液晶ディスプレイには、垂直配向型(VA−LCD)、面内配向型液晶(IPS−LCD)、スーパーツイストネマチック型液晶(STN−LCD)、反射型液晶ディスプレイ、半透過型液晶ディスプレイなどの多くの方式が有り、ディスプレイにあわせた光学補償フィルムが必要となっている。
【0004】
従来の光学補償フィルムとしては、セルロース系樹脂、ポリカーボネートや環状ポリオレフィンなどの延伸フィルムが用いられている。特にトリアセチルセルロースフィルムなどのセルロース系樹脂からなるフィルムは、偏光子であるポリビニルアルコールとの接着性も良好なことから幅広く使用されている。
【0005】
しかしながら、セルロース系樹脂からなる光学補償フィルムはいくつかの課題がある。例えば、セルロース系樹脂フィルムは延伸条件を調整することで各種ディスプレイにあわせた位相差値を持つ光学補償フィルムに加工されるが、セルロース系樹脂フィルムの一軸または二軸延伸により得られるフィルムの三次元屈折率は、ny≧nx>nzであり、それ以外の3次元屈折率、例えば、ny>nz>nxや、ny=nz>nxなどの3次元屈折率を有する光学補償フィルムを製造するためには、フィルムの片面または両面に熱収縮性フィルムを接着し、その積層体を加熱延伸処理して、高分子フィルムの厚み方向に収縮力をかけるなど特殊な延伸方法が必要であり屈折率(位相差値)の制御も困難である(例えば特許文献1〜3参照)。ここでnxはフィルム面内の進相軸方向(最も屈折率の小さい方向)の屈折率、nyはフィルム面内の遅相軸方向(最も屈折率の大きい方向)の屈折率、nzはフィルム面外(厚み方向)の屈折率を示す。
【0006】
また、セルロース系樹脂フィルムは一般に溶剤キャスト法により製造されるが、キャスト法により成膜したセルロース系樹脂フィルムはフィルム厚み方向に40nm程度の面外位相差(Rth)を有するため、IPSモードの液晶ディスプレイなどではカラーシフトが起こるなどの問題がある。ここで面外位相差(Rth)は以下の式で示される位相差値である。
【0007】
Rth=[(nx+ny)/2−nz]×d
(式中、nxはフィルム面内の進相軸方向の屈折率、nyはフィルム面内の遅相軸方向の屈折率、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
また、フマル酸エステル系樹脂からなる位相差フィルムが提案されている(例えば特許文献4参照)。
【0008】
しかしながら、フマル酸エステル系樹脂からなる延伸フィルムの3次元屈折率は、nz>ny>nxであり、上記3次元屈折率を示す光学補償フィルムを得るためには他の光学補償フィルム等との積層などが必要である。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特許2818983号公報
【特許文献2】特開平5−297223号公報
【特許文献3】特開平5−323120号公報
【特許文献4】特開2008−64817号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、上記課題に鑑みてなされたものであり、その目的は、光学補償フィルムに適する樹脂組成物およびそれを用いた位相差特性に優れた光学補償フィルムを提供することにある。
【課題を解決するための手段】
【0011】
本発明者らは、上記課題を解決するために鋭意検討した結果、セルロース系樹脂およびフマル酸ジエステル重合体を含有する樹脂組成物、それを用いた光学補償フィルムおよびその製造方法が、上記課題を解決することを見出し、本発明を完成するに至った。すなわち、本発明は、所定の式で示されるセルロース系樹脂10〜99重量%および所定の式で示されるフマル酸ジエステル残基単位60モル%以上を含むフマル酸ジエステル重合体90〜1重量%を含有することを特徴とする樹脂組成物、それを用いた光学補償フィルム、並びにその製造方法である。
【0012】
以下、本発明について詳細に説明する。
【0013】
本発明の樹脂組成物は、下記一般式(1)で示されるセルロース系樹脂10〜99重量%および下記一般式(2)で示されるフマル酸ジエステル残基単位60モル%以上を含むフマル酸ジエステル重合体90〜1重量%を含有する。
【0014】
【化1】

(式中、R、R、Rはそれぞれ独立して水素又は炭素数1〜12のアシル基を示す。)
【0015】
【化2】

(式中、R、Rはそれぞれ独立して炭素数1〜12のアルキル基を示す。)
本発明の樹脂組成物が含有するセルロース系樹脂は、β−グルコース単位が直鎖状に重合した高分子であり、グルコース単位の2位、3位および6位の水酸基の一部または全部をアシル基によりエステル化したポリマーであり、例えば、セルロースアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートブチレート等が挙げられる。
【0016】
アシル化度は、2位、3位および6位のそれぞれについて、セルロースの水酸基がエステル化している割合(100%のエステル化は置換度1)を意味し、アシル基の全置換度DSは、好ましくは1.5≦DS≦3.0であり、さらに好ましくは1.8〜2.8である。セルロース系樹脂は、炭素数2〜12のアシル基を置換基として有することが好ましい。炭素数2〜12のアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、オクタノイル基、デカノイル基、ドデカノイル基、イソブタノイル基、t−ブチリル基、シクロヘキサンカルボニル基、ベンゾイル基、ナフチルカルボニル基、シンナモイル基等を挙げることができる。これらの中でも、炭素数2〜5のアシル基であるアセチル基、プロピオニル基、ブチリル基が特に好ましい。本発明で用いるセルロース系樹脂に用いられるアシル基は1種類だけでもよいし、2種類以上のアシル基が使用されていてもよい。2種類以上のアシル基を用いるときは、そのひとつがアセチル基であることが好ましい。
【0017】
セルロース系樹脂のアシル化において、アシル化剤としては、酸無水物や酸クロライドを用いた場合、反応溶媒である有機溶媒としては、有機酸、例えば、酢酸、メチレンクロライド等が使用される。触媒としては、アシル化剤が酸無水物である場合には、硫酸のようなプロトン性触媒が好ましく用いられ、アシル化剤が酸クロライド(例えば、CHCHCOCl)である場合には、塩基性化合物が好ましく用いられる。最も一般的なセルロースの混合脂肪酸エステルの工業的合成方法は、セルロースをアセチル基および他のアシル基に対応する脂肪酸(酢酸、プロピオン酸、吉草酸等)またはそれらの酸無水物を含む混合有機酸成分でアシル化する方法である。
【0018】
セルロース系樹脂は、ゲル・パーミエイション・クロマトグラフィー(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10〜1×10であることが好ましく、機械特性に優れ、製膜時の成形加工性に優れたものとなることから1×10〜2×10であることがさらに好ましい。
【0019】
本発明の樹脂組成物が含有するフマル酸ジエステル重合体(以下、フマル酸ジエステル重合体という)は、上記一般式(2)で示されるフマル酸ジエステル残基単位60モル%以上を含むものであり、上記一般式(2)で示されるフマル酸ジエステル残基単位75モル%以上を含むことが好ましく、例えば、フマル酸ジイソプロピル重合体、フマル酸ジシクロヘキシル重合体、フマル酸ジイソプロピル・フマル酸ジエチル共重合体等が挙げられる。一般式(2)で示されるフマル酸ジエステル残基単位が60モル%未満の場合は、位相差の発現性が低下する。フマル酸ジエステル残基単位のエステル置換基であるR、Rは、炭素数1〜12のアルキル基であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、s−ブチル基、t−ブチル基、s−ペンチル基、t−ペンチル基、s−ヘキシル基、t−ヘキシル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。一般式(2)で示されるフマル酸ジエステル残基単位としては、例えば、フマル酸ジメチル残基、フマル酸ジエチル残基、フマル酸ジ−n−プロピル残基、フマル酸ジイソプロピル残基、フマル酸ジ−n−ブチル残基、フマル酸ジ−s−ブチル残基、フマル酸ジ−t−ブチル残基、フマル酸ジ−n−ペンチル残基、フマル酸ジ−s−ペンチル残基、フマル酸ジ−t−ペンチル残基、フマル酸ジ−n−ヘキシル残基、フマル酸ジ−s−ヘキシル残基、フマル酸ジ−t−ヘキシル残基、フマル酸ジ−2−エチルヘキシル、フマル酸ジシクロプロピル残基、フマル酸ジシクロペンチル残基、フマル酸ジシクロヘキシル残基等が挙げられ、これらのうち、フマル酸ジイソプロピル残基が好ましい。フマル酸ジエステル重合体は、フマル酸ジイソプロピル残基単位60〜95モル%、フマル酸ジエチル残基単位、フマル酸ジ−n−プロピル残基単位、フマル酸ジ−n−ブチル残基単位、フマル酸ジ−2−エチルヘキシル残基単位から選ばれるフマル酸ジエステル残基単位5〜40モル%を含む共重合体が好ましい。
【0020】
フマル酸ジエステル重合体は、一般式(2)に示されるフマル酸ジエステル残基単位60モル%以上、フマル酸ジエステル類と共重合可能な単量体の残基単位40モル%以下であることが好ましく、フマル酸ジエステル残基単位が75モル%以上であることがさらに好ましい。フマル酸ジエステル類と共重合可能な単量体の残基単位としては、例えば、スチレン残基、α−メチルスチレン残基などのスチレン類残基;アクリル酸残基;アクリル酸メチル残基、アクリル酸エチル残基、アクリル酸ブチル残基などのアクリル酸エステル類残基;メタクリル酸残基;メタクリル酸メチル残基、メタクリル酸エチル残基、メタクリル酸ブチル残基などのメタクリル酸エステル類残基;酢酸ビニル残基、プロピオン酸ビニル残基などのビニルエステル類残基;アクリロニトリル残基;メタクリロニトリル残基;エチレン残基、プロピレン残基などのオレフィン類残基、ビニルピロリドン残基、ビニルピリジン残基等の1種又は2種以上を挙げることができる。
【0021】
フマル酸ジエステル重合体は、ゲル・パーミエイション・クロマトグラフィー(GPC)により測定した溶出曲線より得られる標準ポリスチレン換算の数平均分子量(Mn)が1×10〜5×10のものであり、特に機械特性に優れ、製膜時の成形加工性に優れたものとなることから1×10〜2×10であることが好ましい。
【0022】
本発明の樹脂組成物におけるセルロース系樹脂とフマル酸ジエステル重合体の組成の割合は、セルロース系樹脂10〜99重量%およびフマル酸ジエステル重合体90〜1重量%である。セルロース系樹脂が10重量%未満の場合(フマル酸ジエステル重合体が90重量%を超える場合)、またはセルロース系樹脂が99重量%を超える場合(フマル酸ジエステル重合体が1重量%未満の場合)は、位相差の制御が困難である。好ましくは、セルロース系樹脂30〜90重量%およびフマル酸ジエステル重合体70〜10重量%であり、さらに好ましくはセルロース系樹脂50〜90重量%およびフマル酸ジエステル重合体50〜10重量%である。
【0023】
フマル酸ジエステル重合体の製造方法としては、該フマル酸ジエステル重合体が得られる限りにおいて如何なる方法により製造してもよく、例えば、フマル酸ジエステル類、場合によってはフマル酸ジエステル類と共重合可能な単量体を併用し、ラジカル重合を行うことにより製造することができる。この際のフマル酸ジエステル類としては、例えば、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジ−n−プロピル、フマル酸ジイソプロピル、フマル酸ジ−n−ブチル、フマル酸ジ−s−ブチル、フマル酸ジ−t−ブチル、フマル酸ジ−s−ペンチル、フマル酸ジ−t−ペンチル、フマル酸ジ−s−ヘキシル、フマル酸ジ−t−ヘキシル、フマル酸ジ−2−エチルヘキシル、フマル酸ジシクロプロピル、フマル酸ジシクロペンチル、フマル酸ジシクロヘキシル等が挙げられ、フマル酸ジエステルと共重合可能な単量体としては、例えば、スチレン、α−メチルスチレンなどのスチレン類;アクリル酸;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどのアクリル酸エステル類;メタクリル酸;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチルなどのメタクリル酸エステル類;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類;アクリロニトリル;メタクリロニトリル;エチレン、プロピレンなどのオレフィン類;ビニルピロリドン;ビニルピリジン等の1種又は2種以上を挙げることができる。
【0024】
ラジカル重合の方法としては、例えば、塊状重合法、溶液重合法、懸濁重合法、沈殿重合法、乳化重合法等のいずれもが採用可能である。
【0025】
ラジカル重合を行う際の重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイドなどの有機過酸化物;2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−ブチロニトリル)、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)などのアゾ系開始剤等が挙げられる。
【0026】
そして、溶液重合法又は沈殿重合法において使用可能な溶媒として特に制限はなく、例えば、ベンゼン、トルエン、キシレンなどの芳香族溶媒;メタノール、エタノール、プロピルアルコール、ブチルアルコールなどのアルコール系溶媒;シクロヘキサン;ジオキサン;テトラヒドロフラン;アセトン;メチルエチルケトン;ジメチルホルムアミド;酢酸イソプロピル等が挙げられ、これらの混合溶媒をも挙げられる。
【0027】
また、ラジカル重合を行う際の重合温度は、重合開始剤の分解温度に応じて適宜設定することができ、一般的には30〜150℃の範囲で行うことが好ましい。
【0028】
本発明の樹脂組成物は、熱安定性を向上させるために酸化防止剤を含有していても良い。酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ラクトン系酸化防止剤、アミン系酸化防止剤、ヒドロキシルアミン系酸化防止剤、ビタミンE系酸化防止剤、その他酸化防止剤が挙げられ、これら酸化防止剤はそれぞれ単独でもよく、2以上でもよい。
【0029】
本発明の樹脂組成物は、耐候性を高めるためヒンダードアミン系光安定剤や紫外線吸収剤を含有していてもよい。紫外線吸収剤としては、例えば、ベンゾトリアゾール、ベンゾフェノン、トリアジン、ベンゾエート等が挙げられる。
【0030】
本発明の樹脂組成物は、発明の主旨を越えない範囲で、その他ポリマー、界面活性剤、高分子電解質、導電性錯体、顔料、染料、帯電防止剤、アンチブロッキング剤、滑剤等を含有していてもよい。
【0031】
本発明の樹脂組成物は、セルロース系樹脂およびフマル酸ジエステル重合体をブレンドすることにより得ることができる。
【0032】
ブレンドの方法としては、溶融ブレンド、溶液ブレンド等の方法を用いることができる。溶融ブレンド法とは加熱により樹脂を溶融させて混練することにより製造する方法である。溶液ブレンド法とは樹脂を溶剤に溶解しブレンドする方法である。溶液ブレンドに用いる溶剤としては塩化メチレン、クロロホルムなどの塩素系溶剤、トルエン、キシレンなどの芳香族溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、プロパノールなどのアルコール溶剤、ジメチルフォルムアミド、N−メチルピロリドン等を用いることができる。各樹脂を溶剤に溶解したのちブレンドすることも可能であり、各樹脂の粉体、ペレット等を混練後、溶剤に溶解させることも可能である。得られたブレンド樹脂溶液を貧溶剤に投入し、樹脂組成物を析出させることもできる可能であり、またブレンド樹脂溶液のまま光学補償フィルムの製造に用いることも可能である。
【0033】
ブレンドの際のセルロース系樹脂とフマル酸ジエステル重合体の割合は、10〜99重量%:90〜1重量%である。
【0034】
本発明の樹脂組成物を用いた光学補償フィルムは、厚みが5〜200μmであることが好ましく、10〜100μmがさらに好ましく、30〜80μmが特に好ましい。
【0035】
本発明の樹脂組成物を用いた光学補償フィルムの位相差特性は、目的とする光学補償フィルムにより異なるものであり、1)下記式(1)で示される面内位相差(Re)が好ましくは80〜300nm、さらに好ましくは100〜300nm、特に好ましくは200〜280nmであって、下記式(2)で示されるNz係数が好ましくは0.35〜0.65、さらに好ましくは0.45〜0.55であるもの、2)面内位相差(Re)が好ましくは50〜200nm、さらに好ましくは80〜160nmであって、Nz係数が好ましくは−0.2〜0.2、さらに好ましくは−0.1〜0.1であるもの、3)面内位相差(Re)が好ましくは0〜20nm、さらに好ましくは0〜5nm、下記式(3)で示される面外位相差(Rth)が好ましくは−150〜10nm、さらに好ましくは−120〜0nmである。測定は全自動複屈折計(王子計測機器株式会社製、商品名KOBRA−21ADH)を用い、測定波長589nmの条件で測定した。
【0036】
これらは、従来のセルロース系樹脂を用いた光学補償フィルムでは発現が困難な位相差特性を有している。
【0037】
Re=(ny−nx)×d (1)
Nz=(ny−nz)/(ny−nx) (2)
Rth=[(nx+ny)/2−nz]×d (3)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
本発明の光学補償フィルムは、輝度向上のため、光線透過率が好ましくは85%以上、さらに好ましくは90%以上である。
【0038】
本発明の光学補償フィルムは、コントラスト向上のため、ヘーズが好ましくは2%以下、さらに好ましくは1%以下である。
【0039】
本発明の樹脂組成物を用いた光学補償フィルムの製造方法としては、本発明の光学補償フィルムの製造が可能であれば如何なる方法を用いてもよいが、光学特性、耐熱性、表面特性などに優れる光学補償フィルムが得られることから、溶液キャスト法により製造することが好ましい。ここで、溶液キャスト法とは、樹脂溶液(一般にはドープと称する。)を支持基板上に流延した後、加熱することにより溶媒を蒸発させて光学補償フィルムを得る方法である。流延する方法としては、例えば、Tダイ法、ドクターブレード法、バーコーター法、ロールコーター法、リップコーター法等が用いられ、工業的には、ダイからドープをベルト状又はドラム状の支持基板に連続的に押し出す方法が最も一般的に用いられている。また、用いられる支持基板としては、例えば、ガラス基板、ステンレスやフェロタイプ等の金属基板、ポリエチレンテレフタレート等のプラスチック基板などがある。高度に表面性、光学均質性の優れた基板を工業的に連続製膜するには、表面を鏡面仕上げした金属基板が好ましく用いられる。溶液キャスト法において、厚み精度、表面平滑性に優れた光学補償フィルムを製造する際には、樹脂溶液の粘度は極めて重要な因子であり、樹脂溶液の粘度は樹脂の濃度、分子量、溶媒の種類に依存するものである。本発明の樹脂組成物を用いた光学補償フィルムを製造する際の樹脂溶液はセルロース系樹脂とフマル酸ジエステル重合体を溶媒に溶解し調整する。樹脂溶液の粘度は重合体の分子量、重合体の濃度、溶媒の種類で調整可能である。樹脂溶液の粘度としては、フィルム塗工性をより容易にするため、100〜10000cpsが好ましく、300〜5000cpsがさらに好ましく、500〜3000cpsが特に好ましい。
【0040】
本発明の樹脂組成物を用いた光学補償フィルムの製造方法としては、例えば、下記一般式(1)で示されるセルロース系樹脂10〜99重量%および下記一般式(2)で示されるフマル酸ジエステル残基単位を含むフマル酸ジエステル重合体90〜1重量%を溶剤に溶解し、得られた樹脂溶液を基材にキャストし、乾燥後、基材より剥離することが挙げられる。
【0041】
【化3】

(式中、R、R、Rはそれぞれ独立して水素又は炭素数1〜12のアシル基を示す。)
【0042】
【化4】

(式中、R、Rはそれぞれ独立して炭素数1〜12のアルキル基を示す。)
本発明の樹脂組成物を用いて得られた光学補償フィルムは、面内位相差(Re)を発現するために少なくとも一軸方向に延伸することが好ましい。延伸は50〜200℃で行うことが好ましく、100〜160℃で行うことがさらに好ましく、延伸倍率は1.05倍〜3倍が好ましく、1.1倍〜2.0倍がさらに好ましい。延伸温度、延伸倍率により面内位相差(Re)を制御することができる。
【0043】
本発明の樹脂組成物を用いた光学補償フィルムは、必要に応じて他樹脂を含むフィルムと積層することができる。他樹脂としては、例えば、ポリエーテルサルフォン、ポリアリレート、ポリエチレンテレフタレート、ポリナフタレンテレフタレート、ポリカーボネート、環状ポリオレフィン、マレイミド系樹脂、フッ素系樹脂、ポリイミド等が挙げられる。また、ハードコート層やガスバリア層を積層することも可能である。
【発明の効果】
【0044】
本発明の樹脂組成物を用いた光学補償フィルムは、特定の位相差特性を示すことから、液晶ディスプレイ用光学補償フィルムや反射防止用フィルムとして有用である。
【実施例】
【0045】
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
【0046】
なお、実施例により示す諸物性は、以下の方法により測定した。
【0047】
<重合体の解析>
重合体の構造解析は核磁気共鳴測定装置(日本電子製、商品名:JNM−GX270)を用い、プロトン核磁気共鳴分光(H−NMR)スペクトル分析より求めた。
【0048】
<数平均分子量の測定>
ゲルパーミエイションクロマトグラフィー(GPC)装置(東ソー製、商品名:C0−8011(カラムGMHHR―Hを装着))を用い、テトラヒドロフラン、またはジメチルホルムアミドを溶媒として、40℃で測定し、標準ポリスチレン換算値として求めた。
【0049】
<光学補償フィルムの光線透過率及びヘーズの測定>
作成したフィルムの光線透過率及びヘーズは、ヘーズメーター(日本電色工業製、商品名:NDH2000)を使用し、光線透過率の測定はJIS K 7361−1(1997版)に、ヘーズの測定はJIS−K 7136(2000年版)に、それぞれ準拠して測定した。
【0050】
<位相差特性の測定>
試料傾斜型自動複屈折計(王子計測機器製、商品名:KOBRA−WR)を用いて波長589nmの光りを用いて光学補償フィルムの位相差特性を測定した。
【0051】
合成例1
5リットルオートクレーブ中に、ヒドロキシプロピルメチルセルロース0.2wt%を含む蒸留水2400g、フマル酸ジイソプロピル1388g、フマル酸ジエチル212g、重合開始剤(日油製、商品名:パーブチルPV)12.7gを仕込み、重合温度48℃、重合時間30時間の条件にて懸濁ラジカル重合反応を行った。得られた重合体粒子を濾過回収し、水、メタノールで十分に洗浄し80℃にて乾燥することにより、フマル酸ジイソプロピル・フマル酸ジエチル重合体を得た。得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体の数平均分子量は98000、フマル酸ジイソプロピル単位83モル%、フマル酸ジエチル単位17モル%であった。
【0052】
合成例2
1リットルオートクレーブ中に、フマル酸ジイソプロピル200g、フマル酸ジエチル17g、ビニルピロリドン32g、重合開始剤(日油製、商品名:パーブチルPV)0.2gを仕込み、重合温度45℃、重合時間8時間の条件にてラジカル重合反応を行った。得られた重合体を含む溶液を大過剰のメタノール投入し、重合体を析出させた。得られた重合体を濾過し80℃にて乾燥することにより、フマル酸ジイソプロピル・フマル酸ジエチル・ビニルピロリドン重合体を得た。得られた重合体の数平均分子量は45000、フマル酸ジイソプロピル単位80モル%、フマル酸ジエチル単位6モル%、ビニルピロリドン単位14モル%であった。
【0053】
合成例3
1リットルオートクレーブ中に、ヒドロキシプロピルメチルセルロース0.2wt%を含む蒸留水480g、フマル酸ジイソプロピル208g、フマル酸ジエチル85g、重合開始剤(日油製、商品名:パーブチルPV)12.7gを仕込み、重合温度48℃、重合時間30時間の条件にて懸濁ラジカル重合反応を行った。得られた重合体粒子を濾過回収し、水、メタノールで十分に洗浄し80℃にて乾燥することにより、フマル酸ジイソプロピル・フマル酸ジエチル重合体を得た。得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体の数平均分子量は63000、フマル酸ジイソプロピル単位64モル%、フマル酸ジエチル単位36モル%であった。
【0054】
合成例4
5リットルオートクレーブ中に、ヒドロキシプロピルメチルセルロース0.2重量%を含む蒸留水2600g、フマル酸ジイソプロピル1232g、フマル酸ジ−n−ブチル168g、重合開始剤(日油製、商品名:パーブチルPV)11gを仕込み、重合温度47℃、重合時間36時間の条件にて懸濁ラジカル重合反応を行った。得られた重合体粒子を濾過回収し、水、メタノールで十分に洗浄し80℃にて乾燥することにより、フマル酸ジイソプロピル・フマル酸ジ−n−ブチル重合体を得た。得られた重合体の数平均分子量は88000、フマル酸ジイソプロピル単位88モル%、フマル酸ジ−n−ブチル単位12モル%であった。
【0055】
合成例5
5リットルオートクレーブ中に、ヒドロキシプロピルメチルセルロース0.2重量%を含む蒸留水2600g、フマル酸ジイソプロピル1200g、フマル酸ジ−2−エチルヘキシル184g、重合開始剤(日油製、商品名:パーブチルPV)11gを仕込み、重合温度47℃、重合時間36時間の条件にて懸濁ラジカル重合反応を行った。得られた重合体粒子を濾過回収し、水、メタノールで十分に洗浄し80℃にて乾燥することにより、フマル酸ジイソプロピル・フマル酸ジ−2−エチルヘキシル重合体を得た。得られた重合体の数平均分子量は54000、フマル酸ジイソプロピル単位92.5モル%、フマル酸ジ−2−エチルヘキシル単位7.5モル%であった。
【0056】
実施例1
セルロースアセテート(アセチル基=82モル%、全置換度DS=2.46、数平均分子量=30,000)261g、合成例1により得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体39gを塩化メチレン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物298gを得た。得られた樹脂組成物は、セルロースアセテート87重量%、フマル酸ジイソプロピル・フマル酸ジエチル重合体13重量%を含む樹脂組成物であった。得られた樹脂組成物200gを塩化メチレン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に乾燥し、光学補償フィルム(幅150mm、厚み80μm)を得た。
【0057】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に示す。
【0058】
【表1】

得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)および厚み方向の面外位相差(Rth)が目的とする光学特性を有するものであった。
【0059】
実施例2
セルロースアセテート(アセチル基=82モル%、全置換度DS=2.46、数平均分子量=30,000)283g、合成例2により得られたフマル酸ジイソプロピル・フマル酸ジエチル・ビニルピロリドン重合体50gを塩化メチレン1500gに溶解した後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物305gを得た。得られた樹脂組成物は、セルロースアセテート85重量%、フマル酸ジイソプロピル・フマル酸ジエチル・ビニルピロリドン重合体15重量%を含む樹脂組成物であった。得られた樹脂組成物200gを塩化メチレン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に乾燥し、光学補償フィルム(幅150mm、厚み80μm)を得た。
【0060】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0061】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)および厚み方向の面外位相差(Rth)が目的とする光学特性を有するものであった。
【0062】
実施例3
セルロースアセテートプロピオネート(アセチル基=7モル%、プロピオニル基=80モル%、全置換度DS=2.6、数平均分子量=25,000)279g、合成例1により得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体21gをテトラヒドロフラン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物295gを得た。得られた樹脂組成物は、セルロースアセテートプロピオネート93重量%、フマル酸ジイソプロピル・フマル酸ジエチル重合体7重量%を含む樹脂組成物であった。得られた樹脂組成物200gをメチルエチルケトン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に昇温、乾燥し、光学補償フィルム(幅150mm、厚み77μm)を得た。
【0063】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0064】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)および厚み方向の面外位相差(Rth)が目的とする光学特性を有するものであった。
【0065】
実施例4
セルロースアセテートブチレート(アセチル基5モル%、ブチリル基=82モル%、全置換度DS=2.6、数平均分子量=43,000)210g、合成例3により得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体90gをメチルエチルケトン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物278gを得た。得られた樹脂組成物は、セルロースアセテートブチレート70重量%、フマル酸ジイソプロピル・フマル酸ジエチル重合体30重量%を含む樹脂組成物であった。得られた樹脂組成物200gをメチルエチルケトン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで100℃と段階的に乾燥した後、幅150mm、厚み190μmのフィルムを得た。得られたフィルムを50mm角に切り出し、145℃で縦1.3倍、横1.1倍に延伸し、光学補償フィルムを得た。
【0066】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0067】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
【0068】
実施例5
セルロースブチレート(ブチリル基=87モル%、全置換度DS=2.6、数平均分子量=30,000)240g、合成例2により得られたフマル酸ジイソプロピル・フマル酸ジエチル・ビニルピロリドン重合体60gをメチルエチルケトン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物278gを得た。得られた樹脂組成物は、セルロースブチレート81重量%、フマル酸ジイソプロピル・フマル酸ジエチル・ビニルピロリドン重合体19重量%を含む樹脂組成物であった。得られた樹脂組成物200gをメチルエチルケトン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで100℃と段階的に乾燥した後、幅150mm、厚み200μmのフィルムを得た。得られたフィルムを50mm角に切り出し、150℃で縦1.5倍、横1.1倍に延伸し、光学補償フィルムを得た。
【0069】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0070】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
【0071】
実施例6
セルロースブチレート(ブチリル基=91モル%、全置換度DS=2.7、数平均分子量=35,000)250g、合成例4により得られたフマル酸ジイソプロピル・フマル酸ジ−n−ブチル重合体50gをテトラヒドロフラン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物280gを得た。得られた樹脂組成物は、セルロースブチレート83重量%、フマル酸ジイソプロピル・フマル酸ジ−n−ブチル重合体17重量%を含む樹脂組成物であった。得られた樹脂組成物200gをテトラヒドロフラン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで100℃と段階的に乾燥した後、幅150mm、厚み200μmのフィルムを得た。得られたフィルムを50mm角に切り出し、140℃で縦1.3倍、横1.0倍に延伸し、光学補償フィルムを得た。
【0072】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0073】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
【0074】
実施例7
セルロースブチレート(ブチリル基=87モル%、全置換度DS=2.6、数平均分子量=30,000)100g、合成例5により得られたフマル酸ジイソプロピル・フマル酸ジ−2−エチルヘキシル重合体200gをメチルエチルケトン1700gに溶解し15重量%溶液とした後、大量のメタノールに投入することにより固体を析出させた。得られた固体を濾過、乾燥し、樹脂組成物286gを得た。得られた樹脂組成物は、セルロースブチレート32重量%、フマル酸ジイソプロピル・フマル酸ジ−2−エチルヘキシル重合体68重量%を含む樹脂組成物であった。得られた樹脂組成物200gをメチルエチルケトン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで100℃と段階的に乾燥した後、幅150mm、厚み180μmのフィルムを得た。得られたフィルムを50mm角に切り出し、150℃で縦1.25倍、横1.05倍に延伸し、光学補償フィルムを得た。
【0075】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0076】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さい、面内位相差(Re)およびNz係数が目的とする光学特性を有するものであった。
【0077】
比較例1
実施例1で用いたセルロースアセテート200gを塩化メチレン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に乾燥し、幅150mm、厚み80μmのフィルムを得た。
【0078】
得られたフィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0079】
得られたフィルムは全光線透過率が高く透明性に優れる、ヘーズが小さいものの、厚み方向の面外位相差(Rth)が大きく目的とする光学特性を有していなかった。
【0080】
比較例2
実施例3で用いたセルロースアセテートプロピオネート200gをテトラヒドロフラン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に乾燥し、幅150mm、厚み77μmのフィルムを得た。
【0081】
得られたフィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0082】
得られたフィルムは全光線透過率が高く透明性に優れる、ヘーズが小さいものの、厚み方向の面外位相差(Rth)が大きく目的とする光学特性を有していなかった。
【0083】
比較例3
合成例1により得られたフマル酸ジイソプロピル・フマル酸ジエチル重合体200gを塩化メチレン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで80℃と段階的に乾燥し、幅150mm、厚み80μmのフィルムを得た。
【0084】
得られたフィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0085】
得られたフィルムは全光線透過率が高く透明性に優れる、ヘーズが小さいものの、厚み方向の面外位相差(Rth)が大きく目的とする光学特性を有していなかった。
【0086】
比較例4
実施例4で使用したセルロースアセテートブチレート200gをメチルエチルケトン800gに溶解し、Tダイ法により溶液流延装置の支持体に流延し、乾燥温度30℃、次いで100℃と段階的に乾燥した後、幅150mm、厚み200μmのフィルムを得た。得られたフィルムを50mm角に切り出し、150℃で縦1.5倍、横1.1倍に延伸した。
【0087】
得られた光学補償フィルムの全光線透過率、ヘーズ、位相差特性を測定した。その結果を表1に合わせて示す。
【0088】
得られた光学補償フィルムは全光線透過率が高く透明性に優れる、ヘーズが小さいものの、面内位相差(Re)およびNz係数が目的とする光学特性を有していなかった。

【特許請求の範囲】
【請求項1】
下記一般式(1)で示されるセルロース系樹脂10〜99重量%および下記一般式(2)で示されるフマル酸ジエステル残基単位60モル%以上を含むフマル酸ジエステル重合体90〜1重量%を含有することを特徴とする樹脂組成物。
【化1】

(式中、R、R、Rはそれぞれ独立して水素又は炭素数1〜12のアシル基を示す。)
【化2】

(式中、R、Rはそれぞれ独立して炭素数1〜12のアルキル基を示す。)
【請求項2】
一般式(1)で示されるセルロース系樹脂のアシル化度が1.5〜3.0であることを特徴とする請求項1に記載の樹脂組成物。
【請求項3】
フマル酸ジエステル重合体が、フマル酸ジイソプロピル残基単位60〜95モル%およびフマル酸ジエチル残基単位、フマル酸ジ−n−プロピル残基単位、フマル酸ジ−n−ブチル残基単位、フマル酸ジ−2−エチルヘキシル残基単位から選ばれるフマル酸ジエステル残基単位5〜40モル%を含むことを特徴とする請求項1又は請求項2に記載の樹脂組成物。
【請求項4】
請求項1〜請求項3のいずれかの項に記載の樹脂組成物を用いてなることを特徴とする光学補償フィルム。
【請求項5】
厚みが5〜200μmであることを特徴とする請求項4に記載の光学補償フィルム。
【請求項6】
下記式(1)で示される面内位相差(Re)が80〜300nmで、下記式(2)で示されるNz係数が0.35〜0.65であることを特徴とする請求項4又は請求項5に記載の光学補償フィルム。
Re=(ny−nx)×d (1)
Nz=(ny−nz)/(ny−nx) (2)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
【請求項7】
式(1)で示される面内位相差(Re)が50〜200nmで、式(2)で示されるNz係数が−0.2〜0.2であることを特徴とする請求項4又は請求項5に記載の光学補償フィルム。
【請求項8】
式(1)で示される面内位相差(Re)が0〜20nmで、下記式(3)で示される面外位相差(Rth)が−150〜10nmであることを特徴とする請求項4又は請求項5に記載の光学補償フィルム。
Rth=[(nx+ny)/2−nz]×d (3)
(式中、nxはフィルム面内の進相軸方向の屈折率を示し、nyはフィルム面内の遅相軸方向の屈折率を示し、nzはフィルム面外の屈折率を示し、dはフィルム厚みを示す。)
【請求項9】
光線透過率が85%以上であることを特徴とする請求項4〜請求項8のいずれかの項に記載の光学補償フィルム。
【請求項10】
ヘーズが2%で以下であることを特徴とする請求項4〜請求項9のいずれかの項に記載の光学補償フィルム。
【請求項11】
下記一般式(1)で示されるセルロース系樹脂10〜99重量%および下記一般式(2)で示されるフマル酸ジエステル残基単位を含むフマル酸ジエステル重合体90〜1重量%を溶剤に溶解し、得られた樹脂溶液を基材にキャストし、乾燥後、基材より剥離することを特徴とする請求項4〜請求項10のいずれかの項に記載の光学補償フィルムの製造方法。
【化3】

(式中、R、R、Rはそれぞれ独立して水素又は炭素数1〜12のアシル基を示す。)
【化4】

(式中、R、Rはそれぞれ独立して炭素数1〜12のアルキル基を示す。)
【請求項12】
一般式(1)で示されるセルロース系樹脂のアシル化度が1.5〜3.0であることを特徴とする請求項11に記載の光学補償フィルムの製造方法。
【請求項13】
フマル酸ジエステル重合体が、フマル酸ジイソプロピル残基単位60〜95モル%およびフマル酸ジエチル残基単位、フマル酸ジ−n−プロピル残基単位、フマル酸ジ−n−ブチル残基単位、フマル酸ジ−2−エチルヘキシル残基単位から選ばれるフマル酸ジエステル残基単位5〜40モル%を含むことを特徴とする請求項11又は請求項12に記載の光学補償フィルムの製造方法。
【請求項14】
キャストして得られたフィルムを少なくとも一軸方向に延伸することを特徴とする請求項6又は請求項7に記載の光学補償フィルムの製造方法。

【公開番号】特開2013−28741(P2013−28741A)
【公開日】平成25年2月7日(2013.2.7)
【国際特許分類】
【出願番号】特願2011−166594(P2011−166594)
【出願日】平成23年7月29日(2011.7.29)
【出願人】(000003300)東ソー株式会社 (1,901)
【Fターム(参考)】