説明

浸漬ノズル

【課題】浸漬ノズルの吐出孔から流出する溶鋼流を均一化,整流化し,ひいては浸漬ノズル近傍でのモールドパウダーの巻き込みを抑制する浸漬ノズルを提供する。
【解決手段】上端に設けられた溶鋼の導入部から溶鋼が下方に通過する上下縦方向に管状の直胴部と,この直胴部の下部に設けられ,溶鋼を直胴部の側面から横方向に吐出する左右対称となる一対の吐出孔とを有する浸漬ノズルにおいて,浸漬ノズルの中心と吐出孔の中心とを通る浸漬ノズルの縦方向断面の吐出孔部内孔の形状が,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が,浸漬ノズル縦方向断面の径によって表される吐出孔の内側形状を,少なくとも吐出孔内の一部又は全部に有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は,鋳型に溶鋼を注入する連続鋳造用の浸漬ノズル,とくにその吐出孔の構造に関する。
【背景技術】
【0002】
溶鋼の連続鋳造において,溶鋼を注入する鋳型内の溶鋼流の状態は,鋼の品質に大きな影響を及ぼすことから,その流動状態を制御することは,その流動状態に直接影響を及ぼす浸漬ノズルの構造とも相俟って,連続鋳造操業にとっては重要な技術事項である。
【0003】
浸漬ノズルの内孔の構造,とくにその吐出孔の構造が溶鋼流の状態に大きな影響を及ぼす。
【0004】
吐出孔からの溶鋼流の状態によっては,鋳型内での流動状態が安定せず,鋳型内のさまざまな部位で反転流,その他の局部的な偏流が,時間経過に伴って絶えず変化する等の溶鋼流の乱れと,それらによる「波打ち」,「うねり」,「流動方向の転換」等の湯面変動が不規則に発生して,鋳片の端部付近では介在物が十分に浮上しなかったり,鋳片表面へのモールドパウダーの均一な移動がなされなかったり,モールドパウダーや介在物の鋳片内部への不均一な巻き込み等も発生する。
【0005】
これらに加え,溶鋼の凝固過程におけるシェルの形成に必要若しくは理想的な鋳型内溶鋼の温度分布が得られにくい等の問題も生じている。これらにより,鋳片の品質への悪影響やブレークアウトの危険性等も高まる。
【0006】
このような問題の解決のためには,流速をできる限り均一化すること,偏流を生じさせないこと等が必要である。しかし,単に吐出孔の角度や吐出孔の面積等の調整のみではモールドパウダーを巻き込まないような安定した溶鋼流を得ることができない。
【0007】
この対策として,浸漬ノズルの吐出孔から流出する溶鋼の流れを,その浸漬ノズルの吐出孔の角度を上方向に設定することで,鋳型端部付近の位置まで湯面上付近の流動を得ようとする試みがなされてきた。しかし,直胴部の壁の一部に開けた吐出孔の角度をその直胴部の肉厚の範囲内で変化させても,十分な安定流動を得ることはできない。
【0008】
また,溶鋼流を制御する手段として,例えば特許文献1には吐出孔の形状を下端が円筒の内径と等しい弦であって上方が円筒の内周の半分の弧である半円形としたものが提案されている。 しかしながら,このような吐出孔の溶鋼流出方向の断面形状を円形等にしただけでは,吐出孔から放出される際の溶鋼流の乱れや,その断面における速度の不均一性を解決することができず,依然として,前述のようなモールドパウダー巻き込み,その他の諸問題を解決することはできない。
【0009】
また,特許文献2には,浸漬ノズルの吐出孔の形状を,横長の矩形にすること,またその矩形の縦横比を1.01 〜1.20にすること等が提案されている。しかしながら,このような吐出孔の溶鋼流出方向の断面形状を矩形にしただけ,あるいは,矩形の縦横比を特定しただけでは,吐出孔から放出される際の溶鋼流の乱れやその断面における速度の不均一性を解決することができず,依然として,モールドパウダー巻き込み等の諸問題を解決することはできない。
【0010】
さらに,特許文献3には,鋳物製品のペンシルタイプ欠陥を防止するために,吐出孔に連通する中心穴が,ノズル構造体の周縁まで延び,かつ,前記出口ポートの下側表面部分を形成する上方に向って皿形の底面で終わっており,それにより上方に向って皿形の底面を横切って流れる溶融した鋼が前記ノズル構造体から外側上方に向って案内されるようにした溶融鋼導入用没入ノズル,および,前記出口ポートが下方に向って傾斜したリップによって一部が区画形成された上側部分を有し,それにより前記リップを横切る溶融鋼の流れが前記上方に向って皿形の底面に沿って溶融鋼の出てくる流れの中に外側下方に向って案内されるようにしている没入ノズル(「浸漬ノズル」と同義)が示されている。 しかしながら,この場合は,アルゴンガスの滞留等をなくすためもあって,溶鋼流を特定の方向に集中させることを意図しており,モールドパウダー巻き込み等の諸問題を解決するための吐出孔から流出する溶鋼流の均一化や整流化の効果は期待できない。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】実開平4−134251号公報
【特許文献2】特開2004−209512号公報
【特許文献3】特開平11−291026号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明の課題は,浸漬ノズルの吐出孔から流出する溶鋼流を均一化,整流化し,ひいては浸漬ノズル近傍でのモールドパウダーの巻き込み等を抑制することにある。
【課題を解決するための手段】
【0013】
本発明は,溶鋼の連続鋳造の鋳型に溶鋼を注入する連続鋳造において,浸漬ノズル近傍でのモールドパウダーの溶鋼内への巻き込み等は,浸漬ノズル吐出孔から流出する溶鋼流が,溶鋼の放出点,すなわち,浸漬ノズル外周側吐出孔の外側端部において不均一であることが大きな影響を及ぼしていること,そしてこのような吐出流によって,モールド内,特に溶鋼上端面付近の上下方向での流速分布幅が大きい場合に発生しやすいという本発明者らによる新規知見に基づく。
【0014】
この知見によるモールドパウダーの溶鋼内への巻き込みを抑制し,または,小さくするためには,この浸漬ノズル吐出孔から流出する溶鋼流の均一化が必要である。この均一化は溶鋼流の速さと方向を要素とする速度(以下単に「溶鋼流速」と称する。)によって評価できる。
【0015】
本発明者らは,連続鋳造におけるノズル等の形状等と溶鋼流の挙動に関して,流体力学等の知見及びコンピュータソフトによるシミュレーションと実操業での検証とを重ねてきた結果,浸漬ノズルの吐出孔を以下に示す特定形状および構造にすることで前記課題を解決できることがわかった。
【0016】
すなわち,本発明は以下の第1から第4に記載の事項を特徴とする浸漬ノズルである。
【0017】
その第1の解決手段は,上端に設けられた溶鋼の導入部から溶鋼が下方に通過する上下縦方向に管状の直胴部と,この直胴部の下部に設けられ,溶鋼を直胴部の側面から横方向に吐出する左右対称となる一対の吐出孔とを有する浸漬ノズルにおいて,浸漬ノズルの中心と吐出孔の中心とを通る浸漬ノズルの縦方向断面の吐出孔部内孔の形状が,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が,次式1のDzの浸漬ノズル縦方向断面の径によって表される吐出孔の内側形状を,少なくとも吐出孔内の一部又は全部に有することを特徴とする。
【0018】

ここで,式1の記号は以下の事項を示す。
L : 浸漬ノズルの壁の厚さ,
Di : 吐出孔の起点(浸漬ノズル内孔壁との境界点,以下同じ。)の吐出孔径,
Do : 吐出孔の端部(浸漬ノズル外周壁との境界点,以下同じ。)の吐出孔径,
Z : 吐出孔の起点から吐出孔の端部方向への任意の位置までの長さ
Dz : 前記Zの位置における吐出孔の浸漬ノズル縦方向断面の径
H : 下記式2によって表わされる

【0019】
さらに、nは,n ≧ 1.5である。
【0020】
その第2の解決手段は,吐出孔が浸漬ノズルの縦軸に対して垂直方向以外の浸漬ノズル縦方向の角度を有しており,前記角度を有する吐出孔の内孔は,前記第1の手段に記載の距離Zの位置における吐出孔の浸漬ノズルの縦方向断面形状を,距離Zの位置における前記角度に応じた縦方向長さ分を,漸次浸漬ノズルの縦軸に平行な方向に移動させた構造を有する。
【0021】
また第3の解決手段は,上端に設けられた溶鋼の導入部から溶鋼が下方に通過する上下縦方向に管状の直胴部と,この直胴部の下部に設けられ,溶鋼を直胴部の側面から横方向に吐出する左右対称となる一対の吐出孔とを有する浸漬ノズルにおいて,浸漬ノズルの中心と吐出孔の中心とを通る浸漬ノズルの縦方向断面の吐出孔部内孔の形状が,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が前記式1を満足する前記式1中のn値の異なる複数の曲線の組み合わせであって,前記曲線によって形成される形状を少なくとも吐出孔内の一部または全部に有することを特徴とする,浸漬ノズルである。
【0022】
さらに、第4の解決手段は,吐出孔が浸漬ノズルの縦軸に対して垂直方向以外の浸漬ノズル縦方向の角度を有しており,前記角度を有する吐出孔の内孔は,上記弟3の手段の距離Zの位置における吐出孔の浸漬ノズルの縦方向断面形状を,距離Zの位置における前記角度に応じた縦方向長さ分を,漸次浸漬ノズルの縦軸に平行な方向に移動させた構造を有する。
【発明の効果】
【0023】
本発明の浸漬ノズルを使用することで,吐出孔から流出する溶鋼流を均一化することができる。
【0024】
その結果,モールドパウダー等の巻き込みを抑制することができる。
【0025】
また,溶鋼流の乱れやそれに伴う淀み等が顕著に減少することから,そのような部分に発生しやすい鋼中介在物の吐出孔壁面付近への付着も抑制することができる。
【0026】
ひいては鋳片の品質を向上させることができる。また,モールドパウダー等の巻き込みによる浸漬ノズルの局部溶損による内孔を含む吐出孔付近の形状変化,それによる吐出流の変化や浸漬ノズルの低寿命化等をも抑制することができる。
【図面の簡単な説明】
【0027】
【図1】本発明の浸漬ノズルの縦方向断面図(イメージ)である。
【図2】図1のA−A視の断面図(イメージ)である。
【図3】図1のB−B視の断面図(中央断面図付きイメージ)である。 (a)は一例で,本実験例における形状でもある。 (b)は他の例(上端部横方向が直線状)である。
【図4】図1のa部の拡大断面図(イメージ)である。
【図5】吐出孔に,浸漬ノズル縦方向の角度がある場合(水平方向以外)の断面のシフト方法を示す図である(tanθ等)。
【図6】吐出孔に下向き20度の角度がある場合の本発明の吐出孔の,浸漬ノズル縦方向断面を示す図である。 (a)はn値=1.5,Di/Do比=2.0 (b)はn値=4.0,Di/Do比=2.0 (c)はn値=6.0,Di/Do比=2.0
【図7】実施例における比較例1の場合を示す。
【図8】実施例1の場合を示す。
【図9】比較例2の場合を示す。
【図10】比較例3の場合を示す。
【図11】実施例2の場合を示す。
【図12】比較例5の場合を示す。
【図13】実施例4の場合を示す。
【図14】実施例5の場合を示す。
【図15】実施例2の場合を示す。
【図16】実施例6の場合を示す。
【図17】実施例7の場合を示す。
【図18】実施例8の場合を示す。
【図19】比較例6の場合を示す。
【図20】実施例9のケ場合を示す。
【図21】実施例10の場合を示す。
【図22】実施例11の場合を示す。
【図23】実施例12の場合を示す。
【図24】実施例2の場合を示す。
【図25】図9に示す比較例2の縦軸のスケールを拡大した図である。
【図26】図11に示す実施例2の縦軸のスケールを拡大した図である。
【図27】比較例4の場合を示す。(図25,26と同じ縦軸スケール)
【図28】実施例3の場合を示す。(図25,26と同じ縦軸スケール)
【図29】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔の溶鋼出口の流動状態を示すイメージ図であり,比較例1の吐出孔ケースである。
【図30】図29内に流速に関する捕捉説明用図形及び文章を記入した図である。
【図31】コンピュータ・シミュレーションによる,浸漬ノズル内の底部と浸漬ノズル周辺の溶鋼の流動状態を示すイメージ図であり,比較例1の吐出孔ケースである。
【図32】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔の溶鋼出口の流動状態を示すイメージ図であり,実施例1の吐出孔ケースである。
【図33】図32内に流速に関する捕捉説明用図形を記入した図である。
【図34】コンピュータ・シミュレーションによる,浸漬ノズル内の底部と浸漬ノズル周辺の溶鋼の流動状態を示すイメージ図であり,実施例1の吐出孔ケースである。
【図35】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,モールド内の流動状態を示すイメージ図であり,比較例2のケースである。
【図36】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔の溶鋼出口の流動状態を示すイメージ図であり,比較例2の吐出孔ケースである。
【図37】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,モールド内の流動状態を示すイメージ図であり,比較例5のケースである。
【図38】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔の溶鋼出口の流動状態を示すイメージ図であり,比較例5の吐出孔ケースである。
【図39】コンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,モールド内の流動状態を示すイメージ図であり,実施例2のケースである。
【図40】実験例のコンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔の溶鋼出口の流動状態を示すイメージ図であり,実施例2の吐出孔ケースである。
【図41】従来技術の浸漬ノズルの縦方向断面図イメージである。実験例の比較例1(但し角度はゼロ度),比較例2(但し角度は20度),比較例4(但し角度は20度)の形状でもある。
【図42】図41の吐出孔部の拡大図(イメージ)である。
【図43】テーパーが2段の吐出孔部の拡大図(イメージ)である。
【発明を実施するための形態】
【0028】
以下に本発明の実施形態について説明する。
【0029】
本発明において,吐出孔内の溶鋼の溶鋼流の安定化,乱れの防止による整流化は,吐出孔内の溶鋼流動方向すなわち溶鋼流の進行方向(以下「後方」ともいう。)の位置とそれぞれの位置ごとの圧力分布によって決定付けられる。言い換えると,吐出孔起点とそこから後方の位置との溶鋼流内のエネルギー損失の推移の状態によって決定付けられるということである。
【0030】
浸漬ノズルの吐出孔を通過する溶鋼の流速を産み出すエネルギーは,基本的に溶鋼のヘッド高さに相当するものであることから,吐出孔起点から後方へ距離Zの位置における溶鋼の流速V(z)は,重力加速度をg,溶鋼のヘッド高さをH,流量係数をkとすると,
【0031】
V(z)=k(2g(H+Z))1/2 ………… 式3
で表される。
【0032】
そして,浸漬ノズルの吐出孔を通過する溶鋼の流量Qは,流速vと断面積Aの積であるから,吐出孔長さをLとし,吐出孔端部(浸漬ノズル外周側)における溶鋼の流速をv(L),吐出孔起点の断面積をA(L)とすると,
【0033】
Q=V(L)×A(L)=k(2g(H+L))1/2×A(L)……… 式4
で表される。
【0034】
また,吐出孔内のどの位置で吐出孔の溶鋼進行方向中心軸に対し垂直に断面をとっても流量Qは一定であることから,吐出孔起点から後方へ距離Zの位置における断面積A(z)は,Z点における溶鋼の流速をV(z)とすると,
【0035】
A(z)
=Q/V(z)=k(2g(H+L))1/2×A(L)/k(2g(H+Z))1/2
…… 式5
で表わされ,両辺をA(L)で割ると,
A(z)/A(L)=((H+L)/(H+Z))1/2 ……… 式6
となる。
【0036】
ここで,円周率をπ,吐出孔起点の径(直径)をDi,吐出孔端部の径(直径)をDo,吐出孔の起点から吐出孔の端部方向への距離Zの位置における吐出孔の径(直径)をDzとすると,A(z)=πDz/4、A(L)=πDo/4であるから,
【0037】
A(z)/A(L)
=(πDz/4)/(πDo/4)=((H+L)/(H+Z))1/2 … 式7
Dz/Do=((H+L)/(H+Z))1/2 … 式8
Dz=((H+L)/(H+Z))1/4×Do … 式9
となり,以下の関係が成り立つ。
ln(Dz)=(1/4)×ln((H+L)/(H+Z))+ln(Do) … 式10
【0038】
これによって,吐出孔の断面形状を当該式9を満たす形状とすることによって,エネルギー損失(圧損)を最小とすることができる。
【0039】
ここで, Hは浸漬ノズルの吐出孔方向に変換した流動においては,ほとんど無視できる程度に小さいことを本発明者らは見いだした。これは,溶鋼流量が浸漬ノズルの上端付近の流量制御装置で調整されていて,その制御装置より上方のヘッドはその流量制御装置で遮断されてゼロとみなすことができること,浸漬ノズル内(内孔)の溶鋼ヘッドはモールド上端部以下の長さについて生じ,この領域での溶鋼流は浸漬ノズル縦方向に流れるものの,浸漬ノズル底部に衝突してその後方向を変えて吐出孔に流出するので,絶えず圧力を相殺するような流動状態となっていること等の理由による。
【0040】
したがって,Hは上記の流動に関する式を基礎に,先の式2ように表す(変形する)ことができる。
【0041】
前記式10をグラフに示すと4次の曲線を描く。そして,この式10のグラフに相当する吐出孔の断面形状の場合に最も溶鋼の圧力損失を小さくできることになる。しかも,この式10に合致する形状では,吐出孔起点から後方に任意の距離Zの位置ごとに漸次(なだらかに)圧力が減少して,整流化された状態になることになる。(図1〜図6参照)
【0042】
本発明では,この式による効果を,コンピュータシミュレーションによる流体解析(実操業での高い再現性・相関性を確認しているもの)によりを行い,吐出孔端部の溶鋼が放出される部分における溶鋼の速度分布を求めた(後記実施例参照)。
【0043】
その結果,前記式10の吐出孔の断面形状によって,従来技術(吐出孔基点が内孔と吐出孔の溶鋼流出方向とが直線で交差する形状,図41〜図42参照)に対して顕著な溶鋼流の均一な状態を得ることができることを確認した。 このことは,言い換えると,浸漬ノズル内孔内を流下してきた溶鋼流のベクトルを吐出孔の方向に転換しつつ,吐出孔端部でエネルギー損失の少ないスムーズ(均一・一定)な溶鋼の流れを作り出すことができることを意味している。
【0044】
本発明ではさらに,上記の式に合致する場合の周辺をさらに検討した。具体的には,上記の式に合致する基本的かつ最良の場合としての式10における前記n値(次数ともいう)を変化させて,同様のコンピュータシミュレーションによって効果を確認した。
【0045】
その結果,前記次数が1.5以上(少なくとも6.0まで)で,4次と同様の顕著な効果を得ることができることを見出した。(図13〜図18参照)
【0046】
したがって,吐出孔内孔の構造が,吐出孔起点から吐出孔端部に向かうに伴い漸次縮径し,かつその縮径は,前記式10においてn=1.5以上の曲線形状であれば,均一化に関して,従来技術(浸漬ノズル内孔面と吐出孔内孔面とが直線状に交差する形状)に対して,顕著な効果を得ることができる。
【0047】
言い換えると,前記曲線はn=1.5以上の特定の次数のみで構成されていなくても,吐出孔起点から吐出孔端部に向かうに伴い漸次縮径することを前提にして,曲線が異なるnの値にしたがった複数の曲線から構成されていてもよいということでもある。
【0048】
なお,本発明者らはこのnにつき少なくとも6.0までは溶鋼流速の均一化効果に有意差がないことを実験により確認した(後記実施例参照)。
【0049】
また前記n値が2.0〜4.5までは同一で,最も高い効果が得られること,及び前記n値が6.0でのさらなる改善効果は認められず,むしろn値が6.0を越えると吐出孔起点付近の曲線が次第に鋭利になる傾向であるから(図6(a)〜図6(c)参照),実用上,前記nの値が6.0を越える構造を採用する必要性及びメリットは見いだせない。
【0050】
本発明ではまたさらに,Di/Do比の影響についても検討結果,前記Di/Do比が1.6から少なくとも2までは溶鋼流速の均一化効果が漸次高まることを実験により確認した(後記実施例,図20〜図24参照)。
【0051】
実用上,前記Di/Do比が2.0を越える構造は,浸漬ノズルとしての全長,浸漬深さ等に適切な範囲を超えた過剰な構造が必要となるので,モールド内の溶鋼凝固層(シェル)との干渉等の問題が生じる懸念もあり,現実的ではない。
【0052】
以下に、本発明の浸漬ノズルの製造方法について説明する。
【0053】
本発明の浸漬ノズルは,耐火原料に結合材を加えて混練したはい土を,吐出孔内壁面部分に本発明の所定形状の中子及びラバーモールドを設置してCIPにて一体として成形し,その後乾燥,焼成,研磨等の加工を行うという,浸漬ノズルの一般的なはい土構成と製造方法によって製造できる。
【0054】
吐出孔の内壁面部分を形成するためには,求める形状に成形した型を吐出孔内孔となる部分の成形用型(芯棒)に予め取り付けておき,所定の厚さのはい土を充填したラバーモールドで圧縮して成形し,成形時に吐出孔内孔形状を形成する方法を採ることができる。又は無垢の一体的な壁部として成形しておき,その後の工程で求める吐出孔内孔形状に加工する等の方法を採ることができる。
【実施例】
【0055】
図7から図28は,下記実施例におけるコンピュータ・シミュレーションによる吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフである。
【0056】
また、図29から図40は,各実施例におけるコンピュータ・シミュレーションによる,浸漬ノズル吐出孔から流出した溶鋼の,吐出孔端部,浸漬ノズル周辺およびモールド内の状態を示すイメージ図を示す。
【0057】
実施例A
本実施例では,この溶鋼流の安定性,スムーズさを評価する方法として,コンピュータシミュレーションによる流体解析を行った。
【0058】
まず,本発明の吐出孔形状(実施例1,図1,但し,吐出孔は下向き20度の図6(b)に示す断面)を,従来の技術の吐出孔形状(比較例1,すなわち吐出孔起点付近が浸漬ノズルの内孔壁と吐出孔の内孔壁とが直線で交差する形状,図41,図42,吐出孔は下向き20度)と比較した。
【0059】
実施例1は前記n=4.0,Di/Do=2.0,比較例1はDi/Do=1.0とした。
【0060】
溶鋼流速均一化の効果は,変動係数(標準偏差σ/平均流速Ave),吐出孔高さ方向での流速(大きさ)の逆転の有無,流速(大きさ)の負の値の領域の有無で判断した。
【0061】
変動係数は,小さい方がよい。吐出孔上下位置で差がないことが望ましい。(横軸に吐出孔縦方向位置,縦軸に流速をプロットしたグラフにおいて流速がほぼ一定=横方向にほぼ水平な状態=に近いほど均一化効果が高いとみなすことができる。)
【0062】
吐出孔高さ方向での流速(大きさ)の逆転があると,この付近で流動方向に回転するような渦流等の乱れが生じ,溶鋼流の拡散やモールドパウダー巻き込み流の発生等の原因となる。したがって,この逆転は無い方がよい。
【0063】
流速(大きさ)に負の値の領域があるということは,すなわち,その部分で逆方向の流動があることを示しており,この付近で流動方向に回転するような渦流をはじめ流動状態に顕著な乱れが生じ,溶鋼流の拡散やモールドパウダー巻き込み流の発生等の原因となる。したがってこの負の値の領域(逆流)は無い方がよい。
【0064】
なお,このシミュレーションには,ANSYS社製の流体解析ソフトウェア,商品名「Fluent Ver.6.3.26」を使用した。この流体解析ソフトウェアでの入力パラメータは,以下のとおりである。
【0065】
・計算セル数:約12万(但し,モデルにより変動あり。)
・流体:水(但し,溶鋼の場合も,相対的に同様に評価できることが確認されている。)
密度998.2kg/m
粘度0.001003kg/m・s
・浸漬ノズルの吐出孔部の外径:130mm
・浸漬ノズルの吐出孔部の内孔径:70mm
・吐出孔長さL:30mm
・ 浸漬深さ(吐出孔出口中央) : 181mm
・ モールドサイズ : 220mm x 1800mm
・Viscous Model: K−omega計算
・ 通鋼量 : 5 l/s (約 2.1 ton/min)
・ 吐出孔角度 : 0度(浸漬ノズルの縦方向中心軸に対し垂直方向)
【0066】
この結果を表1に,また吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフを,実施例1については図8,比較例1については図7に示す。
【0067】
【表1】

この結果,比較例1は変動係数0.94,吐出孔下方での逆転はないものの,また流速が負の値の領域も有ることがわかる。
【0068】
これに対し実施例1では変動係数0.27(比較例1を100とすると28.7)と大幅に小さくなった。また吐出孔下方での逆転も流速が負の値の領域もない。
【0069】
実施例B
本実施例では,吐出孔角度を下向き20度として,前記実験例1と同様のコンピュータシミュレーションによる流体解析を行った。
【0070】
この角度に伴う吐出孔内孔形状は,任意の距離Zの位置における吐出孔の縦方向断面(浸漬ノズル縦軸に平行な断面)形状を,前記距離Zの位置における前記角度θに応じた浸漬ノズル縦軸方向に垂直な方向に対する縦方向の長さ分(長さZ×tanθ),漸次浸漬ノズルの縦軸に平行な方向に移動させた構造とした。
【0071】
実施例2は前記n=4.0,Di/Do=2.0,比較例2はDi/Do=1.0,比較例3は吐出孔起点から端部に至る間で直線状のテーパーが2段の構成となった形状(図43参照)とした。
【0072】
この結果を表2に,また吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフを,実施例2については図11,比較例2については図9,比較例3については図10に示す。
【0073】
【表2】

【0074】
この結果,比較例2は変動係数0.85,吐出孔下方での逆転があり,また吐出孔上方での流速が負の値の領域も有ることがわかる。
【0075】
比較例3は,変動係数が比較例2を100とする指数で81.2と比較例1に対する顕著な改善効果はなく,吐出孔下方での逆転があり,また吐出孔上方での流速が負の値の領域も有ることがわかる。すなわち2段テーパー構造の均一化の効果は認められない。
【0076】
これに対し実施例2では,変動係数が比較例2を100とする指数で18.8と比較例1に対する顕著な改善効果が認められ,また吐出孔下方での逆転も流速が負の値の領域もない。
【0077】
実施例C
本実施例では,前記実施例A,Bと同様のコンピュータシミュレーションによる流体解析により,溶鋼流量の影響を調査した。
構造は前記実施例Bの比較例2及び実施例2と同様の構造とし,溶鋼流量を実験例2の2倍にして均一化への影響を確認した。
【0078】
この結果を表3に,また吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフを,実施例3については図28,比較例4については図27に示す。
【0079】
【表3】

【0080】
この結果,比較例4は変動係数0.57,吐出孔下方での逆転があり,また吐出孔上方での流速が負の値の領域も有ることがわかる。すなわち溶鋼流量が大きくなっても均一性に関する流動特性は同様であることがわかる。
【0081】
これに対し実施例2では,変動係数が比較例4を100とする指数で19.3と比較例4に対する顕著な改善効果が認められ,また吐出孔下方での逆転も流速が負の値の領域もない。すなわち溶鋼流量が大きくなっても均一化に関する本発明の効果は同様に得られることがわかる。
【0082】
実施例D
本実施例では,前記実験例A,Bと同様のコンピュータシミュレーションによる流体解析により,前記n値の影響を調査した。
【0083】
条件は,Di/Do=2.0,溶鋼流量は実験例2と同様の5 l/s (約 2.1 ton/min),吐出孔角度を下向き20度とし,n値を1.0(直線状テーパーと一致)から6.0まで変化させた。
【0084】
この結果を表4に,また比較例5及び実施例4〜実施例8(実施例2を含む)の吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフを,図12,図13〜図18に示す。
【0085】
【表4】

【0086】
この結果,n値を1.0(直線状テーパーと一致)とした比較例5は変動係数が比較例2を100とする指数で29.4と顕著な効果が認められ,吐出孔上方での流速の負の値の領域も観られないものの,吐出孔下方での逆転が有ることがわかる。
【0087】
これに対し実施例は,比較例2を100とする変動係数の指数で,n=1.5の実施例4では21.2,n=2.0の実施例5からn=4.5の実施例6までの範囲は同一で18.8,n=5.0の実施例7では21.2,n=6.0の実施例では20.0といずれもほぼ同程度の顕著な効果が得られた。
【0088】
また,実施例4(n=1.5)〜実施例8(n=6.0)のいずれも吐出孔下方での逆転も流速が負の値の領域もない。
【0089】
この実施例から,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が前記式のn=1.5以上の曲線であれば,またその曲線がn=1.5以上のn値が異なる複数の線を含んでいても本発明の溶鋼流の均一化の顕著な効果が得られることがわかる。
【0090】
なお,この実験例ように,下向きの角度の場合には図6(a)〜図6(c)に示すように,吐出孔起点付近での上端付近はなだらかに,下端付近はより鋭利な傾向の形状となる。
【0091】
このような形状で上記結果が得られていることから,本発明の構造は,吐出孔の吐出方向中心を通過する縦方向断面の上下方向に備わっていれば溶鋼の均一化及び整流化の効果が得られることがわかる。
【0092】
さらに,吐出孔の横方向は浸漬ノズル内孔直胴部の形状としている。すなわち,本実施例における本発明の形状部分は,浸漬ノズルの直胴状の内孔壁部分よりも耐火物肉厚側に限られている。
【0093】
実施例E
本実施例では,先の実施例A,Bと同様のコンピュータシミュレーションによる流体解析により,前記Di/Do比の影響を調査した。
【0094】
条件は,前記n=4.0,溶鋼流量は実施例Bと同様の5 l/s (約 2.1 ton/min),吐出孔角度を下向き20度とし,Di/Do比を1.5から2.0まで変化させた。
【0095】
この結果を表5に,また比較例6及び実施例9〜実施例12(実施例2を含む)の吐出孔端部(溶鋼放出部)における吐出孔の縦方向の位置に対する流速をプロットしたグラフを図19,図20〜図24に示す。
【0096】
【表5】

【0097】
この結果,Di/Do比を1.5とした比較例6は変動係数が比較例2を100とする指数で62.4となって顕著な改善効果は認められない。また吐出孔下方での逆転は観られないものの,吐出孔上方での流速の負の値の領域が有ることがわかる。
【0098】
これに対し実施例は,比較例2を100とする変動係数の指数ではいずれも顕著な効果が得られることがわかる。そして,Di/Do比=1.6(実施例4)の場合が29.4とこの実施例中最も高く,Di/Do比=2.0(実施例2)の場合が18.8と最も低く,この1.6から2.0の変化に伴って変動係数の指数が低下する傾向が認められる。
【0099】
また,実施例9(Di/Do比=1.6)〜実施例12(Di/Do比=1.9)及び実施例2(Di/Do比=2.0)のいずれも吐出孔下方での逆転も流速が負の値の領域もない。
【0100】
上述の実施例の結果は、以下のようにまとめることができる。
【0101】
前記n値に関しては,1.5以上で溶鋼流の均一化の効果及び整流化があり,少なくとも6.0までは効果の低下は観られず,前記n値に関しては,1.5以上を課題解決効果の範囲とすることができる。またそのうち最も効果の高いのは2.0〜4.5の範囲である。
【0102】
Di/Do比は1.6以上で溶鋼流の均一化の効果及び整流化があり,少なくとも2.0まではこれら効果は漸次高まって低下は観られず,1.6以上を課題解決効果の範囲とすることができる。またそのうち最も効果の高いのは2.0である。
【符号の説明】
【0103】
1 浸漬ノズル

【特許請求の範囲】
【請求項1】
上端に設けられた溶鋼の導入部から溶鋼が下方に通過する上下縦方向に管状の直胴部と,この直胴部の下部に設けられ,溶鋼を直胴部の側面から横方向に吐出する左右対称となる一対の吐出孔とを有する浸漬ノズルにおいて,浸漬ノズルの中心と吐出孔の中心とを通る浸漬ノズルの縦方向断面の吐出孔部内孔の形状が,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が,次式1のDzの浸漬ノズル縦方向断面の径によって表される吐出孔の内側形状を,少なくとも吐出孔内の一部又は全部に有することを特徴とする。

ここで,
L : 浸漬ノズルの壁の厚さ,
Di : 吐出孔の起点(浸漬ノズル内孔壁との境界点,以下同じ。)の吐出孔径,
Do : 吐出孔の端部(浸漬ノズル外周壁との境界点,以下同じ。)の吐出孔径,
Z : 吐出孔の起点から吐出孔の端部方向への任意の位置までの長さ
Dz : 前記Zの位置における吐出孔の浸漬ノズル縦方向断面の径
H : 下記式2によって表される

さらに、nは,n ≧ 1.5である。
【請求項2】
吐出孔が浸漬ノズルの縦軸に対して垂直方向以外の浸漬ノズル縦方向の角度を有しており,
前記角度を有する吐出孔の内孔は,請求項1に記載の距離Zの位置における吐出孔の浸漬ノズルの縦方向断面形状を,距離Zの位置における前記角度に応じた縦方向長さ分を,漸次浸漬ノズルの縦軸に平行な方向に移動させた構造である請求項1に記載の浸漬ノズル。
【請求項3】
上端に設けられた溶鋼の導入部から溶鋼が下方に通過する上下縦方向に管状の直胴部と,この直胴部の下部に設けられ,溶鋼を直胴部の側面から横方向に吐出する左右対称となる一対の吐出孔とを有する浸漬ノズルにおいて,
浸漬ノズルの中心と吐出孔の中心とを通る浸漬ノズルの縦方向断面の吐出孔部内孔の形状が,吐出孔起点から端部に向かって漸次吐出孔内孔が曲線で縮径し,かつその漸次縮径する曲線が前記式1を満足する前記式1中のn値の異なる複数の曲線の組み合わせであって,前記曲線によって形成される形状を少なくとも吐出孔内の一部又は全部に有する浸漬ノズル。
【請求項4】
吐出孔が浸漬ノズルの縦軸に対して垂直方向以外の浸漬ノズル縦方向の角度を有しており,
前記角度を有する吐出孔の内孔は,請求項3に記載の距離Zの位置における吐出孔の浸漬ノズルの縦方向断面形状を,距離Zの位置における前記角度に応じた縦方向長さ分を,漸次浸漬ノズルの縦軸に平行な方向に移動させた構造である請求項1に記載の浸漬ノズル。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate


【公開番号】特開2011−212725(P2011−212725A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−84226(P2010−84226)
【出願日】平成22年3月31日(2010.3.31)
【特許番号】特許第4665056号(P4665056)
【特許公報発行日】平成23年4月6日(2011.4.6)
【出願人】(000170716)黒崎播磨株式会社 (314)
【Fターム(参考)】