説明

無方向性電磁鋼板、無方向性電磁鋼板の製造方法、および冷間圧延性の評価方法

【課題】本発明は、高効率モータ鉄心に使用することが好適な、磁気特性と生産性に優れた無方向性電磁鋼板を提供することを主目的とする。
【解決手段】本発明は、質量%で、Si:2.0%以上3.5%以下、sol.Al:0.1%以上2.5%以下、Mn:0.05%以上2.5%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、Si+sol.Al+0.5×Mn≧3.3およびS+As+Nb+Ti+V+Zr+N≦0.018を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、板厚が0.10mm以上0.35mm以下であることを特徴とする無方向性電磁鋼板を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無方向性電磁鋼板およびその製造方法に関する。より詳しくは、本発明は、エアコンや冷蔵庫などのコンプレッサーモータ、電気自動車やハイブリッド自動車などの駆動モータおよび発電機などの高効率モータの鉄心に使用することが好適な無方向性電磁鋼板に関する。また、本発明は、冷間圧延性の評価方法にも関する。
【背景技術】
【0002】
地球温暖化ガスを削減する必要性から、自動車、家電製品等の分野では消費エネルギーの少ない製品の普及が急速に進んでいる。例えば、自動車分野においては、ガソリンエンジンとモータとを組み合わせた駆動系を持つハイブリッド自動車、モータ駆動の電気自動車等の低燃費自動車がある。また、家電製品分野においては、年間電気消費量の少ない高効率エアコン、冷蔵庫等がある。これらに共通する技術はモータであり、モータの高効率化が重要な技術となっており、モータの高効率化のために、鉄心材料である無方向性電磁鋼板の鉄損低減と磁束密度向上が要求されている。
【0003】
鉄損低減の手段としては、SiやAlなどの比抵抗を増加させる作用を有する合金元素の含有量を増加させる手段が一般的である。しかしながら、合金含有量の増加によって磁束密度が劣化するという問題や、鋼板が硬化されて冷間圧延での破断率が高まるという問題が生じる。
上記のような冷間圧延での破断を抑制する手段としては、温間圧延が一般的である。例えば特許文献1には、熱延板焼鈍板の衝撃試験における遷移温度、すなわち冷間圧延前の鋼板の遷移温度を60℃以下とすることが開示されている。
【0004】
また、磁束密度を向上させる手段としては、Pを積極的に添加する手段が提案されている(特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−247047号公報
【特許文献2】特開2005−200756号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献2に開示された発明は、磁束密度を向上させることにより、あるいはさらなる合金元素量の増加による鉄損低減を可能にすることにより、モータの高効率化に寄与する非常に優れた発明である。しかしながら、近年のさらなるモータの高効率化の要求により、より一層の磁束密度の向上を可能にする手段が求められている。
【0007】
また、冷間圧延での破断を抑制する手段としては、上述したように温間圧延が一般的ではあるが、温間圧延には特殊な設備が必要であるため、コスト面で劣る。また、特許文献1において評価されている熱延板焼鈍板の衝撃試験はシャルピー衝撃試験であり、このシャルピー衝撃試験の歪速度は500〜1000/s程度であり、圧延での歪速度である10〜100/sとは大きく乖離しており、冷間圧延性の評価方法として適切とはいえない。さらに、特許文献1において遷移温度の上限値を60℃としているのは、破断が生じる可能性のある酸洗、冷間圧延、仕上焼鈍の製造工程において、70℃の鋼板温度を確保できるためと記載されているが、鋼板温度を70℃以上にするには、ヒーターなどの加熱設備が必要となるため製造コストも増加する。
【0008】
本発明は上記実情に鑑みてなされたものであり、その課題はエアコンや冷蔵庫などのコンプレッサーモータ、電気自動車やハイブリッド自動車などの駆動モータおよび発電機などの高効率モータの鉄心に使用することが好適な、磁気特性と生産性に優れた無方向性電磁鋼板を提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決すべく、磁束密度に及ぼすPの影響のみならず、磁束密度に及ぼすPと他の元素との相互作用の影響について新たに着目し、これらの相互作用を利用することによりさらなる磁束密度の向上を図ることを新たに着想し、鋭意検討を行った。その結果、以下の新知見を得た。
【0010】
(a)Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制することにより、P添加による磁束密度の向上作用が効果的に高められる。
(b)Si、Al、Mn、Pなどの合金元素量が多くなるほど、冷間圧延での破断率が高まるが、冷間圧延における破断について詳細に調査した結果、冷間圧延の1〜3パス目の前段パスで生じる破断と、冷間圧延の4パス目以降の後段パスで生じる破断の2種類に大別される。
(c)前段パスで生じる破断は、歪速度が10〜30/s程度となる圧延の開始時に起こりやすい。
(d)このような冷間圧延性を適切に評価するには、実際の圧延における歪速度に近い条件で試験することが必要であるところ、JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して所定の高さから押金具を落錘させて規定の形に曲げる」とした試験を行うことにより、実際の圧延における歪速度を付与する試験を簡便に行うことが可能となり、冷間圧延性を適切に評価することができる。
(e)上記(d)の試験において、落錘時の試験片に対する押金具の高さを1.2mとし、曲げ角度:90°かつ内側半径:5mmとすれば、歪速度を10〜30/sとすることができ、前段パスで生じる破断の危険性を的確に評価することができ、斯かる試験条件下における破断率を40%以下とすることにより、前段パスで生じる破断を効果的に防止することができる。
(f)冷間圧延に供する熱延鋼板に所定の熱延板焼鈍を施すことにより、上記破断率を確実に40%以下とすることができる。
(g)Pを0.03%以上含有する鋼板は、約30%圧下された鋼板を冷間圧延する際に最も破断が生じやすい。このため、斯かる条件を回避するように冷間圧延の圧下率を設定することにより、冷間圧延時の破断を効果的に防止することができる。
(h)後段パスで生じる破断は、冷間圧延に供する鋼板のエッジや表面に存在する微細な損傷が主な原因であり、これらの損傷を抑制するには、仕上温度、巻取温度および板厚を所定の条件として熱間圧延を施すことが有効である。
【0011】
本発明はこれらの新たな知見に基づくものであり、その要旨は以下のとおりである。
すなわち、本発明は、質量%で、Si:2.0%以上3.5%以下、sol.Al:0.1%以上2.5%以下、Mn:0.05%以上2.5%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、下記式(1)および(2)を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、板厚が0.10mm以上0.35mm以下であることを特徴とする無方向性電磁鋼板を提供する。
Si+sol.Al+0.5×Mn≧3.3 (1)
S+As+Nb+Ti+V+Zr+N≦0.018 (2)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
【0012】
また本発明は、下記工程(A)、(B1)、(C)および(D)を有することを特徴とする無方向性電磁鋼板の製造方法を提供する。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B1)上記熱延圧延工程により得られた熱延鋼板に、730℃以上の温度域に1時間以上保持する熱延板焼鈍を施して、下記落錘曲げ試験における破断率が40%以下である熱延焼鈍板とする熱延板焼鈍工程;
(C)上記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
[落錘曲げ試験]
JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して1.2m高さから押金具を落錘させて規定の形に曲げる」とした試験であり、曲げ角度:90°かつ内側半径:5mmとした試験である。
【0013】
ここで、「破断率」とは、落錘曲げ試験に供した試験片の個数に対する、破断が生じた試験片の個数の個数割合である。
【0014】
さらに本発明は、下記工程(A)、(B2)、(C)および(D)を有することを特徴とする無方向性電磁鋼板の製造方法を提供する。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B2)上記熱延圧延工程により得られた熱延鋼板に、730℃以上810℃以下の温度域に1時間以上保持する熱延板焼鈍を施して熱延焼鈍板とする熱延板焼鈍工程;
(C)上記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
【0015】
また本発明は、JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して所定の高さから押金具を落錘させて規定の形に曲げる」とした試験を行うことを特徴とする冷間圧延性の評価方法を提供する。
【発明の効果】
【0016】
本発明に係る無方向性電磁鋼板により、モータ効率の向上が期待できる。また、本発明に係る無方向性電磁鋼板の製造方法は特殊な設備を要しないため、製造コスト面でも優れている。
【発明を実施するための形態】
【0017】
以下、本発明の無方向性電磁鋼板、無方向性電磁鋼板の製造方法、および冷間圧延性の評価方法について詳細に説明する。
【0018】
A.無方向性電磁鋼板
まず、本発明の無方向性電磁鋼板における各構成について説明する。
【0019】
1.化学組成
はじめに、鋼板の化学組成の限定理由について説明する。なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。
【0020】
Si、sol.Al、Mnは、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Si含有量は2.0%以上、sol.Al含有量は0.1%以上、Mn含有量は0.05%以上とし、さらに下記式(1)を満足するものとする。Mn含有量は好ましくは0.4%以上である。一方、これらの元素を過剰に含有させると鋼板が硬化し、冷間圧延での破断率が増加する。したがって、Si含有量は3.5%以下、sol.Al含有量は2.5%以下、Mn含有量は2.5%以下とする。
Si+sol.Al+0.5×Mn≧3.3 (1)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
【0021】
Pは、集合組織を改善して磁気特性を向上させる作用を有する。したがって、P含有量は0.03%以上とする。好ましくは0.04%以上である。一方、P含有量が過剰になると、Pの粒界偏析が顕著となり冷間圧延での破断率が増加する。したがって、P含有量は0.10%以下とする。好ましくは、0.08%以下である。
【0022】
Sは、一般に不純物として鋼中に含有される元素であり、鋼中のMnと結合して微細なMnSを形成し、焼鈍時の結晶粒の成長を阻害して磁気特性を劣化させることから、従来はその含有量を低減することが求められてきた元素である。しかしながら、上述した本発明者らの検討によって、Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制することにより、P添加による磁束密度の向上作用が効果的に高められることが初めて明らかとなった。したがって、S含有量は0.0010%以上とする。一方、S含有量が過剰になると、焼鈍時の結晶粒の成長の阻害により磁気特性の劣化が顕著となる。したがって、S含有量は0.0050%以下とする。好ましくは0.0035%以下である。
【0023】
Cは、不純物として含有され、磁気特性を劣化させる元素である。このため、C含有量は0.0050%以下とする。好ましくは、0.0035%以下である。
【0024】
As、Nb、Ti、VおよびZrは不純物として含有され、磁気特性を劣化させる元素である。したがって、As含有量は0.0050%以下、Nb含有量は0.0030%以下、Ti含有量は0.0030%以下、V含有量は0.0030%以下、Zr含有量は0.0030%以下とする。好ましくは、As含有量は0.0035%以下、Nb含有量は0.0020%以下、Ti含有量は0.0020%以下、V含有量は0.0020%以下、Zr含有量は0.0020%以下である。
【0025】
Nは、不純物として含有され、Alなどと結合して微細な介在物を形成し、焼鈍時の結晶粒の成長を阻害して磁気特性を劣化させる元素である。したがって、N含有量は0.0050%以下とする。好ましくは0.0035%以下である。
【0026】
不純物元素であるS、As、Nb、Ti、V、ZrおよびNの含有量を低減することで、鉄損が低減されることは従来知られていた。しかしながら、上述した本発明者らの検討によって、Sを微量に含有させたうえで、S、As、Nb、Ti、V、ZrおよびNの合計含有量の上限を規制することにより、P添加による磁束密度の向上作用が効果的に高められることが初めて明らかとなった。したがって、S、As、Nb、Ti、V、ZrおよびNの合計含有量は下記式(2)を満足するものとする。中でも、下記式(3)を満足することが好ましく、下記式(4)を満足することがさらに好ましい。
S+As+Nb+Ti+V+Zr+N≦0.018 (2)
S+As+Nb+Ti+V+Zr+N≦0.016 (3)
S+As+Nb+Ti+V+Zr+N≦0.014 (4)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
【0027】
2.平均結晶粒径
結晶粒径は、大き過ぎても小さ過ぎても鉄損が劣化する。したがって、平均結晶粒径は60μm以上180μm以下とする。
なお、平均結晶粒径は、縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば、50倍や100倍の倍率で撮影した写真を用いればよい。
【0028】
3.板厚
板厚が薄いほど鉄損が低減されるため、板厚は0.35mm以下とする。好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させる。したがって、板厚は0.10mm以上とする。好ましくは0.15mm以上である。
【0029】
B.無方向性電磁鋼板の製造方法
次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板の製造方法は、2つの実施態様を有する。以下、各実施態様に分けて説明する。
【0030】
1.第1実施態様
本実施態様の無方向性電磁鋼板の製造方法は、下記工程(A)、(B1)、(C)および(D)を有することを特徴とする。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B1)上記熱延圧延工程により得られた熱延鋼板に、730℃以上の温度域に1時間以上保持する熱延板焼鈍を施して、下記落錘曲げ試験における破断率が40%以下である熱延焼鈍板とする熱延板焼鈍工程;
(C)上記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
[落錘曲げ試験]
JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して1.2m高さから押金具を落錘させて規定の形に曲げる」とした試験であり、曲げ角度:90°かつ内側半径:5mmとした試験である。
【0031】
以下、本実施態様の無方向性電磁鋼板の製造方法における各工程について説明する。
【0032】
(1)熱間圧延工程
熱間圧延工程における仕上温度は700℃以上、巻取温度は300℃以上とする。仕上温度が上記範囲未満であったり、巻取温度が上記範囲未満であったりすると、熱間圧延時や巻取り時に鋼板表面に微小な損傷が導入されて、冷間圧延の後段パスで破断する場合がある。好ましくは、仕上温度は750℃以上、巻取温度は350℃以上である。仕上温度および巻取温度の上限は、冷間圧延性の観点からは特に規定する必要はないが、スケールロスによる歩留り低下を抑制する観点から、仕上温度は1000℃以下とすることが好ましく、巻取温度は800℃以下とすることが好ましい。
【0033】
熱延鋼板の板厚は1.4mm以上3.5mm以下とする。熱延鋼板の板厚が上記範囲未満では、エッジが損傷されて冷間圧延の後段パスで破断する場合がある。好ましくは1.6mm以上である。一方、熱延鋼板の板厚が上記範囲超では、冷間圧延に長時間要するようになり、製造コストが増加する。好ましくは3.0mm以下であり、さらに好ましくは2.5mm以下である。
【0034】
熱間圧延工程における他の条件は特に規定されるものではない。
【0035】
(2)熱延板焼鈍工程
熱延板焼鈍温度は730℃以上とする。熱延板焼鈍温度が上記範囲未満では、再結晶の促進が不十分となり、優れた磁気特性を得ることが困難である。好ましくは、750℃以上である。
一方、熱延板焼鈍温度が過度に高いと、上記落錘曲げ試験による破断率が高くなり、冷間圧延の前段パスにおいて破断が生じる場合がある。したがって、熱延板焼鈍温度は810℃以下とすることが好ましい。さらに好ましくは800℃以下、特に好ましくは790℃以下である。
なお、熱延板焼鈍温度が高くとも上記落錘曲げ試験による破断率が40%以下であれば、冷間圧延の前段パスにおける破断を効果的に防止することができる。
【0036】
熱延板焼鈍時間は1時間以上とする。熱延板焼鈍時間が上記範囲未満では、再結晶の促進が不十分となり、優れた磁気特性を得ることが困難である。好ましくは3時間以上である。熱延板焼鈍時間の上限は特に規定する必要はないが、過度に長時間とすると製造コストが嵩むため、50時間以下とすることが好ましい。さらに好ましくは40時間以下である。
【0037】
熱延焼鈍板の上記落錘曲げ試験による破断率は40%以下とする。上記破断率が上記範囲超では、冷間圧延の前段パスにおいて破断が生じる場合がある。上記破断率が上記範囲内であれば、上述したように熱延板焼鈍温度が高くとも冷間圧延の前段パスにおける破断を効果的に防止することができる。上記破断率は、好ましくは30%以下である。
【0038】
熱延板焼鈍工程における他の条件は特に規定されるものではない。
また、熱延板焼鈍の前または後に酸洗を施してもよい。
【0039】
(3)冷間圧延工程
Pを0.03%以上含有する鋼板を冷間圧延する際に生じる破断について詳細に調査した結果、約30%圧下された鋼板を冷間圧延する際に最も破断が生じやすいことが判明した。具体的には、1パス目の圧下率を約30%とすると、2パス目で破断し、2パス後の合計圧下率を約30%とすると、3パス目で破断した。この理由は明らかではないが、次の通りであると推察される。
すなわち、圧延後の鋼板の組織を詳細に調査したところ、約30%圧下された鋼板に導入された加工組織が最も不均一であるという結果が得られた。このことより、圧下率30%程度の鋼板を冷間圧延する際に最も破断しやくなったのは、不均一な加工組織が存在することにより、冷間圧延時に応力が集中したためであると推察される。
したがって、斯かる条件を回避するように冷間圧延の圧下率を設定することにより、冷間圧延時の破断を効果的に防止することができる。具体的には、1パス目の圧下率を10%以上25%以上、2パス後の合計圧下率を35%以上55%以下とするパススケジュールを採用することで、前段パスでの破断を回避できる。ここで、1パス目の圧下率の下限は生産性の観点から、上限は1パス目の圧延における破断を抑制する観点から、2パス後の合計圧下率の下限は上述した条件を回避する観点から、上限は設備負荷の観点から、それぞれ規定される。生産コストや板厚精度の観点からは、1パス目の圧下率は15%以上25%以下、2パス後の合計圧下率は35%以上50%以下とするのが好ましい。
【0040】
冷間圧延工程では、1回の冷間圧延によって仕上板厚としてもよく、中間焼鈍を挟む2回の冷間圧延によって仕上板厚としてもよい。
後者の場合、2回の冷間圧延が上記条件を満たせばよく、中間焼鈍条件は熱延板焼鈍条件と同じ条件を満たせばよい。
【0041】
冷延鋼板の板厚は薄いほど鉄損が低減されるため、0.35mm以下とする。好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させるため、板厚は0.10mm以上とする。好ましくは0.15mm以上である。
【0042】
冷間圧延工程における他の条件は特に規定されるものではない。
【0043】
(4)仕上焼鈍工程
仕上焼鈍工程における諸条件は特に規定されるものではないが、十分な粒成長を促して優れた磁気特性を確保する観点から、焼鈍温度は900℃以上とすることが好ましく、焼鈍時間は1秒間以上とすることが好ましい。一方、設備への負荷や製造コストの観点から、焼鈍温度は1180℃以下とすることが好ましく、焼鈍時間は300秒間以下とすることが好ましい。
【0044】
2.第2実施態様
本実施態様の無方向性電磁鋼板の製造方法は、下記工程(A)、(B2)、(C)および(D)を有することを特徴とする。
(A)上述の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B2)上記熱延圧延工程により得られた熱延鋼板に、730℃以上810℃以下の温度域に1時間以上保持する熱延板焼鈍を施して熱延焼鈍板とする熱延板焼鈍工程;
(C)上記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)上記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程
【0045】
なお、熱間圧延工程、冷間圧延工程および仕上焼鈍工程については、上記第1実施態様と同様であるので、ここでの説明は省略する。以下、本実施態様の無方向性電磁鋼板の製造方法における他の工程について説明する。
【0046】
(熱延板焼鈍工程)
熱延板焼鈍温度は730℃以上810℃以下とする。熱延板焼鈍温度が上記範囲未満では、再結晶の促進が不十分となり、優れた磁気特性を得ることが困難である。好ましくは、750℃以上である。一方、熱延板焼鈍温度が上記範囲超では、上記落錘曲げ試験による破断率が高くなり、冷間圧延の前段パスにおいて破断が生じる場合がある。好ましくは800℃以下、さらに好ましくは790℃以下である。
【0047】
なお、熱延板焼鈍時間については、上記第1実施態様と同様であるので、ここでの説明は省略する。
【0048】
熱延板焼鈍工程における他の条件は特に規定されるものではない。
また、熱延板焼鈍の前または後に酸洗を施してもよい。
【0049】
C.冷間圧延性の評価方法
次に、本発明の冷間圧延性の評価方法について説明する。
本発明の冷間圧延性の評価方法は、JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して所定の高さから押金具を落錘させて規定の形に曲げる」とした試験を行うことを特徴としている。
【0050】
本発明の冷間圧延性の評価方法によれば、実際の圧延における歪速度に近い条件で試験することができ、冷間圧延性を適切に評価することができる。
上記試験においては、落錘時の試験片に対する押金具の高さを1.2mとし、曲げ角度を90°かつ内側半径を5mmとすることが好ましい。実際の圧延における歪速度に近い条件とすることができ、前段パスで生じる破断の危険性を的確に評価することができるからである。
【0051】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【実施例】
【0052】
以下、実施例および比較例を例示して、本発明を具体的に説明する。
【0053】
[実施例1]
下記表1に示す化学組成を有するスラブに、仕上温度:800℃、巻取温度:500℃の熱間圧延を施して板厚2.0mmの熱延鋼板とし、酸洗を施した。これらの酸洗鋼板に790℃で10〜20時間保持する熱延板焼鈍を施して、結晶粒径を100μmに揃えた。これらの熱延焼鈍板に、1パス目の圧下率を22%、2パス後の合計圧下率を36%とした冷間圧延を施して仕上板厚0.25mmの冷延鋼板とした。このとき、一部は冷間圧延にて破断した。破断が生じなかった冷延鋼板に1100℃の温度で10秒間保持する仕上焼鈍を施して、平均結晶粒径97〜134μmの無方向性電磁鋼板とした。
【0054】
これらの無方向性電磁鋼板について、磁化力5000A/mで磁化した際の磁束密度B50を測定した。ここで、鋼板No.1はPがほとんど添加されていない基準材であり、この基準材のB50と鋼板No.2〜11のB50との差ΔB50を算出して、P添加によるB50の向上効果の大きさを評価した。ΔB50が大きくなるほどP添加によるB50の向上効果が大きくなることを意味している。また、P含有量が多いほどΔB50は大きくなるため、その点を考慮して、下記式(5)よりXを算出し、Xが0以上であることを目標特性とした。
X=ΔB50−0.4×(P−0.01) (5)
【0055】
また、冷間圧延に供する鋼板について、室温にて上述した落錘曲げ試験を行って破断率を測定した(n=20)。
下記表2に磁気特性と落錘曲げ試験での破断率を併せて示す。
【0056】
【表1】

【0057】
【表2】

【0058】
鋼板No.2はS含有量が低かったため、鋼板No.5はS+As+Nb+Ti+V+Zr+Nの合計含有量が高かったため、鋼板No.6はTi、N含有量が高かったため、鋼板No.7はNb、V含有量が高かったため、鋼板No.8はZr、N含有量が高かったため、鋼板No.9はAs、Ti含有量が高かったために、所望のP添加によるB50の向上効果を得られなかった。鋼板No.12はP含有量が多かったために、落錘曲げ試験での破断率が高く、冷間圧延にて破断した。
【0059】
[実施例2]
下記表3に示す化学組成を有するスラブに、熱間圧延を施して板厚1.6〜2.5mmの熱延鋼板とし、酸洗を施した。これらの酸洗鋼板に750〜790℃の温度で5〜30時間保持する熱延板焼鈍を施した。これらの焼鈍板に、1パス目の圧下率を18%、2パス後の合計圧下率を38%とする冷間圧延を施して仕上板厚0.20〜0.30mmの冷延鋼板とした。これらの冷延鋼板に950〜1130℃の温度で20〜90秒間保持する仕上焼鈍を施して、平均結晶粒径75〜156μmの無方向性電磁鋼板とした。
【0060】
これらの無方向性電磁鋼板について、磁束密度B50を測定した。ここで、鋼板No.13′は、鋼板No.13と同じ製造条件で製造されたものであり、Pがほとんど添加されておらず、鋼板No.13とはP含有量のみが異なり、P添加によるB50の向上効果の大きさを算出するための基準材に相当する。同様に、鋼板No.14′〜18′はそれぞれ鋼板No.14〜18の基準材に相当する。各基準材のB50と鋼板No.13〜18のB50との差ΔB50を算出した。また、上記式(5)よりXを算出し、Xが0以上であることを目標特性とした。
【0061】
また、熱延板焼鈍後の鋼板を用いて、室温にて上述した落錘曲げ試験を行って破断率を測定した(n=20)。
下記表4に、製造条件、平均結晶粒径、落錘曲げ試験での破断率、および磁気特性を示す。
【0062】
【表3】

【0063】
【表4】

【0064】
Si、sol.AlおよびMnの含有量、Sなどの不純物元素量、板厚、製造条件が所定の範囲内であれば、所望のP添加によるB50向上効果を得ることができた。
【0065】
[実施例3]
下記表5に示す化学組成を有するスラブを、熱間圧延にて1.2〜2.0mmの熱延鋼板とした。これらの熱延鋼板を酸洗後に、700〜820℃の温度域で15〜30時間保持する熱延板焼鈍を施した。これらの熱延焼鈍板に1パス目の圧下率を17〜30%、2パス目開始時の鋼板の温度を30〜60℃、2パス後の合計圧下率を30〜42%とした冷間圧延を施した。このとき、一部は冷間圧延にて破断した。破断しなかった冷延鋼板に1080℃の温度で20秒間保持する仕上焼鈍を施して平均結晶粒径108〜116μmの無方向性電磁鋼板とした。
【0066】
これらの無方向性電磁鋼板について、磁束密度B50を測定した。ここで、組成Bは、Pがほとんど添加されておらず、組成AとはP含有量のみが異なり、P添加によるB50改善効果を測定するための基準材に相当する。組成Bを用いて、組成Aを用いた鋼板No.19〜27とそれぞれ同じ製造条件で製造し、基準材とした。各基準材のB50と鋼板No.19〜27のB50との差ΔB50を算出した。また、上記式(5)よりXを算出し、Xが0以上であることを目標特性とした。
【0067】
また、熱延板焼鈍後の鋼板を用いて、室温にて上述した落錘曲げ試験を行って破断率を測定した(n=20)。
下記表6に、製造条件、落錘曲げ試験での破断率、平均結晶粒径、および磁気特性を併せて示す。
【0068】
【表5】

【0069】
【表6】

【0070】
鋼板No.19は熱間圧延での仕上温度と巻取温度が低かったため、鋼板No.20は熱延鋼板の板厚が薄かったために、冷間圧延の後段パスにて破断した。鋼板No.21は熱延板焼鈍温度が高かったために、落錘曲げ試験の破断率が所定の範囲外となり、冷間圧延の1パス目で破断した。鋼板No.22〜23は冷間圧延条件が所定の範囲外であったために、冷間圧延の前段パスにて破断した。鋼板No.24は熱延板焼鈍温度が低かったため、所望のP添加によるB50の向上効果を得ることができなかった。

【特許請求の範囲】
【請求項1】
質量%で、Si:2.0%以上3.5%以下、sol.Al:0.1%以上2.5%以下、Mn:0.05%以上2.5%以下、P:0.03%以上0.10%以下、S:0.0010%以上0.0050%以下、C:0.0050%以下、As:0.0050%以下、Nb:0.0030%以下、Ti:0.0030%以下、V:0.0030%以下、Zr:0.0030%以下およびN:0.0050%以下を含有し、残部がFeおよび不純物からなるとともに、下記式(1)および(2)を満足する化学組成を有し、平均結晶粒径が60μm以上180μm以下である鋼組織を有し、板厚が0.10mm以上0.35mm以下であることを特徴とする無方向性電磁鋼板。
Si+sol.Al+0.5×Mn≧3.3 (1)
S+As+Nb+Ti+V+Zr+N≦0.018 (2)
(ここで、式中の各元素記号は鋼中の各元素の含有量(単位:質量%)を示す。)
【請求項2】
下記工程(A)、(B1)、(C)および(D)を有することを特徴とする無方向性電磁鋼板の製造方法:
(A)請求項1に記載の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B1)前記熱延圧延工程により得られた熱延鋼板に、730℃以上の温度域に1時間以上保持する熱延板焼鈍を施して、下記落錘曲げ試験における破断率が40%以下である熱延焼鈍板とする熱延板焼鈍工程;
(C)前記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)前記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程。
[落錘曲げ試験]
JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して1.2m高さから押金具を落錘させて規定の形に曲げる」とした試験であり、曲げ角度:90°かつ内側半径:5mmとした試験である。
【請求項3】
下記工程(A)、(B2)、(C)および(D)を有することを特徴とする無方向性電磁鋼板の製造方法:
(A)請求項1に記載の化学組成を有するスラブに、仕上温度:700℃以上および巻取温度:300℃以上の熱間圧延を施して板厚が1.4mm以上3.5mm以下の熱延鋼板とする熱間圧延工程;
(B2)前記熱延圧延工程により得られた熱延鋼板に、730℃以上810℃以下の温度域に1時間以上保持する熱延板焼鈍を施して熱延焼鈍板とする熱延板焼鈍工程;
(C)前記熱延板焼鈍工程により得られた熱延焼鈍板に、1パス目の圧下率を10%以上25%以下、1パス目および2パス目の合計圧下率を35%以上55%以下とする、多パス冷間圧延を施して板厚0.10mm以上0.35mm以下の冷延鋼板とする冷間圧延工程;および
(D)前記冷間圧延工程により得られた冷延鋼板に仕上焼鈍を施す仕上焼鈍工程。
【請求項4】
JIS Z 2248:2006で規定するVブロック法において、「試験片の中央部に押金具を当て、徐々に試験力を加えて規定の形に曲げる」ことに代えて、「試験片の中央部に、試験片に対して所定の高さから押金具を落錘させて規定の形に曲げる」とした試験を行うことを特徴とする冷間圧延性の評価方法。

【公開番号】特開2013−44011(P2013−44011A)
【公開日】平成25年3月4日(2013.3.4)
【国際特許分類】
【出願番号】特願2011−181847(P2011−181847)
【出願日】平成23年8月23日(2011.8.23)
【出願人】(000006655)新日鐵住金株式会社 (6,474)
【Fターム(参考)】