説明

温度測定用プローブ、温度測定システム及びこれを用いた温度測定方法

【課題】光路長を設定するための煩雑な操作が不要で、且つ温度測定対象物の制約が少なく、適用範囲の広い温度測定用プローブを提供する。
【解決手段】低コヒーレンス光の干渉を利用した温度測定用プローブであって、温度測定対象物の表面に当接されて温度測定対象物と熱的に同化する当接部材71と、当接部材71に低コヒーレンス光からなる測定光74を照射し、当接部材71の表面からの反射光75a及び裏面からの反射光75bをそれぞれ受光するコリメータ72と、当接部材71及びコリメータ72との間隔を所定の長さに規定すると共に、測定光74及び反射光75a、75bの光路を測定対象物が置かれた雰囲気から隔離する筒状部材73とを有する温度測定用プローブ。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低コヒーレンス光の干渉を利用した温度測定用プローブ、温度測定システム及びこれを用いた温度測定方法に関する。
【背景技術】
【0002】
半導体ウエハ(以下、単に「ウエハ」という。)をはじめとする各種基板にプラズマ処理等の各種処理を施す場合、処理の確実を図る観点から、ウエハ又はプラズマ処理装置の各種構成部材の温度を測定することが行われており、近年、温度測定対象物に低コヒーレンス光を照射して表面及び裏面からの反射光と参照光との干渉を測定することによって、温度測定対象物の温度を測定する低コヒーレンス光干渉温度計に関する技術が提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2003−307458号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の低コヒーレンス光干渉温度計を用いた温度測定技術においては、温度測定対象物が測定光の一部を透過できること、測定部位の表面と裏面の平行度が高いこと、及び表面及び裏面が鏡面研磨されていること等の要件を満たさねばならず、温度測定対象物となるための制約が多いことから、低コヒーレンス光干渉温度計の適用範囲は必ずしも広くはなかった。また、低コヒーレンス光を照射するコリメータから温度測定対象物までの距離、すなわち光路長を正確に設定する必要があり、光路長が適正光路長から少しでもずれると正確な温度測定を行うことができないために、光路長設定操作が煩雑になるという問題があった。
【0005】
本発明の目的は、光路長を設定するための煩雑な操作が不要で、且つ温度測定対象物の制約が少なく、適用範囲の広い温度測定用プローブ、温度測定システム及びこれを用いた温度測定方法を提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するために、請求項1記載の温度測定用プローブは、低コヒーレンス光の干渉を利用した温度測定用プローブであって、温度測定対象物の表面に当接されて前記温度測定対象物と熱的に同化する温度取得部材と、該温度取得部材に前記低コヒーレンス光からなる測定光を照射し、該温度取得部材の表面からの反射光及び裏面からの反射光をそれぞれ受光する光照射・受光部と、前記温度取得部材及び前記光照射・受光部との間隔を所定の長さに規定すると共に、前記測定光及び前記反射光の光路を前記温度測定対象物が置かれた雰囲気から隔離する筒状部材と、を有することを特徴とする。
【0007】
請求項2記載の温度測定用プローブは、請求項1記載の温度測定用プローブにおいて、前記筒状部材は、前記光照射・受光部から照射された前記測定光が、前記温度取得部材の表面に垂直に入射するように前記温度取得部材と前記光照射・受光部との位置関係を規定することを特徴とする。
【0008】
請求項3記載の温度測定用プローブは、請求項1又は2記載の温度測定用プローブにおいて、前記温度取得部材は、前記低コヒーレンス光を透過させる熱伝導性材料からなる板状体であり、表裏両面が互いに平行で、且つ表裏両面がそれぞれ鏡面研磨されていることを特徴とする。
【0009】
請求項4記載の温度測定用プローブは、請求項1乃至3のいずれか1項に記載の温度測定用プローブにおいて、前記温度取得部材は、前記温度測定対象物の表面に対向して開口し前記温度取得部材の厚み方向に貫通する貫通孔を有し、該貫通孔を介して前記温度測定対象物の表面に向かって空気又は不活性ガスを供給するガス供給手段を備えていることを特徴とする。
【0010】
請求項5記載の温度測定用プローブは、請求項1乃至4のいずれか1項に記載の温度測定用プローブにおいて、前記温度取得部材と前記光照射・受光部との間隔を微調整する調整ねじが設けられていることを特徴とする。
【0011】
上記目的を達成するために、請求項6記載の温度測定システムは、低コヒーレンス光干渉温度測定システムであって、請求項1乃至5のいずれか1項記載の温度測定用プローブと、該温度測定用プローブの前記光照射・受光部が光学的に接続された、低コヒーレンス光の光学系からなる受光装置と、を備えていることを特徴とする。
【0012】
上記目的を達成するために、請求項7記載の温度測定方法は、請求項1に記載の温度測定用プローブを用いた温度測定方法であって、前記温度取得部材を前記温度測定対象物に当接させる当接ステップと、前記光照射・受光部から前記温度取得部材に対して測定光を照射し、前記温度取得部材の表面で反射した反射光及び裏面で反射した反射光をそれぞれ前記光照射・受光部で受光する光照射・受光ステップと、前記光照射・受光ステップで受光した前記2つの反射光を前記光照射・受光部に接続された低コヒーレンス光干渉温度測定システムに伝送し、前記2つの反射光の光路長差と、予め求めた前記2つの反射光の光路長差と前記温度取得部材の温度との関係とに基づいて前記温度測定対象物の温度を算出する温度算出ステップと、を有することを特徴とする。
【0013】
請求項8記載の温度測定方法は、請求項7記載の温度測定方法において、前記当接ステップの後に、前記温度取得部材の温度が前記温度測定対象物の温度と同化するまで待機する待機ステップを有することを特徴とする。
【0014】
請求項9記載の温度測定方法は、請求項7又は8記載の温度測定方法において、前記当接ステップにおいて、前記温度取得部材と前記温度測定対象物との間に、熱伝導シートを介在させることを特徴とする。
【0015】
請求項10記載の温度測定方法は、請求項9記載の温度測定方法において、前記熱伝導シートの外周部をシール部材でシールし、シールされた領域内に、前記温度取得部材に設けられた貫通孔を介して空気又は不活性ガスを充填することを特徴とする。
【0016】
請求項11記載の温度測定方法は、請求項7乃至10のいずれか1項に記載の温度測定方法において、前記光照射・受光ステップにおいて、前記測定光を前記温度取得部材に照射する際、前記光照射・受光部と前記温度取得部材との間隔を微調整することを特徴とする。
【発明の効果】
【0017】
本発明によれば、光路長が筒状部材によって予め規定されているので、光路長を設定するための煩雑な操作が不要で、且つ温度測定対象物の温度を温度取得部材に伝導させて間接的に測定するので、温度測定対象物の制約が少なく、適用範囲を広げることができる。
【図面の簡単な説明】
【0018】
【図1】低コヒーレンス光干渉温度測定システムの概略構成を示すブロック図である。
【図2】図1における低コヒーレンス光光学系の温度測定動作を説明するための図である。
【図3】図2におけるPDによって検出される温度測定対象物であるウエハからの反射光と参照ミラーからの反射光との干渉波形を示すグラフである。
【図4】本発明の第1の実施の形態に係る温度測定用プローブの概略構成を示す説明図である。
【図5】第1の実施の形態に係る温度測定用プローブを用いた温度測定方法のフローチャートである。
【図6】温度測定用プローブと測定対象物との位置関係を示す図である。
【図7】本発明の第2の実施の形態に係る温度測定用プローブの概略構成を示す図である。
【図8】第1の実施の形態に係る温度測定用プローブを用いた温度測定方法の変形例を示す説明図である。
【図9】第2の実施の形態に係る温度測定用プローブを用いた温度測定方法の変形例を示す説明図である。
【図10】測定対象物における温度測定用プローブの当接位置を示す平面図である。
【発明を実施するための形態】
【0019】
以下に、まず、本発明に係る温度測定用プローブが適用される低コヒーレンス光干渉温度測定システムについて説明する。
【0020】
図1は、低コヒーレンス光干渉温度測定システムの概略構成を示すブロック図である。
【0021】
図1において、低コヒーレンス光干渉温度測定システム46は、温度測定対象物60に低コヒーレンス光を照射し且つ該低コヒーレンス光の反射光を受光する低コヒーレンス光光学系47と、該低コヒーレンス光光学系47が受光した反射光に基づいて温度測定対象物60の温度を算出する温度算出装置48とを備える。低コヒーレンス光とは、1つの光源から照射されてその後2つに分割された場合に、該2つの光の波連が重なりにくい(2つの光が干渉しにくい)光であり、可干渉距離(コヒーレンス長)が短い光である。
【0022】
低コヒーレンス光光学系47は、低コヒーレンス光源としてのSLD(Super Luminescent Diode)49と、該SLD49に接続された2×2のスプリッタとして機能する光ファイバ融着カプラ50(以下、「カプラ」という。)と、該光カプラ50に接続されたコリメータ51,52と、カプラ50に接続された受光素子としての光検出器(PD:Photo Detector)53と、各構成要素間をそれぞれ接続する光ファイバ54a,54b,54c,54dとを備える。
【0023】
SLD49は、例えば、中心波長が1.55μm又は1.31μmであって、コヒーレンス長が約50μmの低コヒーレンス光を出力1.5mWで照射する。カプラ50はSLD49からの低コヒーレンス光を2つに分割し、該分割された2つの低コヒーレンス光をそれぞれ光ファイバ54b,54cを介してコリメータ51,52に伝送する。コリメータ51,52は、カプラ50によって分けられた低コヒーレンス光(後述する測定光64及び参照光65)をそれぞれ温度測定対象物及び参照ミラー55に照射する。PD53は、例えばInGaAsフォトダイオードから成る。
【0024】
また、低コヒーレンス光光学系47は、コリメータ52の前方に配置された参照ミラー55と、参照ミラー55をコリメータ52からの低コヒーレンス光の照射方向に沿うようにサーボモータ56aによって水平移動させる参照ミラー駆動ステージ56と、該参照ミラー駆動ステージ56のサーボモータ56aを駆動するモータドライバ57と、PD53に接続されて該PD53からの出力信号を増幅させるアンプ58とを備える。参照ミラー55は反射面を有するコーナキューブプリズム又は平面ミラーからなる。
【0025】
コリメータ51は、温度測定対象物60の表面に対向するように配置され、温度測定対象物60の表面に向けて、カプラ50によって2つに分けられた低コヒーレンス光の一方を測定光(後述する測定光64)として照射すると共に、温度測定対象物60の表面及び裏面からの反射光(後述する反射光66a及び反射光66b)をそれぞれ受光してPD53に伝送する。
【0026】
コリメータ52は、参照ミラー55に向けて、光ファイバカプラ50によって2つに分けられたもう1つの低コヒーレンス光(後述する参照光65)を照射すると共に、参照ミラー55からの低コヒーレンス光の反射光(後述する反射光68)を受光してPD53に伝送する。
【0027】
参照ミラー駆動ステージ56は、参照ミラー55を図1に示す矢印A方向、すなわち、参照ミラー55の反射面がコリメータ52からの照射光に対して常に垂直となるように水平移動させる。参照ミラー55は矢印Aの方向(コリメータ52からの低コヒーレンス光の照射方向)に沿って往復移動可能である。
【0028】
温度算出装置48は、温度算出装置48全体を制御するPC48aと、参照ミラー55を移動させるサーボモータ56aをモータドライバ57を介して制御するモータコントローラ61と、低コヒーレンス光光学系47のアンプ58を介して入力されたPD53の出力信号を、モータコントローラ61からモータドライバ57へ出力される制御信号(例えば駆動パルス)、または参照ミラー55の位置を正確に計測するために設けられたレーザーエンコーダやリニアスケールから出力される制御信号に同期してアナログデジタル変換するA/D変換器とを備える。
【0029】
図2は、図1における低コヒーレンス光光学系の温度測定動作を説明するための図である。
【0030】
低コヒーレンス光光学系47は、マイケルソン干渉計の構造を基本構造として有する低コヒーレンス干渉計を利用した光学系であり、図2に示すように、SLD49から照射された低コヒーレンス光は、スプリッタとして機能するカプラ50によって測定光64と参照光65とに分けられ、測定光64は温度測定対象物60に向けて照射され、参照光65は参照ミラー55に向けて照射される。
【0031】
温度測定対象物60に照射された測定光64は温度測定対象物60の表面及び裏面のそれぞれにおいて反射し、温度測定対象物60の表面からの反射光66a及び温度測定対象物60の裏面からの反射光66bは同一光路67でカプラ50に入射する。また、参照ミラー55に照射された参照光65は反射面において反射し、該反射面からの反射光68もカプラ50に入射する。ここで、上述したように、参照ミラー55は参照光65の照射方向に沿うように水平移動するため、低コヒーレンス光光学系47は参照光65及び反射光68の光路長を変化させることができる。
【0032】
参照ミラー55を水平移動させて参照光65及び反射光68の光路長を変化させ、測定光64及び反射光66aの光路長が参照光65及び反射光68の光路長と一致したときに、反射光66aと反射光68とは干渉を起こす。また、測定光64及び反射光66bの光路長が参照光65及び反射光68の光路長と一致したときに、反射光66bと反射光68とは干渉を起こす。これらの干渉はPD53によって検出される。PD53は干渉を検出すると出力信号を出力する。
【0033】
図3は、図2におけるPDによって検出される温度測定対象物60からの反射光と参照ミラーからの反射光との干渉波形を示すグラフであり、(A)は温度測定対象物60の温度変化前に得られる干渉波形を示し、(B)は温度測定対象物60の温度変化後に得られる干渉波形を示す。なお、図3(A)、(B)では縦軸が干渉強度を示し、横軸が参照ミラー55が所定の基点から水平移動した距離(以下、単に「参照ミラー移動距離」という。)を示す。
【0034】
図3(A)のグラフに示すように、参照ミラー55からの反射光68が温度測定対象物60の表面からの反射光66aと干渉を起こすと、例えば、干渉位置A(干渉強度のピーク位置:約425μm)を中心とする幅約80μmに亘る干渉波形69が検出される。また、参照ミラー55からの反射光68が温度測定対象物60の裏面からの反射光66bと干渉を起こすと、例えば、干渉位置B(干渉強度のピーク位置:約3285μm)を中心とする幅約80μmに亘る干渉波形70が検出される。干渉位置Aは測定光64及び反射光66aの光路長に対応し、干渉位置Bは測定光64及び反射光66bの光路長に対応するため、干渉位置A及び干渉位置Bの差Dは反射光66aの光路長と反射光66bの光路長との差(以下、単に「光路長差」という。)に対応する。反射光66aの光路長と反射光66bの光路長との差は温度測定対象物60の光学的厚さに対応するため、干渉位置A及び干渉位置Bの差Dは温度測定対象物60の光学的厚さに対応する。すなわち、反射光68及び反射光66a、並びに反射光68及び反射光66bの干渉を検出することによって温度測定対象物60の光学的厚さを計測することができる。
【0035】
ここで、温度測定対象物60に温度変化が生じると、温度測定対象物60の厚さが熱膨張(圧縮)によって変化すると共に屈折率も変化するために、測定光64及び反射光66aの光路長、並びに測定光64及び反射光66bの光路長も変化する。したがって、反射光68と反射光66aの干渉位置A、及び反射光68と反射光66bの干渉位置Bが図3(A)に示す各干渉位置から変化する。具体的には、図3(B)のグラフに示すように、干渉位置A及び干渉位置Bは図3(A)に示す各干渉位置から移動する。干渉位置A及び干渉位置Bは温度測定対象物60の温度に応じて移動するため、干渉位置A及び干渉位置Bの差D、引いては、光路長差を算出し、該光路長差に基づいて温度測定対象物60の温度を測定することができる。なお、光路長の変化要因としては上述した温度測定対象物60の光学的厚さの変化の他、低コヒーレンス光光学系47の各構成要素の位置変化(伸び等)が挙げられる。
【0036】
低コヒーレンス光干渉温度測定システム46では、温度測定対象物60の温度を測定する前に、光路長差と温度測定対象物60の温度とを関係付けた温度換算用データベース、例えば、温度測定対象物60の温度及び光路長差を各軸とするテーブル形式のデータベースや、ウエハWの温度及び光路長差の回帰式を予め準備して温度算出装置48のPC48aが備えるメモリ(図示省略)等に格納しておく。そして、温度測定対象物60の温度を測定するときには、まず、低コヒーレンス光光学系47がPD53の出力信号、すなわち、図3に示す干渉位置A及び干渉位置Bを示す信号を温度算出装置48に入力する。次いで、温度算出装置48は入力された信号から光路長差を算出し、さらに、光路長差を温度換算用データベースに基づいて温度に換算する。これにより、温度測定対象物60の温度を求める。
【0037】
本発明の実施の形態に係る温度測定用プローブは、上述の低コヒーレンス光干渉温度測定システムの低コヒーレンス光光学系47の一部を占めるものであり、コリメータ51と、温度の測定対象物Wに当接して熱的に同化する温度取得部材(以下、「当接部材」という。)と、を備える。
【0038】
以下に、本発明の第1の実施の形態に係る温度測定用プローブについて図面を参照しつつ説明する。
【0039】
図4は、本発明の第1の実施の形態に係る温度測定用プローブの概略構成を示す説明図である。
【0040】
図4において、この温度測定用のプローブ80は、温度取得部材としての当接部材71と、該当接部材71に測定光74を照射し、反射光75を受光する光照射・受光部としてのピッグテールコリメータ72(以下、単に「コリメータ」という。)と、当接部材71及びコリメータ72をそれぞれ両端部で固定する筒状部材73とから主として構成されている。コリメータ72は、固定部材76によって筒状部材73の一端に固定されており、固定部材76には、コリメータ72の位置、ひいてはコリメータ72の先端部と当接部材71との間隔を微調整する調整ねじ77が設けられている。コリメータ72は、光ファイバを介して図1の低コヒーレンス光干渉温度測定システム46のカプラ50に光学的に接続されている。
【0041】
当接部材71は、低コヒーレンス光を透過させる、熱伝導性材料、例えばシリコン(Si)からなる円板状の部材であり、その表面と裏面は互いに平行に形成されている。また、表面と裏面には、それぞれ鏡面研磨処理が施されている。当接部材71は温度測定対象物に当接して該温度測定対象物から熱伝達を受けることによって、温度測定対象物と温度的に同化して同じ温度になる。
【0042】
コリメータ72は、低コヒーレンス光干渉温度測定システム46のSLD49から照射され、カプラ50によって2分割された低コヒーレンス光のうちの一方を、筒状部材73で温度測定対象物が置かれた雰囲気と隔離された光路を通じて当接部材71に照射する。当接部材71とコリメータ72とは、コリメータ72から照射された測定光が当接部材71の表面に垂直に入射するように、いわゆる垂直度が得られるように位置決めされている。また、コリメータ52の先端部から当接部材71の表面までの間隔である光路長(所定の長さ)は、当接部材71の材質及び使用する低コヒーレンス光の波長等によって決まる特有の値であり、温度測定対象物から伝熱を受けた当接部材71の温度を正確に求めることができる長さに予め規定されている。なお、当接部材71としては、例えばシリコン(Si)板が使用される。
【0043】
コリメータ72から照射された測定光74は、当接部材71の表面に垂直に入射し、当接部材71の表面で反射した反射光75a及び裏面で反射した反射光75bは、測定光74と同じ光路を経てコリメータ72に受光される。コリメータ72で受光された反射光75は、カプラ50を介して低コヒーレンス光干渉温度測定システム46のPD53に伝送され、反射光75a及び75bの光路長差に基づいて、温度算出装置48が当接部材71の温度、ひいては測定対象物Wの温度を算出する。
【0044】
以下、このような構成の温度測定用プローブを用いた第1の実施の形態に係る温度測定方法について説明する。
【0045】
図5は、温度測定用プローブを用いた第1の実施の形態に係る温度測定方法のフローチャートである。
【0046】
図5において、温度測定用プローブを用いた温度測方法における温度測定処理は、以下のように行われる。
【0047】
すなわち、まず、Siなどからなる当接部材71と同種の材質に対し、反射光の光路長差と温度とを関係づけた温度換算用データベースを作成し、予め低コヒーレンス光干渉温度測定システム46の温度算出装置48のメモリに記憶させる(ステップS1)。
【0048】
次いで、温度測定用プローブ80の当接部材71の先端部を、例えば、円環状の熱伝導シート78を介して測定対象物Wの表面に当接する(ステップS2)。図6は、温度測定用プローブ80と測定対象物Wとの位置関係を示す図である。図6において、温度測定用プローブ80の当接部材71が円環状の熱伝導シート78を介して測定対象物Wの表面に当接されている。
【0049】
次いで、図6に示した状態で、測定対象物Wの温度が熱伝導シート78を介して当接部材71に伝達することによって、当接部材71の温度が測定対象物Wの温度と同化するまで待機する(ステップS3)。なお、待機時間は、例えば、同種の温度測定を複数回繰り返した経験値から求められる。
【0050】
次に、所定の待機時間経過後、コリメータ72から当接部材71に向かって測定光74を照射する(ステップS4)。次いで、測定光74が当接部材71の表面で反射した反射光75a及び裏面で反射した反射光75bをそれぞれコリメータ72によって受光する(ステップS5)。
【0051】
次いで、受光した反射光75a及び反射光75bを、光ファイバを介して低コヒーレンス光干渉温度測定システム46のカプラ50及びPD53に伝送し、PD53の出力信号に基づいて温度算出装置48によって光路長差を求め、該光路長差に基づいて測定対象物Wの温度を算出し(ステップS6)、その後、必要に応じ、経験的に求めた補正値を用いて補正して本処理を終了する。
【0052】
図5の処理によれば、測定対象物Wの温度を、表裏両面が互いに平行で、且つそれぞれ鏡面研磨された当接部材71に伝達させた後、当接部材71の温度を測定して間接的に測定対象物Wの温度を求めることができる。
【0053】
本実施の形態によれば、当接部材として、例えばシリコン(Si)からなる円板状の部材であって、表面と裏面が互いに平行で、且つ表面と裏面にそれぞれ鏡面研磨処理が施されているものを適用したので、従来測定対象物に求められていた制約のほとんどが不要となり、低コヒーレンス光干渉温度測定システムの適用範囲が著しく広くなる。
【0054】
本実施の形態によれば、当接部材71とコリメータ72との間の距離で規定される光路長が、予め正確な測定結果が求められる所定長さに規定されているので、温度測定ごとに光路長を設定する初期化設定(イニシャライズ)が不要となる。また、コリメータ72から照射された測定光が当接部材71に垂直に入射するように照射光と当接部材との垂直度が正確に設定されているので、測定光の角度調整が不要で、温度測定対象物と測定光の垂直度を調整するイニシャライズが不要となる。なお、予め温度換算用データベースを作成しておくことにより、温度変化前のウエハ温度を測定するイニシャライズも不要となる。
【0055】
本実施の形態によれば、コリメータ72から照射された測定光及び当接部材71から反射する反射光の光路を筒状部材73によって区画し、測定対象物Wが置かれた雰囲気から隔離したので、外因による測定光及び反射光のゆらぎを抑制することができ、測定精度が向上する。
【0056】
また、本実施の形態によれば、コリメータ72の先端部と当接部材71との間隔を微調整する調整ねじ77が設けられているので、光路長がずれた際は、随時最適光路長に設定し直すことができる。
【0057】
また、本実施の形態に係る温度測定用プローブ80は、高周波の影響を受けないので、高周波電力が印加される雰囲気にある測定対象物Wであってもその温度を正確に測定することができる。
【0058】
本実施の形態において、当接部材71の温度が測定対象物Wの温度と一致するまでの待機時間として長時間を要する場合は、温度が一致するまでの時間よりも短い所定の時間における光路長差を求め、該光路長差に基づいて測定対象物Wの温度を算出し、その後、経験的に求められる補正値を用いて算出結果を補正するようにしてもよい。
【0059】
本実施の形態において、当接部材71は、低コヒーレンス光を透過するものであって、温度依存性、すなわち温度変化に伴って厚さ又は屈折率が変化するもの、好適にはシリコンが適用されるが、シリコン以外に、例えばサファイア、石英、ZnSe等を使用することができる。
【0060】
本実施の形態において、筒状部材73の内部は真空であっても、空気又は不活性ガスが充填されていてもよい。また、温度測定用プローブ80を構成する筒状部材73の外形は、できるだけ小さいことが好ましく、例えば2〜6mmφに設定される。
【0061】
本実施例において、当接部材71と測定対象物Wとの当接部に介在する熱伝導シートとして円環状の熱伝導シート78を使用したが、円環状の熱伝導シートに代えて、円板状の熱伝導シートを用いることもできる。この場合も上記実施の形態と同様の効果が得られる。
【0062】
次に、本発明の第2の実施の形態に係る温度測定用プローブ及び温度測定方法について説明する。
【0063】
上述の第1の実施の形態に係る温度測定方法は、測定対象物Wが大気中に置かれた場合の温度測定方法である。測定対象物Wが大気圧以下の減圧状態(以下、「真空中」という。)に置かれた場合は、以下の温度測定用プローブを用いて以下のように温度測定が行われる。
【0064】
図7は、本発明の第2の実施の形態に係る温度測定用プローブの概略構成を示す図であり、図7(A)は縦断面図、図7(B)は、図7(A)の当接部材の平面図である。
【0065】
図7(A)において、この温度測定用プローブ80が第1の実施の形態の係る温度測定用プローブ(図4参照)と異なるところは、当接部材71aが、その厚さ方向に貫通する複数の貫通孔71bを有し、且つ固定部材76に、空気又は不活性ガスを筒状部材73に導入するガス導入手段としてのガス供給管79が設けられている点である。
【0066】
ガス供給管79は、図示省略したガス供給源から、例えば空気又は不活性ガスを筒状部材73内に導入する。なお、図7(B)においては貫通孔71bを4個として本実施形態の説明を行うが、貫通孔71bの個数は、特に限定されるものではなく、1つ又は2つ以上のいずれでもよい。
【0067】
このような構成の温度測定用プローブを用い、真空雰囲気、例えば基板処理装置のチャンバ内に置かれた測定対象物Wの温度は、以下のように測定される。
【0068】
すなわち、予め当接部材71aと同種の材質(Siなど)に対し、光路長差と温度とを関係づけた温度換算用データベースを作成し、低コヒーレンス光干渉温度測定システム46の温度算出装置48のメモリに記憶させる。
【0069】
次いで、温度測定用プローブ80の当接部材71aと測定対象物Wとの間に、図7(A)に示したように、当接部材71aの外形よりも小さく、且つ貫通孔71bの全てを囲む大きさの円環状の熱伝導シート78a、及び該熱伝導シート78aの外周部を囲むシール部材としてのOリング81を介在させて、当接部材71aと測定対象物Wとを当接させる。次いで、ガス供給管79から筒状部材73内に、例えば空気を導入し、当接部材71aの貫通孔71bを介して当該当接部材71aと測定対象物WとOリング81とで囲まれた空間に空気を導入して空気層82を形成する。
【0070】
次いで、空気層82を介して測定対象物Wの温度が当接部材71aに伝達され、当接部材71aの温度が測定対象物Wの温度と同化するまで待機し、その後、第1の実施の形態と同様に、コリメータ72から測定光74を照射し、以下、第1の実施の形態に係る温度測定方法と同様にして測定対象物Wの温度を求める。
【0071】
本実施の形態によれば、当接部材71aの外形よりも小さく、貫通孔71bの全てを囲む大きさの円環状の熱伝導シート78a、及び該熱伝導シート78aの外周部を囲むシール部材としてのOリング81を介在させて、当接部材71aと測定対象物Wとを当接させ、当接部材71aと測定対象物WとOリング81とで囲まれた空間に空気を導入して空気層82を形成した後、測定対象物Wの温度測定を行うようにしたので、空気層82が伝熱層として機能し、これによって真空断熱層による熱抵抗を解消し、もって、真空雰囲気内に置かれた測定対象物Wであってもその温度を正確に測定することができる。
【0072】
本実施の形態において、熱伝導シートとして、当接部材71aの複数の貫通孔71bを囲む円環状の熱伝導シートを適用したが、熱伝導シートとして、複数の貫通孔71bに囲まれた領域に収まる大きさの円板状の熱伝導シートを適用し、該円板状の熱伝導シートとOリング81との間に円環状の空間を設け、該円環状の空間に空気を充填することによって空気層を形成するようにしてもよい。これによっても第2の実施の形態に係る温度測定方法と同様の効果が得られる。
【0073】
次に、第1の実施の形態に係る温度測定用プローブ(図4参照)を用いた温度測定方法の変形例について説明する。
【0074】
図8は、第1の実施の形態に係る温度測定用プローブを用いた温度測定方法の変形例を示す説明図である。
【0075】
図8において、測定対象物Wの表面には、例えば、ザグリに相当する凹部83が形成されている。このように、温度測定対象物の表面が平坦でない場合は、例えば円環状の熱伝導シート78で当該凹部83の周りを囲み、該円環状の熱伝導シート78を介して当接部材71を測定対象物Wに当接し、以下第1の実施の形態に係る温度測定方法と同様にして測定対象物Wの温度を測定することができる。
【0076】
本実施の形態の変形例によれば、測定対象物Wの表面に凹部83があっても、該凹部83を円環状の熱伝導シート78によってとり囲んだ状態で当接部材71と測定対象物Wとを当接させることにより、凹部の影響を最小限にして、ウエハの温度を測定することができる。
【0077】
次に、第2の実施の形態に係る温度測定用プローブを用いた温度測定方法の変形例について説明する。
【0078】
図9は、第2の実施の形態に係る温度測定用プローブを用いた温度測定方法の変形例を示す説明図であり、図9(A)は縦断面図、図9(B)は、図9(A)の当接部材の平面図である。また、図10は、測定対象物Wにおける温度測定用プローブの当接位置を示す平面図である。
【0079】
図9において、この温度測定方法が図8に示した温度測定方法と異なるところは、測定対象物Wが真空雰囲気に置かれており、熱伝導シート78に代えて外形が小さい熱伝導シート78aを用い、該熱伝導シート78aの外周部をOリング81で囲み、当接部材71aと、測定対象物Wの凹部83とOリング81とで囲まれた空間にガス供給管79から導入された空気を充填して空気層82aを形成した点である。
【0080】
図10において、凹部83の回りにOリング溝81aが設けられている。このように、予め測定対象物Wの表面にシール部材であるOリング81が嵌合する溝81aを設けておき、該Oリング溝81aにOリング81を嵌合させた状態で、当接部材71aと測定対象物Wとを当接させることもできる。これによってシール性が向上する。なお、凹部83の形状は円形に限らず、またその数は、1つでも2つ以上であってもよい。
【0081】
温度測定用プローブ80の当接部材71aを測定対象物Wに当接させ、所定の待機時間が経過した後、上記実施の形態と同様に操作して測定対象物Wの温度を求める。
【0082】
本実施の形態の変形例によれば、凹部83を有する測定対象物Wが真空雰囲気に置かれた場合であっても、凹部83に空気を充填した空気層82aを形成し、この空気層82aと熱伝導シート78aを介して測定対象物Wの温度が当接部材71aに効率よく伝導するので、測定対象物Wの温度を間接的に正確に測定することができる。
【0083】
本実施の形態の変形例において、測定対象物Wが1つの凹部を有する場合の温度測定方法について説明したが、測定対象物Wの凹部は1つでなく2つ以上あってもよい。この場合、複数の凹部をOリング81で囲み、凹部以外の面を熱伝導シートを介して当接部材71aに当接させ、且つ当接部材71a、測定対象物W及びOリング81で囲まれた空間内に空気又は不活性ガスを充填して伝熱層を形成し、その後、上記実施の形態と同様にして測定対象物Wの温度を測定することができる。
【0084】
この実施の形態の変形例によれば、測定対象物Wに2つ以上の凹部があっても、凹部を利用して伝熱層を形成し、これによって測定対象物Wの温度を確実に当接部材71aに伝導して、良好に測定することができる。
【0085】
以上、本発明について、実施の形態を用いて説明したが、本発明は、上記実施の形態に限定されるものではない。
【符号の説明】
【0086】
W 測定対象物
46 低コヒーレンス光干渉温度測定システム
47 低コヒーレンス光光学系
48 温度算出装置
49 SLD
50 光ファイバ融着カプラ
51、52 コリメータ
53 光検出器(PD)
54a、54b、54c、54d 光ファイバ
55 参照ミラー
60 温度測定対象物
64、74 測定光
65 参照光
66a、66b,68、75、75a、75b 反射光

【特許請求の範囲】
【請求項1】
低コヒーレンス光の干渉を利用した温度測定用プローブであって、
温度測定対象物の表面に当接されて前記温度測定対象物と熱的に同化する温度取得部材と、
該温度取得部材に前記低コヒーレンス光からなる測定光を照射し、該温度取得部材の表面からの反射光及び裏面からの反射光をそれぞれ受光する光照射・受光部と、
前記温度取得部材及び前記光照射・受光部との間隔を所定の長さに規定すると共に、前記測定光及び前記反射光の光路を前記測定対象物が置かれた雰囲気から隔離する筒状部材と、を有することを特徴とする温度測定用プローブ。
【請求項2】
前記筒状部材は、前記光照射・受光部から照射された前記測定光が、前記温度取得部材の表面に垂直に入射するように前記温度取得部材と前記光照射・受光部との位置関係を規定することを特徴とする請求項1記載の温度測定用プローブ。
【請求項3】
前記温度取得部材は、前記低コヒーレンス光を透過させる熱伝導性材料からなる板状体であり、表裏両面が互いに平行で、且つ表裏両面がそれぞれ鏡面研磨されていることを特徴とする請求項1又は2記載の温度測定用プローブ。
【請求項4】
前記温度取得部材は、前記温度測定対象物の表面に対向して開口し前記温度取得部材の厚み方向に貫通する貫通孔を有し、該貫通孔を介して前記温度測定対象物の表面に向かって空気又は不活性ガスを供給するガス供給手段を備えていることを特徴とする請求項1乃至3のいずれか1項に記載の温度測定用プローブ。
【請求項5】
前記温度取得部材と前記光照射・受光部との間隔を微調整する調整ねじが設けられていることを特徴とする請求項1乃至4のいずれか1項に記載の温度測定用プローブ。
【請求項6】
請求項1乃至5のいずれか1項記載の温度測定用プローブと、該温度測定用プローブの前記光照射・受光部が光学的に接続された、低コヒーレンス光の光学系からなる受光装置と、を備えていることを特徴とする低コヒーレンス光干渉温度測定システム。
【請求項7】
請求項1に記載の温度測定用プローブを用いた温度測定方法であって、
前記温度取得部材を前記温度測定対象物に当接させる当接ステップと、
前記光照射・受光部から前記温度取得部材に対して前記測定光を照射し、前記温度取得部材の表面で反射した反射光及び裏面で反射した反射光をそれぞれ前記光照射・受光部で受光する光照射・受光ステップと、
前記光照射・受光ステップで受光した前記2つの反射光を前記光照射・受光部に接続された低コヒーレンス光干渉温度測定システムに伝送し、前記2つの反射光の光路長差と、予め求めた前記2つの反射光の光路長差と前記温度取得部材の温度との関係とに基づいて前記温度測定対象物の温度を算出する温度算出ステップと、
を有することを特徴とする温度測定方法。
【請求項8】
前記当接ステップの後に、前記温度取得部材の温度が前記温度測定対象物の温度と同化するまで待機する待機ステップを有することを特徴とする請求項7記載の温度測定方法。
【請求項9】
前記当接ステップにおいて、前記温度取得部材と前記温度測定対象物との間に、熱伝導シートを介在させることを特徴とする請求項7又は8記載の温度測定方法。
【請求項10】
前記熱伝導シートの外周部をシール部材でシールし、シールされた領域内に、前記温度取得部材に設けられた貫通孔を介して空気又は不活性ガスを充填することを特徴とする請求項9記載の温度測定方法。
【請求項11】
前記光照射・受光ステップにおいて、前記測定光を前記温度取得部材に照射する際、前記光照射・受光部と前記温度取得部材との間隔を微調整することを特徴とする請求項7乃至10のいずれか1項に記載の温度測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−191113(P2011−191113A)
【公開日】平成23年9月29日(2011.9.29)
【国際特許分類】
【出願番号】特願2010−55871(P2010−55871)
【出願日】平成22年3月12日(2010.3.12)
【出願人】(000219967)東京エレクトロン株式会社 (5,184)
【Fターム(参考)】