説明

流動装置及び流動方法

【課題】電気浸透流又は電気泳動の作用によって試料溶液を駆動する際に、流路中に液量分布に差が生じて、試料溶液が流れにくくなる現象を防止する。
【解決手段】流路基板1には、1対の溶液槽及び流路23が凹状に形成されている。下流側の溶液槽には、圧力センサ7及びマイクロピペットが配され、また流路23の途中には、細胞破砕用の電圧を印加するための破砕用電極56,56及び狭幅部55が形成されている。使用時には、上流側の溶液槽に試料溶液を導入し、駆動用電極51,51に駆動電圧を印加することで、試料溶液を駆動する。この間、圧力センサ7によって下流側の溶液槽における試料溶液の流入圧が常時測定されており、流入圧が閾値を下回った時点で、液量調整装置6が駆動され、マイクロピペットから溶液槽内の試料溶液が吸引される。これにより、試料溶液の流動状態を維持できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は流路基板に微小流路を形成した流動装置、及び、当該流動装置を用いた場合の流動方法に関するものである。
【背景技術】
【0002】
近年、細胞、DNA(deoxyribonucleic acid)やRNA(ribonucleic acid)などの生化学的な分析において、数百μm以下の幅の微細な流路を形成したチップが用いられることがある(特許文献1参照)。このチップでは、流路の延在方向両端部に電極が形成されており、両電極に駆動電圧を印加することで、流路に導入した試料溶液中のDNAや細胞などを電気浸透流又は電気泳動によって移動させ、当該DNAや細胞などの混合や分離などの操作を行うことができる。
【特許文献1】特開2004−286449号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上記構成のチップでは駆動電圧を印加し続けると、試料溶液自体の移動によって、上流側よりも下流側の試料溶液の圧力の方が高くなり、次第に流動しにくくなるという現象が生じることがあった。
【0004】
本発明は上述の課題に鑑みてなされたものであり、流路内の圧力バランスをコントロールすることで、流動状態を維持可能な手段を提供することを目的とする。
【0005】
また、流路は微細でかつ表面に沿って延在させているため、環境条件により、例えば、顕微鏡の照明に長時間照らされる場合や、高温・乾燥時などには、流路内に導入した液体が蒸発し、必要な液量を下回ってしまう場合があった。
【0006】
本発明は、上述の問題点に鑑みてなされたものであり、更にその目的は流路基板の流路内の液体の蒸発・乾燥を防ぐことにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の請求項1による流動装置は、少なくとも1対の溶液槽及び前記1対の溶液槽を連通する流路を凹状に形成した流路基板と、前記1対の溶液槽又は前記流路中に導入された試料溶液を、電気浸透流又は電気泳動により、前記溶液槽の一方から他方に向かって駆動する駆動手段と、前記駆動中に生じる前記1対の溶液槽及び流路内での試料溶液量の差によって、前記駆動手段の駆動力を阻害する圧力が生じないように、試料溶液を部分的に注入又は除去する液量調整手段と、を備えたことを特徴とする。
【0008】
ここで、請求項の記載中、「駆動力を阻害する」とは、駆動力を低下させること又は駆動力を増大させることを意味する。本発明のように、電気的な駆動力を阻害する原因となる上流側と下流側の液量の差を取り除き、両溶液槽間の圧力バランスをコントロールすることで、圧力勾配の発生によって試料溶液が流れにくい状態になるのを防止できる。また、本発明では、試料溶液に流速を加えるのではなく、液量を調整することで、純粋に電気浸透流又は電気泳動の作用のみによって試料を駆動できるようにしているので、試料溶液中の物質が過度の流速によって破壊したりするのを防止できる。
【0009】
本発明の請求項2による流動装置は、請求項1において、前記駆動力を阻害する圧力が生じているか否かを判定する判定手段を備えることを特徴とする。これにより、より正確なコントロールが可能になる。
【0010】
なお、請求項1に記載の構成では、判定手段を必ずしも設ける必要はなく、予め定められた手順を液量調整手段に実行させる構成としてもよい。
【0011】
本発明の請求項3による流動装置は、請求項2において、前記判定手段は、前記1対の溶液槽又は流路内で検知される試料溶液の圧力に基づいて、前記判定を行うことを特徴とする。
【0012】
本発明の請求項4による流動装置は、請求項1〜3のいずれか1項において、前記液量調整手段は、下流側の前記溶液槽の試料溶液を吸引し、又は、上流側の前記溶液槽に試料溶液を注入することを特徴とする。
【0013】
このように、流路に直接注入、吸引するのでなく、溶液槽を介して行うことで、注入、吸引時の圧力や流速が、電気浸透流又は電気泳動の駆動力に影響するのを防止でき、また細胞等の試料の破壊も防止できる。
【0014】
本発明の請求項5による流動装置は、請求項1〜4のいずれか1項において、前記駆動手段によって駆動される試料溶液中の細胞を、前記流路中で破砕する細胞破砕部を備えることを特徴とする。
【0015】
本発明の請求項10による流動装置は、請求項1〜5のいずれか1項において、前記流路基板を冷却する冷却手段を備えることを特徴とする。これによれば、流路基板が冷却されるので、流路内の液体の蒸発が抑えられ、長時間の作業等が可能である。
【0016】
前記冷却手段は、ペルチェ素子であることが好ましい。また、前記ペルチェ素子は、その吸熱面が前記流路基板の底面と接するように配置されることが好ましい。また、前記ペルチェ素子の放熱面を冷却する第2の冷却手段を設けることが好ましい。
【0017】
本発明の請求項10による流動方法は、少なくとも1対の溶液槽及び前記1対の溶液槽を連通する流路を凹状に形成した流路基板と、前記1対の溶液槽又は前記流路中に導入された試料溶液を、電気浸透流又は電気泳動により、前記溶液槽の一方から他方に向かって駆動する駆動手段と、を備えた流動装置において、前記試料溶液を流動させる方法であって、前記駆動中に生じる前記1対の溶液槽及び流路内での試料溶液量の差によって、前記駆動手段の駆動力を阻害する圧力が生じないように、試料溶液を部分的に注入又は除去することを特徴とする。
【0018】
上記流動方法において前記流路基板をペルチェ素子等により冷却し前記試料溶液の蒸発を抑えることが好ましい。
【発明の効果】
【0019】
本発明によれば、流路中で試料溶液が滞留しないように駆動することができる。
【発明を実施するための最良の形態】
【0020】
次に、図面を参照して本発明の実施の形態について説明する。
【0021】
〈第1の実施の形態〉
【0022】
図1は第1の実施の形態に係る細胞破砕装置の機能ブロック図、図2(a)は本実施の形態に係る流路基板1の平面図、同図(b)は(a)の流路基板の積層構成を示す図、図3は図2(a)のI−I線断面図、図4は本実施の形態に係る液量調整装置を示す概略図、図5は液量調整装置のポンプを示す図、図6は液量調整装置のマイクロピペットを示す図、図7はマイクロピペット及び圧力センサ7の配置位置を示す図である。
【0023】
第1の実施の形態では、本発明の一例としての流動装置を、微量の細胞を破砕するための細胞破砕装置として構成している。細胞破砕装置は、図1に示すように、流路基板1と、駆動電圧印加装置52と、破砕電圧印加装置53と、圧力センサ7と、コントローラ8と、液量調整装置6と、を備える。
【0024】
流路基板1は、図2(b)に示すように、膜状電極14及び感光性樹脂層12をガラス製の支持体11に順に積層して形成されている。
【0025】
支持体11は、膜状電極や感光性樹脂層12を支持する板状の支持体である。本実施形態では、支持体11として、長さ20mm、幅10mm、厚さ1mmの市販の板状の硼珪酸ガラス(商品名:パイレックス(登録商標))を用いる。
【0026】
膜状電極14は、支持体11に所定のパターンで形成されており、これにより後述する1対の駆動用電極51,51及び1対の破砕用電極56,56を構成している。夫々の電極51,51,56,56は、互いに分離し、かつ、支持体11の端部まで延びて当該端部で外部電極と接続可能に形成されている。
【0027】
なお、図2(a)には、分かりやすくするために、膜状電極の形成領域をハッチングで示している。このうち、破線のハッチングは感光性樹脂層12の下部に形成されている部分を示し、実線のハッチングは膜状電極が露出している部分を示す。本実施の形態では、レジスト等により支持体11にマスクパターンを形成した後、スパッタリングによりTiを下地として表面をPtの反応保護膜で覆った二層構造の膜状電極を形成している(図2(b)参照)。このように、Tiを下地とすることで支持体11との密着性を向上させることができ、Ptで覆うことで、試料溶液にさらされた際の電極反応を抑制できる。
【0028】
感光性樹脂層12は、感光性樹脂を光反応させることで形成されたものであり、支持体11表面に所定の2次元パターンが所定の厚みをもって形成されている。この感光性樹脂層12の形成部分と未形成部分との間の厚みの差によって、流路基板1表面に、試料溶液を収容する凹部(後述する)2が形成される。本実施の形態では、化薬マイクロケム社製のネガ型フォトレジスト(商品名:SU−8)を支持体11にスピンコータで塗布し、パターンマスクを介して紫外光を露光し、現像液で未硬化部分を溶解、除去することで、厚さ25μmの感光性樹脂層12を形成している。
【0029】
次に、凹部2の構成について説明する。図2(a)では、凹部2は、紙面で左右対称に配された平面視略三角状の溶液槽21,21と、これらの溶液槽21,21をつなぐ流路23と、から構成されている。
【0030】
溶液槽21,21は、試料溶液を投入又は回収するために用いられる。これら溶液槽21,21の形成領域には、1対の駆動用電極51,51が夫々形成され、表面に露出しており、溶液槽21,21の底面を構成している。1対の駆動用電極51,51は、駆動電圧印加装置52からの電力供給を受けて、試料溶液の駆動力となる電場を形成するための駆動電圧を印加する。この駆動電圧としては、直流電圧(例えば、30V)を印加する。
【0031】
流路23には、流路方向の途中に流路幅を狭くする形状の狭幅部55が形成されている。図2に示す狭幅部55は、流路壁が突出することで形成されたものであり、最も流路幅の狭くなった部分では破砕対象の細胞の径よりも小さくなっている(図3参照)。また、狭幅部55の近傍であって、その最も流路幅の狭くなった部分よりも上流側に、1対の破砕用電極56,56が流路方向に沿って並んで形成されており、破砕電圧印加装置53からの電力供給を受けて、細胞破砕用の高周波電圧(例えば、0.1〜1MHz)を印加する。
【0032】
なお、本実施の形態では、上記流路23は、幅が、狭幅部55を除いて20μmに設定されており、深さが25μmとなっている。
【0033】
駆動電圧印加装置52は、上述のように駆動用電極51,51に駆動電圧を供給するものであり、駆動用電極51,51と共に駆動手段を構成する。また、破砕電圧印加装置53は、破砕用電極56,56に細胞破砕用の高周波電圧を供給するものであり、狭幅部55、破砕用電極56,56と共に細胞破砕部を構成する。
【0034】
圧力センサ7は、本実施の形態では、試料溶液が流入する下流側の溶液槽21内部に設けられ、流路23との接続口近傍における試料溶液の流入圧を検出する。本実施の形態では、感圧弾性素子としてダイアフラムを溶液槽21内部に設置し、その機械信号を電気信号に変換して後述するコントローラ8に出力し、流入圧を演算する。図7には、感圧弾性素子の配置位置を示す。
【0035】
コントローラ8は、圧力センサ7から入力される試料溶液の流入圧情報に基づき、上記駆動電圧の印加によって生じた駆動力が阻害されているか否かを判定し、駆動力が阻害されている状態と判定した場合には、試料溶液の吸引又は注入指令を液量調整装置6に出力する。具体的には、本実施の形態では、流入圧が閾値以上であるか否かを判定し、閾値未満である場合に駆動力が阻害されていると判定する。そして、流入圧の閾値との差分と、吸引量又は注入量と、の予め定めた対応関係に基づき吸引量又は注入量を決定し、決定した量の吸引又は注入を行うための液量調整装置6の駆動量(本実施の形態では駆動角度)を算出し、その駆動量に応じた駆動信号を液量調整装置6に出力する。上記流入圧の閾値や、上記差分と吸引量又は注入量との対応関係は、実験又はシミュレーションにより予め求める。
【0036】
以上のコントローラ8が判定手段に相当する。なお、コントローラ8は、本実施形態ではコンピュータで構成され、上記閾値や対応関係をテーブルなどのデータとして記憶しており、プログラム化された上記一連の判定、算出処理を、試料溶液の駆動中に所定時間毎(例えば、10msec毎)のタイマ割込み処理によって実行する。
【0037】
液量調整装置6は、コントローラ8からの駆動信号を受けて、下流側の溶液槽21に収容された試料溶液を吸引する。本実施の形態では、図4に示すように、ポンプ駆動装置65と、カップリング64と、ポンプ63と、チューブ62と、マイクロピペット61と、を備えて構成される。
【0038】
ポンプ駆動装置65は、ステッピングモータ及びこれを駆動するためのドライバで構成され、コントローラ8から入力される駆動信号に基づいて、ステッピングモータの駆動軸が指定された角度分だけ回転する。その回転駆動力は、カップリング64を介して図5に示すポンプ63に伝達される。
【0039】
図5のポンプ63は、カップリング64に結合した接続軸63aが、ハウジング63b内部(図示せず)で回転可能に支持されており、ポンプ駆動装置65の回転に応じて回転する。接続軸63aの他端は、ハウジング63b内部において、ねじ機構を介してピストン63cに同軸上で接続している。そして、当該ピストン63cがねじ機構により接続軸63aの回転角に応じた分だけ軸方向に後退することで、シリンダー63dの中空部に充填された試料溶液の液圧を減じる構成となっている。
【0040】
なお、シリンダー63d先端には、チューブ62を介してマイクロピペット61が接続し、その先端(図ではキャピラリ61aが装着されている)が下流側の溶液槽21の内部に向けて配置されている(図7参照)。従って、上記のようにシリンダー63d内の液圧が低下すると、溶液槽21から試料溶液を吸引する。なお、図5中、符号63fは、シリンダー63dの中空部に貫通する注入孔であり、中空部に試料溶液を充填したり、空気抜きをするために用いる。また、符号63gは、ハウジング63bを固定する基台である。以上の液量調整装置6が液量調整手段に相当する。
【0041】
(細胞破砕装置の作用効果について)
次に、上記構成の細胞破砕装置の作用効果について説明する。
【0042】
細胞破砕装置の使用時には、流路基板1の駆動用電極51,51を駆動電圧印加装置52の電極と接続し、動作可能な状態にする。そして、破砕対象の細胞を含む試料溶液を、流路基板1の一方の溶液槽21に投入する。この状態で、駆動電圧印加装置52を電源オンし、1対の駆動用電極51,51に駆動電圧を印加する。本使用例では、紙面左側の溶液槽21に試料溶液を導入し、その溶液槽21の駆動用電極51を正極、他方を負極として直流電圧を印加することで、正極側から負極側に向かう電気浸透流を発生させる。
【0043】
この電気浸透流によって、試料溶液中の細胞が正極側から負極側に運ばれるが、駆動電圧を印加し続けると、試料溶液自体の移動によって徐々に正極側と負極側との間で液量に差が生じ、負極側の水位が正極側よりも若干高くなる。ここで、本来、外力が働かない状態では、試料溶液を導入した正極側よりも負極側の水位が高まることは無い。しかし、駆動電圧を印加した状態では、負極側に移動した試料溶液が正極側に戻ろうとする力(圧力)に対し、正極側から負極側へ向かう駆動力が働くため、試料溶液が負極側にとどまり水位に差が生じ、この結果、負極側で高く、正極側で低い圧力勾配が生じる。
【0044】
そして、水位が高くなり、この圧力と駆動力とが均衡してくると、電気浸透流の流速が低下し、細胞が流れにくくなる。この状態は、コントローラ8によって溶液槽21における流入圧の低下として検出され、液量調整装置6によって下流側の溶液槽21内の試料溶液が吸引される。これにより、下流側の試料溶液の圧力が低下し、駆動力の方が大きくなって、電気浸透流の流速が回復する。
【0045】
このようにして、電気浸透流が滞留することなく発生し、細胞が狭幅部55に至る。細胞が狭幅部55に挟み込まれて移動を停止した時点で、破砕電圧印加装置53によって高周波電圧を印加することで、細胞が通電破砕され、その内包物(核酸やタンパクなど)が試料溶液に溶出し、電気浸透流によって負極側の溶液槽21に運ばれる。
【0046】
以上のように、駆動力を阻害する圧力が生じたときに、液量調整装置6によって試料溶液を吸引することで、圧力変動の影響を除去することができ、純粋に電気浸透流の作用のみに基づく流体制御が可能になる。
【0047】
(変形例について)
なお、本発明の適用は上記実施の形態に限定されない。例えば、駆動電圧は直流電圧に限らず、交流電圧を印加し、誘電泳動によって試料溶液及びこれに含まれる細胞を移動させる場合にも、本発明を適用できる。
【0048】
また、駆動力を阻害する圧力が生じているか否かは、圧力センサ7によって流入圧を計測し、これに基づいて判定する場合に限られず、例えば、流量に基づいて判定したり、下流側の溶液槽21内の水位や液量に基づいて判定したりしてもよい。
【0049】
また、圧力センサ7を用いた場合にも、下流側の溶液槽21の流入圧を常時検出し、閾値を下回っているか否かを判定するのに限られず、例えば、上流側と下流側の溶液槽21,21双方に圧力センサ7を設け、流入圧と流出圧を計測し、その差分に基づいて判定してもよい。さらに、圧力等の情報をフィードバックさせずに、例えば、駆動前に定まる情報(流速や駆動電圧などの駆動条件や試料溶液の種類、流す量等)に応じ、予め定めたシーケンスで吸引動作を行うようにしてもよい。
【0050】
また、圧力センサ7等を用いなくても、例えば、流路23内を流れる細胞を顕微鏡に取り付けられたカメラで撮影し、そのカメラ画像(動画情報)に基づき画像解析によって細胞の移動する速度を検出し、理論値と比較することによっても、駆動力を阻害する圧力が生じているか否かを判定できる。この場合、例えば、理論値より移動速度が遅く、許容範囲外ならば、上流側及び下流側に設けた2つのマイクロピペット61を駆動し、圧力による阻害成分を除去するようにしてもよい。
【0051】
また、マイクロピペット61を下流側の溶液槽21内に挿入した状態で固定する必要はなく、例えば、マイクロピペット61をXYテーブルに載せて移動可能に設置してもよい。この場合には、駆動力を阻害する圧力が過大となっている部分に移動させて吸引することができ、より細かなコントロールが可能になる。このほか、液量の調整は吸引する場合に限られず、上流側と下流側の圧力バランスをコントロールできれば、例えば凹部2中の水位の低くなった部分に試料溶液を注入してもよい。なお、この場合には、細胞を含まない状態の試料溶液を注入する。
【0052】
また、駆動用電極51,51や破砕用電極56,56は、膜状電極として支持体11に一体形成するのに限らず、例えばワイヤ状の電極として構成し、流路23に挿入して電圧を印加するようにしてもよい。また、破砕用電極56,56は必ずしも必要でなく、破砕対象となる細胞によって、あるいは、流速が速い場合等には、破砕用の電圧を印加することなく、狭幅部55への衝突作用のみで細胞を破砕させることもできる。また、狭幅部55も上記形状のものに限られず、例えば、流路23の対向する側壁の一方のみから突出する形状のもの、側壁と別体形成されるものであってもよい。
【0053】
また、流路23や溶液槽21,21の配置は、実施の形態に示すものに限定されず、例えば、流路23が複数並設されるものや、細胞を破砕する以外の作用を果たす部分を破砕用電極56,56や狭幅部55の代わりに又は追加で設けたものでもよい。
【0054】
また、流路基板1の構成材料は、上記実施の形態に示すものに限定されない。
【0055】
例えば、支持体11には、支持体として必要な強度を有する材料であれば用いることができるが、なお、ガラス(硼珪酸ガラス、石英ガラス等)の他、例えば、プラスチック(ポリスチレン、ポリメチルメタクリレート、ポリスルホン、ポリエステル等)やガラス繊維とプラスチックの複合材も用いることができる。
【0056】
また、膜状電極には、上記材料に限らず一般的な電極材料を用いることができるが、表面部分はPt、Au、Ag等の比較的標準電極電位の高い(正の値を持つような)材料で構成すると、試料溶液にさらした際の電解腐食を防止できるので好ましい。また、ITO(Indium Tin Oxide)等の透明電極を用いると、流路基板1の透明性が維持できるので、流路基板1の光学的解析を行う場合等に好適である。また、スパッタリングにより形成することで、支持体11との密着性を高めることができるが、これに限らず、化学蒸着やイオンプレーティングその他の物理蒸着によって形成することもできる。
【0057】
感光性樹脂としては、上記実施の形態で示した光を照射した部分が硬化するネガ型の感光性樹脂に限定されず、光を照射した部分が可溶性になるポジ型の感光性樹脂も用いることができる。但し、層の厚さや強度を確保する観点からは、ネガ型の感光性樹脂であって、光硬化時に重合反応により架橋ポリマーとなるものが好ましい。重合反応は、ラジカル重合、アニオン重合、カチオン重合等のいずれであってもよい。架橋ポリマーを形成する感光性樹脂としては、モノマー及び/又はオリゴマーを主成分とし、さらに光重合開始剤や各種添加剤(安定剤、フィラー、顔料等)を含有する公知の感光性樹脂を用いることができる。このモノマーとしては、例えば、ジエチレングリコールジ(メタ)アクリレートやトリメチロールプロパントリ(メタ)アクリレート等の(メタ)アクリル系モノマーを用いることができる。また、オリゴマーとしては、例えば、エポキシ樹脂の(メタ)アクリル酸エステル、ポリエーテル樹脂の(メタ)アクリル酸エステル、分子末端に(メタ)アクリロイル基を有するポリウレタン樹脂を用いることができる。光重合開始剤としては、例えば、ベンゾイン系光重合開始剤(ベンゾイン、ベンゾインメチルエーテル等)、アセトフェノン系光重合開始剤(2−2′−ジエトキシアセトフェノン等)を用いることができる。
【0058】
〈第2の実施の形態〉
【0059】
第2の実施の形態は、流動装置において上述の流路基板がペルチェ素子等の冷却手段を備えたものである。
【0060】
図8は第2の実施の形態の流動装置の機能ブロック図、図9は流動装置の外観を示す図((a)は正面図、(b)は平面図、(c)は側面図である。)、図10は本実施の形態で用いるペルチェ素子の概略構成を示す図である。
【0061】
本実施の形態の流動装置は、図9(a)〜(c)に示すように、L字板状の基台50に支持板33bが水平に取り付けられており、この支持板33bの上面側に平板状のペルチェ素子31が固定され、そのペルチェ素子31の上面に密着させるようにして流路基板1が載置されている。また、支持板33b上にはコネクタ41が取り付けられており、流路基板1はこのコネクタ41の接続口に挿入されている。このコネクタ41は、反対側の接続口41bにて図8に示す電圧印加装置42と接続可能になっており、流路基板1と電圧印加装置42とを電気的に接続する。また、支持板33bの下方には水冷器本体33aが取り付けられている。
【0062】
流路基板1は、平面に沿って流路23を形成したものであり、電圧を印加することで当該流路23に導入された試料溶液が流動可能に構成されており、例えば、図1,図2と同様に構成される。
【0063】
ペルチェ素子31は、ペルチェ効果によって吸熱又は放熱する熱電変換素子であり、本実施の形態では図10に示すような構成であり、表面及び裏面のいずれか一方が吸熱面となり、他方の面が放熱面となるペルチェ素子を用いる。図10はペルチェ素子31の一部を示し、そのペルチェ素子31は、一対の基板31a,31aの間に、複数のP型熱電半導体31p及びN型熱電半導体31nを配置し、これらを基板31aに積層される銅電極31cで交互に直列接続したものである。図10に示すようにN型熱電半導体31nからP型熱電半導体31pに向かって電流を流すと、紙面上側に向く面が吸熱面となって、紙面下側に向く面が放熱面となる。一方、逆方向に電流を流すと、紙面上側に向く面が放熱面となり、紙面下側に向く面が吸熱面となる。流動装置では、上記のように、ペルチェ素子31を流路基板1に密着させ、流路基板1の温度を調整する。
【0064】
また、ペルチェ素子31の上面側には図9(b)のように温度センサ34が貼着されており、流路基板1との接触面の温度が検出可能になっている。温度センサ34は、例えば温度に応じて抵抗が変化するサーミスタを用いる。なお、使用する温度センサの種類はこれに限定されない。
【0065】
また、ペルチェ素子31は、1対の導線31b,31bを介して図8に示すペルチェコントローラ32に電気的に接続されており、このペルチェコントローラ32からの駆動電流を受けて目的の温度に調整される。ペルチェコントローラ32は、図8のように、温度センサ34の検出信号が入力されるようになっており、これに基づき流路基板1を目的の温度にするための駆動電流の大きさを算出し、当該大きさに調整した駆動電流を出力する。このペルチェ素子31が冷却手段に相当する。
【0066】
水冷器33は、図9(a)〜(c)のように、金属製の支持板33bと、支持板33bの下面側に取り付けられた水冷器本体33aと、からなる。水冷器本体33aは、金属製のブロック内部に冷却液の通路が設けられており、流入口33cから導入された冷却液が当該冷却液通路を通って流出口33dから排出されるようになっている。この冷却液は、水道から直接引き込んでもよいし、さらにポンプやラジエータなどを備えた2次冷却装置を設け、当該2次冷却装置で冷却した冷却液を循環させてもよい。この水冷器33が第2の冷却手段に相当する。
【0067】
以上のような構成の流動装置を使用するときには、流路基板1をコネクタ41に装着し、電圧印加装置42を電源オンにし、流路基板1の駆動用電極51,51に駆動電圧を印加して凹部2に導入した試料溶液を駆動する。これと共に、ペルチェコントローラ32も電源オンにする。ペルチェコントローラ32はペルチェ素子31の吸熱面が予め設定した温度を上回っていることを検出すると、ペルチェ素子31を駆動し、流路基板1を冷却する。これにより、流路基板1が予め設定した温度以下に保たれるので、試料溶液の蒸発が抑えられる。このため、作業に長時間を要する場合などに、作業の途中で試料溶液が干上がったりすることなく、ある程度の溶液量を維持して作業をすることができる。この場合、流路基板1の破砕用電極56,56に図1の破砕電圧印加装置53と同様の装置から高周波電圧を印加して細胞を破砕できる。
【0068】
なお、本発明は第2の実施の形態に限定されない。例えば、流路基板1を冷却するための手段は、ペルチェ素子31に限らず、例えば、流路基板にヒートシンクを接触するように配置し、このヒートシンクに向かってファンから送風することで、冷却させてもよい。但し、空冷時には流路基板1に風が当たらないようにしないと、試料溶液がかえって乾燥しやすくなるおそれがある。この点、ペルチェ素子31を用いることが好ましい。また、ペルチェ素子31を用いると、高精度な冷却が可能であるので、温度感受性の高い生体高分子を取り扱う場合にも限られた温度範囲に保つことができ、また装置を小型化でき、静穏かつ無振動で動作可能であるので好適である。
【0069】
また、図9(a)〜(c)の流動装置は、流路基板1を1枚だけ載せる構成となっているが、コネクタ41を複数設け、複数の流路基板1が同時に載置できる構成としてもよい。この場合、ペルチェ素子31を複数設け、流路基板1毎に冷却してもよいし、単一のペルチェ素子31に複数の流路基板1を載置してもよい。ペルチェ素子31を複数設け、ペルチェ素子31毎にコントロール可能にすれば、各流路基板1を高精度に冷却できる。
【0070】
また、ペルチェ素子31と流路基板1の密着性を高めるべく、流路基板1を下方に押さえつける機構をコネクタ41に設けてもよいし、シリコングリースを塗布してもよい。
【0071】
また、流路基板1も上記構成に限定されない。例えば、流路23は、2以上としてもよい。また、第2の実施の形態では、温度センサ34をペルチェ素子31側に設けているが、流路基板1の下面に設けてもよいし、流路基板1の凹部2に一体形成させてもよい。さらに、流路基板1とペルチェ素子31を1チップに一体的に形成させてもよい。
【実施例】
【0072】
次に、本発明を実施例により更に具体的に説明するが、本発明は本実施例に限定されるものではない。
【0073】
本実施例は、図2と同様の構成の流路基板を作製し、シリカビーズを固定した流路内へDNA溶液を導入しDNAの検出を行ったものである。すなわち、流路基板の幅20μmの微細流路中に直径10μmの多孔質シリカビーズを引っ掛けて固定化し、シアニン系核酸染色試薬(Invitrogen社製 Y3601)で染色したDNA断片溶液サンプルを用いて吸着テストを実施した。DNA断片溶液の導入前後でのシリカビーズの状態を蛍光顕微鏡で観察し、その明るさをグレースケールから測定した。シリカビーズの明るさは、ビーズ表面へのDNA吸着量を示している。
【0074】
断片長さが、(1)48kbp(bpはbase pairで塩基対の数を示し、DNAの長さに相当する)、(2)2〜33kbp、(3)0.1〜1.3kbpのDNA断片を含む3種類のサンプルをそれぞれ等量ずつ流路基板に導入してテストした結果を図11に示す。図11において横軸は導入したDNA断片サンプルの長さ、縦軸はそれぞれのDNA断片溶液サンプルを導入した後のビーズの明るさを、DNA断片の入ってないブランク溶液を導入した場合のビーズの明るさで割った最大蛍光強度比である。
【0075】
図11によると、DNAの長さが最も短い(3)のDNA断片を含むサンプルで急激な感度の増加が観察され、上記流路基板が、特にDNA断片長さの短い領域(1.3kbp以下)のDNA断片の検出に適していることがわかった。
【0076】
以上のように、本発明を実施するための最良の形態及び実施例について説明したが、本発明はこれらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能であり、かかる変形例も本発明の範囲内である。
【図面の簡単な説明】
【0077】
【図1】第1の実施の形態に係る細胞破砕装置の機能ブロック図である。
【図2】第1の実施の形態に係る流路基板の平面図(a)、及び図2(a)の流路基板の積層構成を示す図(b)である。
【図3】図2(a)のI−I線断面図である。
【図4】第1の実施の形態に係る液量調整装置を示す概略図である。
【図5】図4の液量調整装置のポンプを示す図である。
【図6】図4の液量調整装置のマイクロピペットを示す図である。
【図7】第1の実施の形態におけるマイクロピペット及び圧力センサの配置位置を示す図である。
【図8】第2の実施の形態の流動装置の機能ブロック図である。
【図9】図8の流動装置の外観を示す図((a)は正面図、(b)は平面図、(c)は側面図である。)である。
【図10】第2の実施の形態で用いるペルチェ素子の概略構成を示す図である。
【図11】本実施例においてテストしたDNA断片サンプルの長さと、最大蛍光強度比との関係を示すグラフである。
【符号の説明】
【0078】
1 流路基板
2 凹部
6 液量調整装置
7 圧力センサ
8 コントローラ
11 支持体
12 感光性樹脂層
21 溶液槽
23 流路
51 駆動用電極
52 駆動電圧印加装置
53 破砕電圧印加装置
55 狭幅部
56 破砕用電極
61 マイクロピペット
62 チューブ
63 ポンプ
64 カップリング
65 ポンプ駆動装置
31 ペルチェ素子
33 水冷器

【特許請求の範囲】
【請求項1】
少なくとも1対の溶液槽及び前記1対の溶液槽を連通する流路を凹状に形成した流路基板と、
前記1対の溶液槽又は前記流路中に導入された試料溶液を、電気浸透流又は電気泳動により、前記溶液槽の一方から他方に向かって駆動する駆動手段と、
前記駆動中に生じる前記1対の溶液槽及び流路内での試料溶液量の差によって、前記駆動手段の駆動力を阻害する圧力が生じないように、試料溶液を部分的に注入又は除去する液量調整手段と、を備えたことを特徴とする流動装置。
【請求項2】
前記駆動力を阻害する圧力が生じているか否かを判定する判定手段を備えることを特徴とする請求項1に記載の流動装置。
【請求項3】
前記判定手段は、前記1対の溶液槽又は流路内で検知される試料溶液の圧力に基づいて、前記判定を行うことを特徴とする請求項2に記載の流動装置。
【請求項4】
前記液量調整手段は、下流側の前記溶液槽の試料溶液を吸引し、又は、上流側の前記溶液槽に試料溶液を注入することを特徴とする請求項1乃至3のいずれか1項に記載の流動装置。
【請求項5】
前記駆動手段によって駆動される試料溶液中の細胞を、前記流路中で破砕する細胞破砕部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の流動装置。
【請求項6】
前記流路基板を冷却する冷却手段を備えることを特徴とする請求項1乃至5のいずれか1項に記載の流動装置。
【請求項7】
前記冷却手段は、ペルチェ素子であることを特徴とする請求項6に記載の流動装置。
【請求項8】
前記ペルチェ素子は、その吸熱面が前記流路基板の底面と接するように配置されることを特徴とする請求項7に記載の流動装置。
【請求項9】
前記ペルチェ素子の放熱面を冷却する第2の冷却手段を設けたことを特徴とする請求項7又は8に記載の流動装置。
【請求項10】
少なくとも1対の溶液槽及び前記1対の溶液槽を連通する流路を凹状に形成した流路基板と、前記1対の溶液槽又は前記流路中に導入された試料溶液を、電気浸透流又は電気泳動により、前記溶液槽の一方から他方に向かって駆動する駆動手段と、を備えた流動装置において、前記試料溶液を流動させる方法であって、
前記駆動中に生じる前記1対の溶液槽及び流路内での試料溶液量の差によって、前記駆動手段の駆動力を阻害する圧力が生じないように、試料溶液を部分的に注入又は除去することを特徴とする流動方法。
【請求項11】
前記流路基板を冷却し前記試料溶液の蒸発を抑えることを特徴とする請求項10に記載の流動方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2008−261833(P2008−261833A)
【公開日】平成20年10月30日(2008.10.30)
【国際特許分類】
【出願番号】特願2007−171769(P2007−171769)
【出願日】平成19年6月29日(2007.6.29)
【出願人】(000004204)日本精工株式会社 (8,378)
【Fターム(参考)】