説明

水平に向けられた駆動電極を有するMEMSジャイロスコープ

【課題】MEMS(微細電気機械システム;microelectromechanical system)ジャイロスコープのレートバイアス誤差及びスケールファクタ誤差を減らすデバイス及び方法を開示する。
【解決手段】1つ又は複数の水平駆動電極92、94、96、98を含む少なくとも1つの基板68と、1つ又は複数の水平駆動電極92、94、96、98から垂直に間隔をあけられ、これに隣接する可動電極64、66とを含めることができる。水平駆動電極92、94、96、98及び/又は可動電極64、66は、デバイスの感知軸72の方向での可動電極64、66の変位から生じるレートバイアス誤差及びスケールファクタ誤差をなくすか減らすように構成することができる。

【発明の詳細な説明】
【技術分野】
【0001】
[政府の援助]
本発明は、DAAE契約番号30−01−9−0100の下で政府の援助を受けて行われた。政府は、本発明においてある種の権利を有する可能性がある。本発明は、全般的には半導体製造及び微細電気機械システム(MEMS;microelectromechanical system)の分野に関する。より具体的には、本発明は、水平方位を有する駆動電極を使用するMEMSデバイスのレートバイアス(rate bias)誤差及びスケールファクタ誤差を減らす方法に関する。
【背景技術】
【0002】
面外(out-of-plane)MEMSジャイロスコープ(OPG)は、共振するプルーフマス(proof mass)に働くコリオリ力(Coriolis forces)を測定することによって角回転を判定するのに使用される。通常の面外MEMSジャイロスコープには、1つ又は複数のシリコン懸架ばねを使用して、通常はガラスである基板に機械的に結合された2つのシリコンプルーフマスが含まれる。基板にエッチングされた複数の凹窩が、シリコン構造の選択的部分がデバイスの内側部分内で前後に自由に移動することを可能にする。ある種の設計では、基板をシリコン構造の上下に設けて、この2つの基板の間にプルーフマスをはさむことができる。基板上に形成された金属トレース(trace)のパターンを使用して、さまざまな電気的バイアス電圧及び信号出力をデバイスに送ることができる。
【0003】
多数のMEMSジャイロスコープの駆動システムには、通常、コリオリ力が感知される方向に垂直な駆動軸に沿ってプルーフマス(proof mass;保証質量)を前後に振動させる複数の駆動要素が含まれる。ある種の設計で、たとえば、駆動要素に、静電気的作動(actuation)を使用して電気エネルギを機械エネルギに変換するように構成された複数の互いにかみ合う垂直の櫛指(comb finger)を含めることができる。そのような駆動デバイスは、たとえば、参照によってその全体を本明細書に組み込まれているタン(Tang)他の米国特許第5,025,346号に記載されている。
【発明の概要】
【発明が解決しようとする課題】
【0004】
面外MEMSジャイロスコープでは、これらの互いにかみ合う櫛指(interdigitated comb fingers)が、大きいバイアスを生じるか、誤った角速度出力信号を生じる可能性がある。このバイアスは、隣接する櫛指の間のギャップ内の強い電場によって、及びこの電場がジャイロスコープの感知軸(即ち、コリオリ力がそれに沿って働く軸)に沿った向きになっているという事実から引き起こされ得る。従って、可動櫛指が、隣接する静止櫛指の間で完全に中央に置かれていない時に、感知軸に沿って力が生じる。この力は、感知軸に沿ったジャイロスコーププルーフマスの変位を生じ、この変位は、ジャイロスコープの角回転が存在する場合のコリオリ力によって作られる感知軸に沿った変位から区別不能である。互いにかみ合う駆動櫛指によって作られる感知軸に沿った力は、コリオリ力によって作られる変位を検出するのに使用される感知櫛電極の静電容量をも変化させ、従って、ジャイロスコープの出力信号を変化させる。その結果、単位回転速度あたりのジャイロスコープ出力信号と定義されるスケールファクタに、誤差が生じる。
【課題を解決するための手段】
【0005】
本発明は、水平方位を有する駆動電極を有するMEMSアクチュエータデバイスと、MEMSジャイロスコープのレートバイアス誤差及び/又はスケールファクタ(scale factor)誤差を減らす方法とに関する。本発明の例示的実施形態によるMEMSアクチュエータデバイスには、水平方位を有する1つ又は複数の駆動電極(以下では「水平駆動電極」と呼称する)を含む少なくとも1つの基板と、この1つ又は複数の水平駆動電極から垂直に間隔をあけられ、これに隣接する可動電極とを含めることができる。面外MEMSジャイロスコープ又は他の慣性感知デバイスでは、可動電極を、入力軸又はレート軸(rate axis)の回りのジャイロスコープの動きによって作られるコリオリ力を感知するのに使用することができるプルーフマスに結合するか、これと一体に形成することができる。
【0006】
ある種の実施形態では、プルーフマスを、1つ又は複数の下側水平駆動電極を含む下側基板と、1つ又は複数の上側水平駆動電極を含む上側基板との間にはさむことができる。他の実施形態では、プルーフマスを、1つ又は複数の水平駆動電極を含む単一の基板(たとえば、下側基板又は上側基板)に垂直に隣接して位置決めすることができる。どちらの実施形態でも、モーター駆動電圧を、1つ又は複数の水平駆動電極に印加し、デバイスの感知軸に垂直なモーター駆動軸に沿って前後にプルーフマスを振動させることができる。
【0007】
水平駆動電極及び/又はプルーフマスは、感知軸の方向でのプルーフマスの静的変位及び動的変位から生じるレートバイアス誤差及び/又はスケールファクタ誤差をなくすか減らすように構成することができる。ある種の実施形態で、たとえば、水平駆動電極を、感知軸の方向で、プルーフマスの対応する部分より幅広くすることができ、その結果、感知軸に沿ったプルーフマスの小さい変位が、システムの静電エネルギを変化させず、従って、感知軸の方向での静電力を誘導しなくなる。代替案では、感知軸に沿った力を、プルーフマスの対応する部分の幅を水平駆動電極の幅より広くすることによって除去することができる。駆動電極の水平方位並びに本明細書で説明する他の特徴を使用して、静電アクチュエータを使用するさまざまなMEMSデバイスの力の向きより正確に定めることができる。
【図面の簡単な説明】
【0008】
【図1】複数の垂直櫛駆動要素を使用する例示的な面外MEMSジャイロスコープを示す上面概略図である。
【図2】本発明の例示的実施形態によるMEMSアクチュエータデバイスを使用するMEMSジャイロスコープを示す上面概略図である。
【図3】図2の線3−3に沿った、例示的ジャイロスコープを示す側面断面図である。
【図4】異なる長さの水平駆動電極を有する代替MEMSジャイロスコープを示す側面断面図である。
【図5】単一基板構造を有する代替MEMSジャイロスコープを示す側面断面図である。
【図6】本発明のもう1つの例示的実施形態によるMEMSアクチュエータデバイスを使用するMEMSジャイロスコープを示す上面概略図である。
【図7】本発明のもう1つの例示的実施形態によるMEMSアクチュエータデバイスを使用するMEMSジャイロスコープを示す上面概略図である。
【発明を実施するための形態】
【0009】
次の説明は、図面を参照して読まれなければならず、図面では、異なる図面の類似する要素に、類似する形で符号が付けられている。図面は、必ずしも原寸通りではないが、選択された実施形態を示すものであって、本発明の範囲を限定することを意図されたものではない。構成、寸法、及び材料の例が、さまざまな要素について示されるが、当業者は、提供される例の多くが、利用できる適当な代替形態を有することを諒解するであろう。更に、示されるさまざまな図面を、面外MEMSジャイロスコープに関して説明するが、本明細書のさまざまなデバイス及び方法を、静電アクチュエータを使用する他のMEMSデバイスで使用できることを理解されたい。
【0010】
ここで図1を参照して、複数の垂直櫛駆動要素を使用する例示的な従来技術の面外MEMSジャイロスコープ10をこれから説明する。ジャイロスコープ10は、実例として、振動タイプのレートジャイロスコープであるが、第1プルーフマス12及び第2プルーフマス14を含み、これらのプルーフマスのそれぞれは、ジャイロスコープ10の感知軸18に垂直な軸に沿って下側基板16の上で前後に振動するように適合される。第1の及び第2のプルーフマス12及び14は、下側基板16に接着されたシリコン基板から形成することができ、下側基板16には、シリコン構造の選択的部分が動くことを可能にする複数の凹窩及び/又はメサを含めることができる。
【0011】
ある種の設計では、ジャイロスコープ10に、更に、製造されたシリコン構造の最上部の上に形成される上側基板(図示せず)を含めることができる。下側基板16と同様に、上側基板に、プルーフマスがジャイロスコープ10の内側部分の中で動くことを可能にする複数の凹窩及び/又はメサを含めることができる。使用される時に、下側基板16及び上側基板は、望まれる場合にこの2つの基板の平面に垂直な強化された構造的対称性及び電気的対称性をもたらすのに使用できるサンドイッチ構造を形成することができる。
【0012】
矢印の右/左の組20によって全体的に示されるように、第1プルーフマス12は、駆動電極の第1組22とモーターピックオフ櫛の第1組24との間で前後に振動するように構成することができ、駆動電極の第1組22とモーターピックオフ櫛の第1組24の両方を、下側基板16の上で静止したままになるように構成することができる。類似する形で、第2プルーフマス14は、駆動電極の第2組26とモーターピックオフ櫛の第2組28との間で下側基板16の上で前後に、ただし、矢印の左/右の組30によって全体的に示されるように、第1プルーフマス12と180°位相はずれで振動するように構成することができる。
【0013】
第1の及び第2のプルーフマス12及び14は、1つ又は複数の懸架ばねを使用して下側基板16に機械的に結合することができ、この懸架ばねは、第1の及び第2のプルーフマス12及び14の動きを矢印20及び30によって示されるモーター駆動軸に沿って制約するように働く。図1に示されているように、たとえば、第1プルーフマス12を、4つの懸架ばね32の第1組を使用して下側基板16にアンカリングするか他の形で結合することができ、この懸架ばね32のそれぞれは、その第1端34で第1プルーフマス12に接続され、その第2端36で複数のシリコン横桁38及び40に接続される。
【0014】
類似する形で、第2プルーフマス14を、4つの懸架ばね42の第2組を使用して下側基板16にアンカリングするか他の形で結合することができ、この懸架ばね42のそれぞれは、その第1端44で第2プルーフマス14に接続され、その第2端46で第1の及び第2のシリコン横桁38及び40に接続される。第1の及び第2のシリコン横桁38及び40は、複数の懸架ばね48及び支持部材50を介して下側基板16に結合することができ、この懸架ばね48及び支持部材50は、第1の及び第2のプルーフマス12及び14の振動駆動運動を感知軸18の方向に垂直な軸に沿って更に制約するのに使用することができる。
【0015】
ジャイロスコープ10の駆動システムには、矢印20及び30によって全体的に示される方向でプルーフマス12及び14を静電気によって駆動するのに使用できる複数の互いにかみ合う駆動櫛指を含めることができる。図1に示された例示的なジャイロスコープ10では、たとえば、櫛駆動要素の第1組22のそれぞれに、第1プルーフマス12に結合された複数の垂直櫛指と互いにかみ合う複数の垂直櫛指を含めることができる。櫛駆動電極の第2組26のそれぞれには、第2プルーフマス14に結合された複数の櫛指と互いにかみ合う複数の垂直櫛指を含めることができる。図1に示された櫛駆動電極22及び26のそれぞれは、それぞれ7つの櫛駆動指を有するものとして図示されているが、望まれる場合に、より多数又はより少数の櫛駆動指を使用できることを理解されたい。
【0016】
モーター駆動電圧V(t)を、駆動電極の第1組及び第2組22及び26に印加し、櫛指にお互いに関して移動させる、各隣接する互いにかみ合う櫛指の間のギャップ内の静電力を誘導することができる。モーター駆動電圧V(t)は、櫛駆動電極22及び26に送られる電荷を変更するために時間的に変化する電圧信号を出力するように構成することができ、櫛駆動電極22及び26は、懸架ばね32及び42とあいまって、第1の及び第2のプルーフマス12及び14に、下側基板16の上で前後に振動させる。通常、モーター駆動電圧V(t)は、第1の及び第2のプルーフマス12及び14のモーターモードの共振周波数で静電力を作るが、望まれる場合には、他の所望の周波数を使用することができる。第1の及び第2のプルーフマス12及び14のモーターモード共振運動には、図1の矢印20及び30によって示されるモーター駆動軸に沿った反対方向での2つのプルーフマス12及び14の動きが含まれる。
【0017】
プルーフマス12及び14の変位を検出し、測定するために、複数のモーターピックオフ櫛24及び28を、更に、櫛駆動電極22及び26のそれぞれの反対側に設けることができる。櫛駆動電極22及び26と同様に、モーターピックオフ櫛24及び28のそれぞれには、めいめいのプルーフマス12及び14に結合された複数の櫛指と互いにかみ合う複数の櫛指を含めることができる。使用中に、DCモーターピックオフバイアス電圧Vを、モーターピックオフ櫛24及び28のそれぞれに印加して、互いにかみ合う櫛指の相対変位によって誘導される静電荷の変化を測定することによって、プルーフマス変位の測定値を得ることができる。
【0018】
感知櫛の第1組及び第2組52及び54を、感知システムの一部として設けて、入力軸又はレート軸56の回りのジャイロスコープの動きの結果としての感知軸18の方向での第1の及び第2のプルーフマス12及び14の変位を検出し、測定することができる。図1に示されているように、感知櫛の各組52及び54には、各めいめいのプルーフマス12及び14の部分58及び60に結合された複数の外向きの櫛指と互いにかみ合う複数の内向きの櫛指を含めることができる。
【0019】
感知櫛52及び54は、感知軸18に沿ったプルーフマス12及び14の小さい変位が互いにかみ合う櫛指の間の静電容量の変化を生じるようにするように構成することができる。この静電容量の変化は、感知櫛の各組52及び54に印加される感知バイアス電圧Vと組み合わされて、感知軸18に沿ったプルーフマス12及び14の動きの感知を可能にする。ある種の設計で、感知櫛の各組52及び54に印加される感知バイアス電圧Vの極性を、感知櫛の隣接する組52及び54の間で逆転するか交番させて、レート信号を装う可能性がある電流を感知バイアス電圧Vが作らないようにすることができる。
【0020】
動作中に、プルーフマス12及び14のモーター運動に関するジャイロスコープ10の角回転は、レート軸56並びにモーター駆動軸20及び30に垂直で感知軸18の方向に平行なコリオリ力を生じる。これらのコリオリ力は、感知軸18に沿ったプルーフマス12及び14の動きを生じ、この動きは、感知軸18に沿った互いにかみ合う櫛指の動きからもたらされる、感知櫛52及び54に誘導される電荷信号又は電流を検出し、測定することによって感知することができる。次に、結果の感知信号を、感知された電荷信号又は電流をコリオリ力を示すレート信号に変換するのに使用できる電荷増幅器及び/又は他の感知回路に供給することができる。
【0021】
プルーフマス12及び14が、櫛駆動電極22及び26に結合された櫛駆動指とずれて位置合せされている場合には、レートバイアス誤差又はスケールファクタ誤差が生じる場合があり、この場合に、主にジャイロスコープ10の感知軸18に沿った方向の電場が、感知軸18に沿ったプルーフマス12及び14への力を生じる。これらの力によって作られるレートバイアス誤差又はスケールファクタ誤差は、櫛駆動電極22及び26に印加されるモーター駆動電圧が大きい(たとえば、数ボルト以上)場合、及び/又は互いにかみ合う櫛指の間のギャップが小さい(たとえば、2から3μm)場合に、かなりのものになり得る。
【0022】
感知軸力が櫛駆動指の位置ずれから生じる原因は、次のように理解することができる。感知軸に沿って駆動電極によって作られる静電力の一般的な式は、次の通りである。
【0023】
【数1】

【0024】
上の式(1)は、垂直駆動電極及び水平駆動電極にあてはまる。式(1)では、Fは、1つ又は複数の駆動電極によって作られる感知軸に沿った静電力であり、Cは、1つ又は複数の静止駆動電極と可動駆動電極との間の静電容量であり、y(t)は、可動電極の、その理想的な静的位置に対する感知軸に沿った変位であり、V(t)は、1つ又は複数の駆動電極と可動電極との間に印加される電圧の差である。
【0025】
小さいy(t)について、式(1)を次式として近似することができる。
【0026】
【数2】

【0027】
式(2)は、通常のMEMSジャイロスコープの良い近似である。式(2)では、y=0は、可動電極の理想的な静的位置を指す。y=0の時に、可動電極の位置は、通常、静止駆動電極の位置に対する高い度合の対称性を有し、その結果、∂C/∂y|y=0はゼロになる。可動電極と静止電極の位置ずれは、y(t)の非ゼロの値によって表される。式(2)から、非ゼロの∂/∂yy=0と組み合わされた非ゼロのy(t)が、感知軸に沿った力を生じることがわかる。面外MEMSジャイロスコープの垂直櫛駆動電極について、∂/∂yy=0は、互いにかみ合う櫛指の間の小さいギャップと、その結果の、感知軸に沿った向きの大きい電場とに起因して、非常に大きい。従って、式(2)によれば、垂直方位を有する駆動櫛が使用される場合に、小さい変位y(t)が、感知軸に沿った大きい力Fを作ることができる。
【0028】
櫛駆動電極は、櫛駆動指の静的感知軸変位又はモーター周波数で変化する駆動櫛指の動的感知軸変位のいずれかによって、レートバイアスを作ることができる。通常の面外MEMSジャイロスコープは、2つのプルーフマスの間の差分感知軸変位だけがレートバイアスに寄与するようになるように設計される。この差分変位を、感知モード変位(sense mode displacement)と称する。感知モード変位の静的成分は、感知モードに印加される静的力から生じる。これらの静的力は、パッケージの応力、熱膨張の不一致、シリコン懸架ばねの不一致、又はモーター駆動電圧V(t)に関連しない他の影響から生じる可能性がある。
【0029】
感知モード変位の動的成分は、ほとんどが、当技術分野で直角運動(quadrature motion)と称するものからなる。直角運動は、モーター周波数であり、コリオリ力によって作られる感知モード変位と90°位相はずれである。そのような動きは、通常、シリコン懸架ばね剛性の不一致、モーターク動力の位置ずれなどと組み合わされたモーター駆動軸に沿ったモーター駆動力から生じる。
【0030】
直角運動に起因する望まれないレートバイアスを減らすために、多数の従来技術のジャイロスコープは、複雑な誤差訂正方法を使用する。たとえば、クラーク(Clark)他の米国特許第6,067,858号に記載の1つのそのような方法では、直角運動を無効にする静電力を作る追加電極を使用する直角位相力再平衡技法が使用される。そのような方法を使用して、ブルーフマスの動的感知モード動きを減らすことはできるが、そのような技法は、プルーフマスの静的感知軸変位に起因する基礎になるレートバイアスを除去しない。その結果、多数の面外MEMSジャイロスコープは、動きの微妙な変化を検出し、かつ/又は測定する能力において制限されている。
【0031】
ここで図2に移って、本発明の例示的実施形態によるMEMSアクチュエータデバイスを使用する面外MEMSジャイロスコープ62の上面概略図をこれから説明する。ジャイロスコープ62は、実例として、振動タイプのレートジャイロスコープであるが、第1プルーフマス64及び第2プルーフマス66を含み、これらのプルーフマスのそれぞれは、ジャイロスコープ62の感知軸72に垂直な駆動平面内で下側基板68と上側基板70(図3を参照されたい)との間で水平に前後に振動するように適合される。図2に示された特定の図では、上側基板70は、ジャイロスコープ62の内部構造をより詳細に示すために除去されて図示されている。従って、さまざまな要素を、下で下側基板68だけに関して説明するが、上側基板70にも、望まれる場合に、本明細書で説明される要素のうちの1つ又は複数を含めることができることを理解されたい。
【0032】
各プルーフマス64及び66は、それぞれが第1の及び第2の対向する端74及び76並びに第1の及び第2の対向する側面78及び80を有する実質的に平面の構造から形成することができる。図2の例示的実施形態では、各プルーフマス64及び66に、第1プルーフマス64の複数の駆動タイン(drive tine)84及び86並びに第2プルーフマス66の複数の駆動タイン88及び90を形成する、めいめいの端74に形成された内向きの切欠き部82を含めることができる。プルーフマス64及び66は、フォトリソグラフィ及び反応性イオンエッチングなどの当業者に周知の半導体製造技法を使用して、シリコン又は他の適当な材料から形成することができる。
【0033】
図2から更にわかるように、ジャイロスコープ62には、更に、複数の水平駆動電極92、94、96、及び98を含めることができ、水平駆動電極92、94、96、及び98を使用して、プルーフマス64及び66を、矢印100及び102によって全体的に示されるモーター駆動軸に沿って互いに180°位相はずれで前後に振動させることができる。図2の例示的実施形態では、水平駆動電極92、94、96、及び98は、ジャイロスコープ62の下側の及び上側の基板68及び70と平面の実質的に水平の方向に向けられる。
【0034】
水平駆動電極92、94、96、及び98は、下側基板68の表面上で又は基板68内で静止したままになるように構成することができ、感知軸72に沿ったプルーフマス64及び66の小さい変位が駆動静電容量の付随する変化をもたらさず、従って感知軸に沿った力成分をもたらさないように、感知軸72の方向で、めいめいの駆動タイン84、86、88、及び90の対応する幅より幅広くすることができる。そのような構成は、たとえば、上の式(1)に関して理解されるように、感知軸72の方向での各プルーフマス64及び66の変位から生じるレートバイアスをなくすか減らすのに使用することができる。2つの水平駆動電極92及び94と96及び98が、図2の例示的実施形態に具体的に図示されているが、より多数又はより少数の水平駆動電極を使用する他の実施形態が、構想されている。
【0035】
各めいめいのプルーフマス64及び66の電圧に対して時間的に変化するモーター駆動電圧V(t)を、水平駆動電極の各組92及び94と96及び98に印加することができ、これによって、駆動タイン84、86、88、及び90と対応する水平駆動電極92、94、96、及び98との間に静電力が誘導され、この静電力が、プルーフマス64及び66に、モーター駆動軸に沿って下側基板68の上で前後に振動させる。図2に示されたジャイロスコープ10のモーター運動の開始の前の公称位置で、駆動タイン84、86、88、及び90を、水平駆動電極92、94、96、及び98の表面の一部とオーバーラップするように構成することができる。アクティブ化されたならば、又は作動サイクル中の異なる時に、プルーフマス64及び66を、図1に関して上で説明したものに似た形で前後に振動するように構成することができる。
【0036】
望まれる場合に、図1に示されたものに似た懸架ばねの組104及び106を利用して、プルーフマス64及び66の動きを更に制約し、各プルーフマス64及び66がゼロを通過する時に復元力を供給することができる。図2に示された横桁108及び110、懸架ばね112、並びに支持部材114などの他の要素を、望まれる場合に更に設けることができる。ある種の実施形態で、モーター駆動電圧V(t)は、プルーフマス64及び66のモーター共振周波数での力を作る周波数を有することができるが、望まれる場合には他の周波数を使用することができる。
【0037】
図2の例示的実施形態では、水平駆動電極92、94、96、及び98が、分割構成を有し、それぞれがお互いから電気的に絶縁された分割駆動電極の2つの別々の組92及び94と96及び98を形成して図示されている。モーター駆動電圧V(t)が、角速度感知エレクトロニクスに電流を注入しないようにするために、水平駆動電極92、94、96、及び98に印加されるモーター駆動電圧V(t)の極性を、逆転することができる。図2に示されているように、たとえば、負のモーター駆動電圧信号(t)を、第1プルーフマス64の左上の水平駆動電極92に印加することができ、正のモーター駆動電圧信号(t)を、第1プルーフマス64の左下の水平駆動電極94に印加することができる。
【0038】
類似する形で、正のモーター駆動電圧信号(t)を、第2プルーフマス66の右上の水平駆動電極96に印加することができ、負のモーター駆動電圧信号(t)を、第2プルーフマス66の右下の水平駆動電極98に印加することができる。各水平駆動電極92、94、96、及び98への極性をこの形で逆転することによって、正味ゼロの変化が、プルーフマス64及び66でもたらされ、印加されるモーター駆動電圧V(t)が角速度感知エレクトロニクスに注入されなくなる。しかし、他の構成が可能であることを理解されたい。
【0039】
プルーフマス64及び66の変位を検出し、測定するために、複数のモーターピックオフ櫛115及び117を、更に、水平駆動電極92、94、96、及び98のそれぞれの反対側に設けることができる。上で図1に関して説明したモーターピックオフ櫛24及び28と同様に、モーターピックオフ櫛115及び117のそれぞれには、めいめいのプルーフマス64及び66に結合された複数の櫛指と互いにかみ合う複数の櫛指を含めることができる。使用中に、DCモーターピックオフバイアス電圧Vを、モーターピックオフ櫛115及び117のそれぞれに印加して、互いにかみ合う櫛指の相対変位によって誘導される静電荷の変化を測定することによって、プルーフマス変位の測定値を得ることができる。ある種の実施形態で、モーターピックオフ櫛115及び117のそれぞれに印加されるモーターピックオフバイアス電圧Vの極性は、望まれる場合に逆転することができる。
【0040】
各めいめいのプルーフマス64及び66の内側部分に配置された感知櫛アンカの組116及び118を、感知システムの一部として設けて、入力軸又はレート軸120の回りのジャイロスコープの動きの結果としての感知軸72の方向でのプルーフマス64及び66のたわみを検出し、かつ/又は測定することができる。ある種の実施形態で、感知櫛アンカ116及び118は、下側基板68上に配置された接地金属の層122(図3を参照されたい)の上に形成することができ、接地金属の層122は、望み通りに、デバイスにハード接地(hard-ground)するか仮想接地に保持するのいずれかとすることができる。感知櫛アンカ116から外向きに延びる第1の個数の櫛指124を、第1プルーフマス64の一部128から内向きに延びる第1の個数の櫛指126と互いにかみ合わせることができる。類似する形で、感知櫛アンカ118から外向きに延びる第2の個数の櫛指130を、第2プルーフマス66の一部134から内向きに延びる第2の個数の櫛指132と互いにかみ合わせることができる。
【0041】
図2の例示的実施形態では、感知櫛指124及び126と130及び132を、各感知櫛アンカ116及び118上でお互いからオフセットさせ、感知軸72に沿ったプルーフマス64及び66の動きが、感知櫛アンカ116及び118と対応するプルーフマス64及び66との間の静電容量の変化を生じるようにすることができる。図2に示された例示的な感知櫛アンカ116及び118のそれぞれに、一部128及び134の各側面に4つの指が配置された、それぞれに8つの櫛指が含まれるが、望まれる場合に、異なる個数及び/又は配置の感知櫛指を利用できることを理解されたい。
【0042】
感知バイアス電圧Vを、感知櫛アンカ116及び118及び/又はプルーフマス64及び66のそれぞれに印加して、感知軸72に沿い、モーター運動の方向に垂直な互いにかみ合う櫛指124及び126と130及び132の相対的な動きを感知することができる。ある種の実施形態で、感知櫛アンカ116及び118のそれぞれが、分割構成を有することができ、各分割部材に印加される感知バイアス電圧Vの極性は、感知バイアス電圧Vが所望のレート信号に注入されないようにするために、ある所望の形で逆転され又はオフセットされる。使用中に、コリオリ力によって作られるプルーフマスの動きは、感知バイアス電圧Vが印加される時に感知櫛アンカ116及び118並びに/又はプルーフマス64及び66に誘導される電流を測定することによって感知することができる。
【0043】
図2の例示的実施形態には、2つのプルーフマス64及び66が示されているが、ジャイロスコープ62が、望まれる場合により多数又はより少数のプルーフマスを使用できることを理解されたい。ある種の実施形態では、たとえば、ジャイロスコープ62に、2つのプルーフマスの2つの組を含めることができ、各組は、互いに関して180°位相はずれで前後に移動するように適合される。更に、本明細書で示されるさまざまな駆動要素は、面外MEMSジャイロスコープで使用されるMEMSアクチュエータデバイスの一部として図示されるが、このアクチュエータデバイスを、面内MEMSジャイロスコープ、加速度計、音叉、マイクロミラー、又は他のそのようなデバイスを含むがこれらに限定されない他のMEMSデバイスに組み込めることを理解されたい。
【0044】
図3は、図2の線3−3に沿った、例示的ジャイロスコープ62を示す側面断面図である。図3からわかるように、プルーフマス66を、下側基板68と上側基板70との間でジャイロスコープ62の内側部分136内で自由に支持することができる。プルーフマス66の上側表面138は、上側水平駆動電極142の下側表面140に平行又は実質的に平行とし、プルーフマス66の上に第1ギャップGを形成することができる。類似する形で、プルーフマス66の下側表面144は、下側水平駆動電極96の上側表面146に平行又は実質的に平行うとし、プルーフマス66の下に第2ギャップGを形成することができる。ギャップG及びGの寸法は、望み通りに、モーター駆動電圧V(t)によって誘導される静電力を増やす又は減らすのいずれかを行うように変更することができる。ある種の実施形態で、ギャップG及びGの寸法は、0.5μmから8μmまでの範囲内、より具体的には2μmから4μmまでの範囲内とすることができるが、これより小さい又はこれより大きい他の寸法を使用することができる。少なくともいくつかの実施形態で、プルーフマス66を、下側と上側の基板68と70の間で中央に位置決めし、第1ギャップGの寸法が第2ギャップGの寸法に似るかこれと等しくなるようにすることができるが、他の構成が可能である。類似する構成を、望まれる場合に、他のプルーフマス64上に設けることができる。
【0045】
動作中に、下側の及び上側の水平駆動電極96及び142に印加されるモーター駆動電圧V(t)を、ギャップG及びGのそれぞれの間で静電荷又は静電力を誘導するように構成し、プルーフマス66を、矢印148によって全体的に示されるように、下側の及び上側の水平駆動電極96及び142とのオーバーラップが増える方向に引き付けることができる。下側と上側の水平駆動電極96と142の両方が利用されるので、プルーフマス66に働く上向き及び/又は下向きのすべての力が、この構造の垂直対称性に起因して効果的に打ち消される。ある種の実施形態では、接地層122をジャイロスコープ62にハード接地すると同時に、プルーフマス66を仮想接地に保つことができる。代替案では、望まれる場合に、接地層122を仮想接地に保ち、プルーフマス66をジャイロスコープ62にハード接地することができる。どちらの実施形態でも、接地層122及び/又はプルーフマス66の接地を使用して、プルーフマス66の静電気的作動を容易にすることができる。
【0046】
図4は、図2の線3−3に沿った、異なる長さの水平駆動電極96及び142を有するMEMSジャイロスコープ62を示す側面断面図である。図4からわかるように、上側駆動電極142及びプルーフマス66は、距離Lだけオーバーラップすることができる。類似する形で、下側駆動電極96及びプルーフマス66は、距離Lだけオーバーラップすることができる。ある種の実施形態で、及び図4に示されているように、寸法Lは、上側水平駆動電極142とプルーフマス66のオーバーラップより長い、下側水平駆動電極96とプルーフマス66のオーバーラップの量をもたらすために、寸法Lより長くすることができる。代替実施形態では、下側水平駆動電極96とプルーフマス66のオーバーラップより長い、上側水平駆動電極142とプルーフマス66のオーバーラップの量をもたらすために、寸法Lを寸法Lより長くすることができる。
【0047】
寸法G、G、L、及びLは、所望の形でこのデバイスの性能を変更するために調節することができる。ある種の実施形態で、たとえば、寸法G、G、L、及びLは、モーター駆動軸に沿った所望の力を劣化させずに、プルーフマス66へのほとんど0の垂直力を達成するように選択することができる。このために、L及びLは、プルーフマス66の残留応力から生じるG及びGの望まれない変動が存在する場合のプルーフマス66への上向きと下向きの垂直力の平衡をとるように選択することができる。類似する配置を、望まれる場合に、他のプルーフマス64並びに/又は水平駆動電極92及び94上に設けることができる。
【0048】
図5は、単一基板構造だけを有する、図2の線3−3に沿った例示的なジャイロスコープ62を示す側面断面図である。図5からわかるように、プルーフマス66は、図3に関して上で説明したものに似た形で、ジャイロスコープ62の下側基板68だけにオーバーレイするように構成することができる。ある種の実施形態で、たとえば、プルーフマス66の下側表面144を、下側水平駆動電極96の上側表面146と平行又は実質的に平行にし、ギャップGだけ離隔することができ、このギャップGは、ある種の例示的実施形態で、0.5μmから8μmまでの範囲内、より具体的には2μmから4μmまでの範囲内とすることができる。図5の例示的実施形態は、ジャイロスコープ62の上側基板構造の除去を示すが、ジャイロスコープ62の下側基板構造が除去される、逆の構成を使用できることを理解されたい。
【0049】
単一の基板構造だけが使用される時に、モーター駆動電流V(t)は、プルーフマス66が矢印148の方向に移動する時に、プルーフマス66への下向きの垂直力を生じる可能性がある。しかし、結果の垂直変位は、比較的小さい。というのは、モーター駆動力の周波数が、通常は、プルーフマス66の共振モード垂直動き成分と異なるからである。対照的に、方向148に沿ったプルーフマス66の変位は、望み通りに比較的大きい。というのは、モーター駆動力が、通常はモーター共振周波数であるからである。
【0050】
図6は、本発明のもう1つの例示的実施形態による水平駆動デバイスを使用するMEMSジャイロスコープ150の上面概略図である。
ジャイロスコープ150は、上で図2に関して説明したジャイロスコープ62に似て構成することができ、これらの異なる図面の類似する要素には、類似する形で符号が付けられている。しかし、図6に示された例示的実施形態では、ジャイロスコープ150に、駆動タイン82、84、86、及び88のめいめいの幅より小さい、感知軸72の方向の幅をそれぞれが有する、複数の分割された水平駆動電極152、154、156、及び158を含めることができる。本明細書の他の実施形態と同様に、水平駆動電極152、154、156、及び158は、下側基板68の表面上で又は基板68内で静止したままになるように構成することができ、上で図2に関して説明したものに似た形で、プルーフマス64及び66をモーター駆動軸に沿って前後に振動させるのに使用することができる。使用中に、そのような構成を使用して、たとえば、感知軸72の方向のプルーフマス64及び66の変位から生じるレートバイアス誤差及び/又はスケールファクタ誤差をなくすか減らすことができる。
【0051】
図7は、本発明のもう1つの例示的実施形態による、単一水平駆動電極構造を使用する水平駆動デバイスを使用するMEMSジャイロスコープ160の上面概略図である。ジャイロスコープ160は、上で図2に関して説明したジャイロスコープ62に似て構成することができ、これらの異なる図面の類似する要素には、類似する形で符号が付けられている。しかし、しかし、図7に示された例示的実施形態では、単一の水平駆動電極162及び164を、各めいめいのプルーフマス64及び66に隣接して設けて、これらのプルーフマスを下側基板68及び/又は上側基板70の間の中で前後に振動させることができる。各プルーフマス64及び66には、水平駆動電極162及び164の一部とオーバーラップするように構成できる単一の駆動タイン166及び168を含めることができる。ある種の実施形態で、水平駆動電極162及び164並びに/又は駆動タイン166及び168は、実質的に長方形の形状を有することができるが、他の構成が可能である。
【0052】
本明細書の他の実施形態と同様に、第1の及び第2の水平駆動電極162及び164は、下側基板68の上で静止したままになるように構成することができ、感知軸72の方向でプルーフマス64及び66の変位から生じるレートバイアス誤差及び/又はスケールファクタ誤差がある場合に、これをなくすか減らすために、感知軸72の方向で、各めいめいの駆動タイン166及び168の対応する幅より幅広くすることができる。代替案では、同一の効果を、水平駆動電極162及び164を、感知軸72の方向で対応する駆動タイン166及び168の幅よりも狭くすることによって達成することができる。
【0053】
時間的に変化するモーター駆動電圧V(t)を、各水平駆動電極162及び164に印加し、各プルーフマス64及び66のオーバーラップする部分の間に静電力を誘導することができ、この静電力は、プルーフマス64及び66に下側基板68の上で前後に振動させる。モーター駆動電圧V(t)が感知システムに注入されないようにするために、各水平駆動電極162及び164に印加されるモーター駆動電圧V(t)信号を、逆転するかオフセットさせることができる。図7に示されているように、たとえば、正のモーター駆動電圧(t)信号を、第1プルーフマス64を駆動するのに使用される水平駆動電極162に印加することができ、負のモーター駆動電圧(t)を、第2プルーフマス66を駆動するのに使用される水平駆動電極164に印加することができる。望まれる場合に、逆の構成を使用することもできる。
【0054】
従って、本発明の複数の実施形態を説明したので、当業者は、添付の特許請求の範囲に含まれる他の実施形態を作り、使用できることをたやすく諒解するであろう。本文書に含まれる本発明の多数の利点は、前述の説明に示されている。本開示が、多くの点で例示にすぎないことを理解されたい。本発明の範囲を超えずに、詳細において、特に諸部品の形状、サイズ、及び配置に関して変更を行うことができる。

【特許請求の範囲】
【請求項1】
MEMSアクチュエータデバイスであって、
1つ又は複数の水平駆動電極を含む少なくとも1つの基板と、
前記1つ又は複数の水平駆動電極から垂直に間隔をあけられ、これに隣接する可動電極と、を含み、
前記可動電極が、前記アクチュエータデバイスのモーター駆動軸に沿って水平に前後に振動するようにされる、MEMSアクチュエータデバイス。
【請求項2】
前記少なくとも1つの基板が、下側基板を含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項3】
前記少なくとも1つの基板が、上側基板を含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項4】
前記少なくとも1つの基板が、下側基板及び上側基板を含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項5】
前記1つ又は複数の水平駆動電極が、
前記下側基板に結合された下側水平駆動電極と、
前記上側基板に結合された上側水平駆動電極と
を含む、請求項4に記載のMEMSアクチュエータデバイス。
【請求項6】
前記可動電極が、上側表面及び下側表面を有する平面構造を含む、請求項5に記載のMEMSアクチュエータデバイス。
【請求項7】
前記可動電極の前記下側表面が、前記下側水平駆動電極の上側表面と平行に又は実質的に平行に延びる、請求項6に記載のMEMSアクチュエータデバイス。
【請求項8】
前記可動電極の前記上側表面が、前記上側水平駆動電極の下側表面と平行に又は実質的に平行に延びる、請求項6に記載のMEMSアクチュエータデバイス。
【請求項9】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記下側水平駆動電極の前記長さと異なる、請求項5に記載のMEMSアクチュエータデバイス。
【請求項10】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記下側水平駆動電極の前記長さに類似するかこれと等しい、請求項5に記載のMEMSアクチュエータデバイス。
【請求項11】
前記可動電極が、1つ又は複数の駆動タインを有するプルーフマスを含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項12】
前記1つ又は複数の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より大きい、請求項11に記載のMEMSアクチュエータデバイス。
【請求項13】
前記1つ又は複数の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より小さい、請求項11に記載のMEMSアクチュエータデバイス。
【請求項14】
前記1つ又は複数の水平駆動電極のそれぞれが、複数の分割された水平駆動電極を含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項15】
前記1つ又は複数の水平駆動電極のそれぞれが、単一の水平駆動電極を含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項16】
前記1つ又は複数の水平駆動電極に電荷を誘導するモーター駆動電圧源を更に含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項17】
前記少なくとも1つの基板に平行な感知軸に沿った前記可動電極の動きを感知する感知手段を更に含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項18】
前記可動電極を前記少なくとも1つの基板に結合する手段を更に含む、請求項1に記載のMEMSアクチュエータデバイス。
【請求項19】
前記可動電極を前記少なくとも1つの基板に結合する前記手段が、1つ又は複数の懸架ばねを含む、請求項18に記載のMEMSアクチュエータデバイス。
【請求項20】
少なくとも1つの下側水平駆動電極を含む下側基板と、
少なくとも1つの上側水平駆動電極を含む上側基板と、
前記上側の及び下側の基板の内側空間内で垂直に前記少なくとも1つの下側の及び上側の水平駆動電極に隣接して前後に振動するようにされた可動プルーフマスと
を含む、MEMSアクチュエータデバイス。
【請求項21】
前記可動プルーフマスが、上側表面及び下側表面を有する平面構造を含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項22】
前記可動プルーフマスの前記下側表面が、前記下側水平駆動電極の上側表面に平行に又は実質的に平行に延びる、請求項21に記載のMEMSアクチュエータデバイス。
【請求項23】
前記プルーフマスの前記上側表面が、前記上側水平駆動電極の下側表面に平行に又は実質的に平行に延びる、請求項21に記載のMEMSアクチュエータデバイス。
【請求項24】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記下側水平駆動電極の前記長さと異なる、請求項20に記載のMEMSアクチュエータデバイス。
【請求項25】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記第2水平駆動電極の前記長さに類似するかこれと等しい、請求項20に記載のMEMSアクチュエータデバイス。
【請求項26】
前記プルーフマスが、1つ又は複数の駆動タインを含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項27】
前記下側の及び上側の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より大きい、請求項26に記載のMEMSアクチュエータデバイス。
【請求項28】
前記下側の及び上側の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な
感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より小さい、請求項26に記載のMEMSアクチュエータデバイス。
【請求項29】
前記下側の及び上側の水平駆動電極のそれぞれが、複数の分割された水平駆動電極を含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項30】
前記下側の及び上側の水平駆動電極のそれぞれが、単一の水平駆動電極を含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項31】
前記下側の及び上側の水平駆動電極に電荷を誘導するモーター駆動電圧源を更に含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項32】
前記下側の及び上側の基板に平行な感知軸に沿った前記プルーフマスの動きを感知する感知手段を更に含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項33】
前記プルーフマスを前記下側基板に結合する手段を更に含む、請求項20に記載のMEMSアクチュエータデバイス。
【請求項34】
前記プルーフマスを前記下側基板に結合する前記手段が、1つ又は複数の懸架ばねを含む、請求項33に記載のMEMSアクチュエータデバイス。
【請求項35】
垂直に間隔をあけられた水平駆動電極の組と、
垂直に間隔をあけられた水平駆動電極の前記組の間で前後に振動するようにされた可動プルーフマスと
を含む、MEMSアクチュエータデバイス。
【請求項36】
垂直に間隔をあけられた水平駆動電極の前記組が、少なくとも1つの下側水平駆動電極及び少なくとも1つの上側水平駆動電極を含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項37】
前記プルーフマスが、上側表面及び下側表面を有する平面構造を含む、請求項36に記載のMEMSアクチュエータデバイス。
【請求項38】
前記プルーフマスの前記下側表面が、前記下側水平駆動電極の上側表面に平行に又は実質的に平行に延びる、請求項37に記載のMEMSアクチュエータデバイス。
【請求項39】
前記プルーフマスの前記上側表面が、前記上側水平駆動電極の下側表面に平行に又は実質的に平行に延びる、請求項37に記載のMEMSアクチュエータデバイス。
【請求項40】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記下側水平駆動電極の前記長さと異なる、請求項36に記載のMEMSアクチュエータデバイス。
【請求項41】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記第2水平駆動電極の前記長さに類似するかこれと等しい、請求項36に記載のMEMSアクチュエータデバイス。
【請求項42】
前記プルーフマスが、1つ又は複数の駆動タインを含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項43】
前記水平駆動電極のそれぞれが、感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より大きい、請求項42に記載のMEMSアクチュエータデバイス。
【請求項44】
前記水平駆動電極のそれぞれが、感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より小さい、請求項42に記載のMEMSアクチュエータデバイス。
【請求項45】
垂直に間隔をあけられた水平駆動電極の各組が、複数の分割された水平駆動電極を含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項46】
垂直に間隔をあけられた水平駆動電極の各組が、単一の水平駆動電極を含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項47】
垂直に間隔をあけられた水平駆動電極の各組に電荷を誘導するモーター駆動電圧源を更に含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項48】
感知軸に沿った前記プルーフマスの動きを感知する感知手段を更に含む、請求項35に記載のMEMSアクチュエータデバイス。
【請求項49】
1つ又は複数の水平駆動電極を含む少なくとも1つの基板と、
前記1つ又は複数の水平駆動電極のそれぞれに垂直に隣接した空間内で前後に振動するようにされたプルーフマスと、
前記1つ又は複数の水平駆動電極のそれぞれに電荷を誘導するモーター駆動電圧源と
を含む、MEMSアクチュエータデバイス。
【請求項50】
1つ又は複数の水平駆動電極を含む少なくとも1つの基板と、
前記1つ又は複数の水平駆動電極のそれぞれに垂直に隣接した空間内で前後に振動するようにされたプルーフマスと、
前記1つ又は複数の水平駆動電極のそれぞれに電荷を誘導するモーター駆動電圧源と、
前記少なくとも1つの基板に平行な感知軸に沿った前記プルーフマスの動きを感知する感知手段と
を含む、MEMSジャイロスコープ。
【請求項51】
前記少なくとも1つの基板が、下側基板を含む、請求項50に記載のMEMSジャイロスコープ。
【請求項52】
前記少なくとも1つの基板が、上側基板を含む、請求項50に記載のMEMSジャイロスコープ。
【請求項53】
前記少なくとも1つの基板が、下側基板及び上側基板を含む、請求項50に記載のMEMSジャイロスコープ。
【請求項54】
前記1つ又は複数の水平駆動電極が、
前記下側基板に結合された下側水平駆動電極と、
前記上側基板に結合された上側水平駆動電極と
を含む、請求項53に記載のMEMSジャイロスコープ。
【請求項55】
前記プルーフマスが、上側表面及び下側表面を有する平面構造を含む、請求項54に記載のMEMSジャイロスコープ。
【請求項56】
前記プルーフマスの前記下側表面が、前記下側水平駆動電極の上側表面に平行に又は実質的に平行に延びる、請求項55に記載のMEMSジャイロスコープ。
【請求項57】
前記プルーフマスの前記上側表面が、前記上側水平駆動電極の下側表面に平行に又は実質的に平行に延びる、請求項55に記載のMEMSジャイロスコープ。
【請求項58】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記下側水平駆動電極の前記長さと異なる、請求項54に記載のMEMSジャイロスコープ。
【請求項59】
前記下側水平駆動電極及び前記上側水平駆動電極のそれぞれが、長さを画定し、前記上側水平駆動電極の前記長さが、前記第2水平駆動電極の前記長さに類似するかこれと等しい、請求項54に記載のMEMSジャイロスコープ。
【請求項60】
前記プルーフマスが、1つ又は複数の駆動タインを含む、請求項50に記載のMEMSジャイロスコープ。
【請求項61】
前記1つ又は複数の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より大きい、請求項60に記載のMEMSジャイロスコープ。
【請求項62】
前記1つ又は複数の水平駆動電極のそれぞれが、前記少なくとも1つの基板に平行な感知軸の方向に沿った幅を画定し、前記幅が、各めいめいの駆動タインの対応する幅より小さい、請求項60に記載のMEMSジャイロスコープ。
【請求項63】
前記1つ又は複数の水平駆動電極のそれぞれが、複数の分割された水平駆動電極を含む、請求項50に記載のMEMSジャイロスコープ。
【請求項64】
前記1つ又は複数の水平駆動電極のそれぞれが、単一の水平駆動電極を含む、請求項50に記載のMEMSジャイロスコープ。
【請求項65】
前記プルーフマスを前記少なくとも1つの基板に結合する手段を更に含む、請求項50に記載のMEMSジャイロスコープ。
【請求項66】
前記プルーフマスを前記少なくとも1つの基板に結合する前記手段が、1つ又は複数の懸架ばねを含む、請求項65に記載のMEMSジャイロスコープ。
【請求項67】
前記MEMSジャイロスコープが、面外MEMSジャイロスコープである、請求項50に記載のMEMSジャイロスコープ。
【請求項68】
垂直に間隔をあけられた水平駆動電極の組を備えたMEMSアクチュエータデバイスと、垂直に間隔をあけられた水平駆動電極の前記組の間の中で前後に振動するようにされたプルーフマスとを設けるステップと、
垂直に間隔をあけられた水平駆動電極の各組にモーター駆動電圧を印加するステップと、
前記デバイスの感知軸に沿った前記プルーフマスの動きを感知するステップと
を含む、MEMSジャイロスコープのレートバイアス誤差及び/又はスケールファクタ誤差を減らす方法。
【請求項69】
垂直に間隔をあけられた水平駆動電極の各組にモーター駆動電圧を印加する前記ステップが、水平駆動電極の各組に印加される極性を逆転するステップを含む、請求項68に記載の方法。
【請求項70】
前記MEMSジャイロスコープが、前記感知軸に沿った前記プルーフマスの動きを感知する感知櫛アンカを含み、前記プルーフマスの動きを感知する前記ステップが、前記感知櫛アンカに感知バイアス電圧を印加するステップを含む、請求項68に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−255801(P2012−255801A)
【公開日】平成24年12月27日(2012.12.27)
【国際特許分類】
【外国語出願】
【出願番号】特願2012−180511(P2012−180511)
【出願日】平成24年8月16日(2012.8.16)
【分割の表示】特願2007−519278(P2007−519278)の分割
【原出願日】平成17年6月17日(2005.6.17)
【出願人】(500575824)ハネウェル・インターナショナル・インコーポレーテッド (1,504)
【Fターム(参考)】