説明

熱膨張性マイクロカプセル及び熱膨張性マイクロカプセルの製造方法

【課題】 本発明は、優れた耐熱性を有しつつ、高い発泡倍率を実現することが可能な熱膨張性マイクロカプセルを提供することを目的とする。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供することを目的とする。
【解決手段】 熱可塑性樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、上記シェルは、粘土鉱物を含有する熱膨張性マイクロカプセル。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、優れた耐熱性を有しつつ、高い発泡倍率を実現することが可能な熱膨張性マイクロカプセルに関する。また、本発明は、該熱膨張性マイクロカプセルの製造方法に関する。
【背景技術】
【0002】
熱膨張性マイクロカプセルは、意匠性付与剤や軽量化剤として幅広い用途に使用されており、発泡インク、壁紙をはじめとした軽量化を目的とした塗料等にも利用されている。
このような熱膨張性マイクロカプセルとしては、熱可塑性シェルポリマーの中に、シェルポリマーの軟化点以下の温度でガス状になる揮発性膨張剤が内包されているものが広く知られており、例えば、特許文献1には、低沸点の脂肪族炭化水素等の揮発性膨張剤をモノマーと混合した油性混合液を、油溶性重合触媒とともに分散剤を含有する水系分散媒体中に攪拌しながら添加し懸濁重合を行うことにより、揮発性膨張剤を内包する熱膨張性マイクロカプセルを製造する方法が開示されている。
【0003】
しかしながら、この方法によって得られた熱膨張性マイクロカプセルは、80〜130℃程度の比較的低温では、揮発性膨張剤のガス化によって熱膨張させることができるものの、高温又は長時間加熱すると、膨張したマイクロカプセルからガスが抜けることによって発泡倍率が低下するという問題があった。また、熱膨張性マイクロカプセルの耐熱性や強度の問題から、いわゆる「へたり」と呼ばれる現象が生じ、高温時に潰れてしまうことがあった。
【0004】
一方、特許文献2には、ニトリル含有モノマー85重量%以上含有するエチレン性不飽和モノマーから得られるポリマーシェルに、イソオクタンを50重量%以上含有する噴射剤を内包させた熱発泡性微小球体が開示されている。
このような熱発泡性微小球体は、ニトリル含有モノマーを用いることで、ガス抜けの問題はある程度解消されるものの、耐熱性は低く、依然としてへたりが発生していた。
【0005】
また、特許文献3には、重合性二重結合を2個以上有する重合性単量体と、アクリル酸アミドおよび/またはイソボルニルメタクリレートを含有し、80℃以上のガラス転移温度を有する単独重合体を形成し得る単量体10〜80重量%とからなる共重合体を殻とし、揮発性膨張剤を内包する熱膨張性マイクロカプセルが開示されている。
このような熱膨張性マイクロカプセルは、殻部分のガラス転移温度を高くすることで、耐熱性は向上するものの、ガス抜けの問題は解消されていなかった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特公昭42−26524号公報
【特許文献2】特許第3659497号
【特許文献3】特許第3659979号
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、優れた耐熱性を有しつつ、高い発泡倍率を実現することが可能な熱膨張性マイクロカプセルを提供することを目的とする。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、熱可塑性樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、上記シェルは、粘土鉱物を含有する熱膨張性マイクロカプセルである。
以下に本発明を詳述する。
【0009】
本発明の熱膨張性マイクロカプセルは、熱可塑性樹脂からなるシェルを有する。
上記熱可塑性樹脂としては、特に限定されないが、ニトリル系モノマー(I)を含有するモノマー混合物を重合させてなる樹脂であることが好ましい。
【0010】
上記ニトリル系モノマー(I)としては、例えば、アクリロニトリル、メタクリロニトリル、α−クロルアクリロニトリル、α−エトキシアクリロニトリル、フマロニトリル、又は、これらの混合物等が挙げられる。これらのなかでは、アクリロニトリル及びメタクリロニトリルが特に好ましい。
上記ニトリル系モノマー(I)を添加することで、シェルのガスバリア性を向上させることができる。
【0011】
上記モノマー混合物中のニトリル系モノマー(I)の含有量の好ましい下限は30重量%、好ましい上限は90重量%である。上記モノマー混合物中のニトリル系モノマー(I)の含有量が30重量%未満であると、シェルのガスバリア性が低くなるため発泡倍率が低下することがある。上記モノマー混合物中のニトリル系モノマー(I)の含有量が90重量%を超えると、耐熱性が上がってこないことがある。上記モノマー混合物中のニトリル系モノマー(I)の含有量のより好ましい下限は40重量%、より好ましい上限は80重量%である。
【0012】
上記モノマー混合物は、更にカルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(II)を含有することが好ましい。
上記カルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(II)としては、例えば、イオン架橋させるための遊離カルボキシル基を分子当たり1個以上持つものを用いることができ、具体的には例えば、アクリル酸、メタクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等の不飽和モノカルボン酸、マレイン酸、イタコン酸、フマル酸、シトラコン酸、クロロマレイン酸等の不飽和ジカルボン酸やその無水物又はマレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノブチル、フマル酸モノメチル、フマル酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノブチル等の不飽和ジカルボン酸のモノエステルやその誘導体が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。これらのなかでは、特にアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸が好ましい。
【0013】
上記モノマー混合物中における、上記カルボキシル基を有し、炭素数3〜8のラジカル重合性不飽和カルボン酸モノマー(II)の含有量の好ましい下限は10重量%、好ましい上限は50重量%である。上記ラジカル重合性不飽和カルボン酸モノマー(II)の含有量が10重量%未満であると、最大発泡温度が180℃以下となることがあり、上記ラジカル重合性不飽和カルボン酸モノマー(II)の含有量が50重量%を超えると、最大発泡温度は向上するものの、発泡倍率が低下する。上記ラジカル重合性不飽和カルボン酸モノマー(II)の含有量のより好ましい下限は10重量%、より好ましい上限は40重量%である。
【0014】
上記モノマー混合物は、分子内に二重結合を2つ以上有する重合性モノマー(III)を含有することが好ましい。上記重合性モノマー(III)は、架橋剤としての役割を有する。上記重合性モノマー(III)を含有することにより、シェルの強度を強化することができ、熱膨張時にセル壁が破泡し難くなる。
【0015】
上記重合性モノマー(III)としては、ラジカル重合性二重結合を2以上有するモノマーが挙げられ、具体例には例えば、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、分子量が200〜600のポリエチレングリコールのジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアリルホルマールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジメチロール−トリシクロデカンジ(メタ)アクリレート等が挙げられる。これらのなかでは、ポリエチレングリコール等の2官能性のものが、200℃を超える高温領域でも熱膨張したマイクロカプセルが収縮しにくく、膨張した状態を維持しやすいため、いわゆる「へたり」と呼ばれる現象を抑制することができ、好適に用いられる。
【0016】
上記モノマー混合物中における、上記重合性モノマー(III)の含有量の好ましい下限は0.1重量%、好ましい上限は3重量%である。上記重合性モノマー(III)の含有量が0.1重量%未満であると、架橋剤としての効果が発揮されないことがあり、上記重合性モノマー(III)を3重量%を超えて添加した場合、熱膨張性マイクロカプセルの粒子形状が歪なものとなり、結果として嵩比重が低下してしまう。上記重合性モノマー(III)の含有量のより好ましい下限は0.1重量%、より好ましい上限は1重量%である。
【0017】
上記モノマー混合物は、更に金属カチオン塩(IV)を含有してもよい。
上記金属カチオン塩(IV)を含有することで、上記ラジカル重合性不飽和カルボン酸モノマー(II)のカルボキシル基との間でイオン架橋が起こることから、架橋効率が上がり、耐熱性を高くすることが可能となる。その結果、高温領域において長時間破裂、収縮の起こらない熱膨張性マイクロカプセルとすることが可能となる。また、高温領域においてもシェルの弾性率が低下しにくいことから、強い剪断力が加えられる混練成形、カレンダー成形、押出成形、射出成形等の成形加工を行う場合であっても、熱膨張性マイクロカプセルの破裂、収縮が起こることがない。
また、共有結合でなくイオン架橋が起こることによって、熱膨張性マイクロカプセルの粒子形状が真球に近くなり、歪みが生じにくくなる。これは、イオン結合による架橋が、共有結合による架橋に比べて結合力が弱いため、重合中のモノマーからポリマーへ転化時において、熱膨張性マイクロカプセルの体積が収縮する際に均一に収縮が生じることが原因と考えられる。
【0018】
上記金属カチオン塩(IV)の金属カチオンとしては、上記ラジカル重合性不飽和カルボン酸モノマー(II)と反応してイオン架橋させる金属カチオンであれば、特に限定されず、例えば、Na、K、Li、Zn、Mg、Ca、Ba、Sr、Mn、Al、Ti、Ru、Fe、Ni、Cu、Cs、Sn、Cr、Pb等のイオンが挙げられる。これらのなかでは、2〜3価の金属カチオンであるCa、Zn、Alのイオンが好ましく、特にZnのイオンが好適である。これらの金属カチオン塩(IV)は、単独で用いても良く、2種以上を併用してもよい。
【0019】
上記モノマー混合物中における、上記金属カチオン塩(IV)の含有量の好ましい下限は0.1重量%、好ましい上限が10重量%である。上記金属カチオン塩(IV)の含有量が0.1重量%未満であると、耐熱性に効果が得られないことがあり、上記金属カチオン塩(IV)の含有量が10重量%を超えると、発泡倍率が著しく悪くなることがある。上記金属カチオン塩(IV)の含有量のより好ましい下限は0.5重量%、より好ましい上限は5重量%である。
【0020】
上記モノマー混合物中には、上記ニトリル系モノマー(I)、ラジカル重合性不飽和カルボン酸モノマー(II)等に加えて、これら以外の他のモノマーを添加してもよい。上記他のモノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ジシクロペンテニルアクリレート等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、イソボルニルメタクリレート等のメタクリル酸エステル類、塩化ビニル、塩化ビニリデン、酢酸ビニル、スチレン等のビニルモノマー等が挙げられる。これら他のモノマーは、熱膨張性マイクロカプセルに必要な特性に応じて適宜選択されて使用され得るが、これらのなかでメタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル等が好適に用いられる。シェルを構成する全モノマー中の他のモノマーの含有量は10重量%未満が好ましい。上記他のモノマーの含有量が10重量%を超えると、セル壁のガスバリア性が低下し、熱膨張性が悪化しやすいので好ましくない。
【0021】
上記モノマー混合物中には、上記モノマーを重合させるため、重合開始剤を含有させる。
上記重合開始剤としては、例えば、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート、アゾ化合物等が好適に用いられる。具体例には、例えば、メチルエチルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド等の過酸化ジアルキル、イソブチルパーオキサイド、ベンゾイルパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、3,5,5−トリメチルヘキサノイルパーオキサイド等の過酸化ジアシル、t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、1−シクロヘキシル−1−メチルエチルパーオキシネオデカノエート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、(α,α−ビス−ネオデカノイルパーオキシ)ジイソプロピルベンゼン等のパーオキシエステル、ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−n−プロピル−オキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ(2−エチルエチルパーオキシ)ジカーボネート、ジメトキシブチルパーオキシジカーボネート、ジ(3−メチル−3−メトキシブチルパーオキシ)ジカーボネート等のパーオキシジカーボネート、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)等のアゾ化合物等が挙げられる。
【0022】
上記シェルを構成する熱可塑性樹脂の重量平均分子量の好ましい下限は10万、好ましい上限は200万である。重量平均分子量が10万未満であると、シェルの強度が低下することがあり、重量平均分子量が200万を超えると、シェルの強度が高くなりすぎ、発泡倍率が低下することがある。
【0023】
上記シェルは、粘土鉱物を含有する。
上記粘土鉱物を含有することで、高温又は長時間加熱した場合でも、膨張したマイクロカプセルからガスが抜けず、高い発泡倍率を実現することができる。また、熱膨張性マイクロカプセルの耐熱性を向上させることができ、熱膨張性マイクロカプセルに「へたり」が生じて、高温時に潰れてしまうことを防止することができる。
【0024】
上記粘土鉱物としては特に限定されず、例えば、層間に交換性金属カチオンを有する層状珪酸塩等が挙げられる。
【0025】
上記層状珪酸塩としては、例えば、モンモリロナイト、ベントナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト等のスメクタイトやバーミキュライト、ハロイサイト、膨潤性マイカ(膨潤性雲母)等が挙げられ、なかでも、モンモリロナイト、ベントナイト及び/又は膨潤性マイカが好適に用いられる。これらの層状珪酸塩は、天然物であってもよいし、合成物であってもよい。また、これらの層状珪酸塩は、単独で用いられてもよく、2種以上が併用されてもよい。なお、本発明で用いられる層状珪酸塩とは、層間に交換性金属カチオンを有する珪酸塩鉱物を意味する。
【0026】
上記層状珪酸塩としては、下記式(1)で定義される形状異方性の大きいスメクタイトや膨潤性マイカを用いることが好ましい。形状異方性の大きい層状珪酸塩を用いることにより、形成されるシェルはより優れた強度を有するものとなる。
形状異方性=結晶表面(A)の面積/結晶側面(B)の面積 (1)
式中、結晶表面(A)は層表面を意味し、結晶側面(B)は層側面を意味する。
【0027】
上記層状珪酸塩の結晶層間に存在する交換性金属カチオンとは、層状珪酸塩の結晶表面上に存在するナトリウムイオンやカルシウムイオン等の金属イオンのことであり、これらの金属イオンは、他のカチオン性物質とのカチオン交換性を有するため、カチオン性を有する種々の物質を層状珪酸塩の結晶層間に挿入(インターカレート)もしくは補足することができる。
【0028】
上記層状珪酸塩のカチオン交換容量は、特に限定されず、50〜200ミリ等量/100gであることが好ましい。層状珪酸塩のカチオン交換容量が50ミリ等量/100g未満であると、カチオン交換により層状珪酸塩の結晶層間に挿入もしくは補足されるカチオン性物質の量が少なくなるために、結晶層間が充分に非極性化(疎水化)されないことがあり、逆に層状珪酸塩のカチオン交換容量が200ミリ等量/100gを超えると、層状珪酸塩の結晶層間の結合力が強固になりすぎて、結晶薄片が剥離しにくくなることがある。
【0029】
本発明の熱膨張性マイクロカプセルでは、上記熱可塑性樹脂からなるシェル中に上記層状珪酸塩をできる限り均一に分散させることが好ましい。このような均一分散を実現するためには、予め上記層状珪酸塩の結晶層間をカチオン性界面活性剤でカチオン交換して、非極性化しておくことが好ましい。予め層状珪酸塩の結晶層間を非極性化しておくことにより、層状珪酸塩を熱可塑性樹脂からなるシェル中により均一に微分散させることができる。
【0030】
上記カチオン性界面活性剤としては特に限定されず、例えば、4級アンモニウム塩や4級ホスホニウム塩等が挙げられ、なかでも、層状珪酸塩の結晶層間を充分に非極性化しうることから、炭素数6以上のアルキル鎖を1個以上有する4級アンモニウム塩(炭素数6以上のアルキルアンモニウム塩)が好適に用いられる。これらのカチオン性界面活性剤は、単独で用いられてもよく、2種以上が併用されてもよい。
【0031】
上記4級アンモニウム塩としては、特に限定されず、例えば、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、トリオクチルメチルアンモニウム塩、ジステアリルジメチルアンモニウム塩、ジ硬化牛脂ジメチルアンモニウム塩、ジステアリルジベンジルアンモニウム塩、N−ポリオキシエチレン−N−ラウリル−N,N−ジメチルアンモニウム塩、ステアリルベンジルジメチルアンモニウム塩、ジオクタデシルジメチルアンモニウム塩、オレイルビス(2−ヒドロキシエチル)メチルアンモニウム塩等が挙げられる。これらの4級アンモニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。
【0032】
上記4級ホスホニウム塩としては、特に限定されず、例えば、ドデシルトリフェニルホスホニウム塩、メチルトリフェニルホスホニウム塩、ラウリルトリメチルホスホニウム塩、ステアリルトリメチルホスホニウム塩、トリオクチルメチルホスホニウム塩、ジステアリルジメチルホスホニウム塩、ジステアリルジベンジルホスホニウム塩等が挙げられる。これらの4級ホスホニウム塩は、単独で用いられてもよく、2種以上が併用されてもよい。
【0033】
上記層状珪酸塩は、上述のような化学処理を施すことによって熱可塑性樹脂からなるシェル中への分散性を向上させることができる。
上記層状珪酸塩の化学処理は、上記カチオン性界面活性剤によるカチオン交換法(以下、「化学修飾(1)法」ともいう)に限定されるものではなく、例えば、以下に示す化学修飾(2)法〜化学修飾(6)法の各種化学処理法によっても実施することができる。これらの化学修飾法は、単独で用いられてもよく、2種以上が併用されてもよい。なお、化学修飾(1)法を含め、以下に示す各種化学処理法によってシェル中での分散性を向上させた層状珪酸塩を、以下、「有機化層状珪酸塩」ともいう。
【0034】
化学修飾(2)法は、化学修飾(1)法で化学処理された有機化層状珪酸塩の結晶表面に存在する水酸基を、これと化学結合し得る官能基又は化学結合はしなくとも化学的親和力の大きい官能基を分子末端に1個以上有する化合物で化学処理する方法である。
【0035】
化学修飾(3)法は、化学修飾(1)法で化学修飾された有機化層状珪酸塩の結晶表面に存在する水酸基を、これと化学結合し得る官能基又は化学結合はしなくとも化学的親和力の大きい官能基及び反応性官能基を分子末端に1個以上有する化合物で化学処理する方法である。
【0036】
化学修飾(4)法は、化学修飾(1)法で化学処理された有機化層状珪酸塩の結晶表面を、アニオン性界面活性を有する化合物で化学処理する方法である。
化学修飾(5)法は、化学修飾(4)法において、アニオン性界面活性を有し分子鎖中のアニオン部位以外に反応性官能基を1個以上有する化合物で化学処理する方法である。
化学修飾(6)法は、上記化学修飾(1)法〜化学修飾(5)法のいずれかの方法で化学処理された有機化層状珪酸塩に、更に、例えば、無水マレイン酸変性ポリオレフィン系樹脂のような有機化層状珪酸塩と反応可能な官能基を有する樹脂を添加した組成物を用いる方法である。
【0037】
上記化学修飾(2)法における、水酸基と化学結合し得る官能基又は化学結合はしなくとも化学的親和力の大きい官能基としては、特に限定されず、例えば、アルコキシル基、グリシジル基(エポキシ基)、カルボキシル基(二塩基性酸無水物も含む)、水酸基、イソシアネート基、アルデヒド基等の官能基や、水酸基との化学的親和力が高いその他の官能基等が挙げられる。これらの官能基は、単独で用いられてもよく、2種以上が併用されてもよい。
【0038】
また、上記水酸基と化学結合しうる官能基又は化学結合はしなくとも化学的親和力の大きい官能基を有する化合物としては、特に限定されず、例えば、上記例示の官能基を有するシラン化合物、チタネート化合物、グリシジル化合物、カルボン酸類、アルコール類等が挙げられ、なかでもシラン化合物が好適に用いられる。これらの化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
【0039】
上記シラン化合物としては、特に限定されず、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトシキ)シラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルジメチルメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アミノプロピルジメチルエトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。これらのシラン化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
【0040】
化学修飾(4)法及び化学修飾(5)法における、アニオン性界面活性を有する化合物又はアニオン性界面活性を有し分子鎖中のアニオン部位以外に反応性官能基を1個以上有する化合物としては、イオン相互作用により層状珪酸塩を化学処理できるものであれば特に限定されず、例えば、ラウリル酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム、高級アルコール硫酸エステル塩、第2級高級アルコール硫酸エステル塩、不飽和アルコール硫酸エステル塩等が挙げられる。これらの化合物は、単独で用いられてもよく、2種以上が併用されてもよい。
また、化学修飾(6)法としては、例えば、無水マレイン酸変性ポリオレフィン系樹脂のような有機化層状珪酸塩と反応可能な官能基を有する樹脂を分散剤として添加した組成物を用いる方法が挙げられる。これは、有機化層状珪酸塩と化学的親和性が大きい部位と、硬化性成分からなる樹脂との化学的親和力が大きい部位とを有する樹脂を分散剤として混合することにより両者の相溶性を高め、層状珪酸塩の分散に必要なエネルギーを低下させる方法である。
【0041】
上記分散剤として用いられる有機化層状珪酸塩と反応可能な官能基を有する樹脂としては、特に限定されず、例えば、無水マレイン酸変性ポリオレフィン系オリゴマーや無水マレイン酸変性ポリオレフィン系ポリマー等が挙げられ、なかでも、両端が異なる性質を有するA−B型ジブロックオリゴマーやA−B型ジブロックポリマー等が好適に用いられる。すなわち、有機化層状珪酸塩との化学的親和力が大きい部位(Aサイト)と硬化性成分からなる樹脂との化学的親和性の高い部位(Bサイト)との異なる性質を両端に有するA−B型樹脂は、それぞれの化学的親和性を効率的に発揮しやすいことから、優れた分散効果を発現する。
【0042】
上記A−B型樹脂を用いて高分散状態を得る方法としては、特に限定されず、例えば、硬化性成分、有機化層状珪酸塩及び分散剤として機能するA−B型樹脂を押出機中で一括して溶融混練することが挙げられる。
【0043】
上記層状珪酸塩は、得られる熱膨張性マイクロカプセルのシェルにおいて、一部又は全部が10層以下に分散していることが好ましい。
上記層状珪酸塩の一部又は全部が10層以下に分散しているということは、本来数十層の積層体である層状珪酸塩の層状分子の一部又は全部が剥離して広く分散していることを意味しており、これも層状珪酸塩の結晶薄片層間における相互作用が弱まっていることになり、上記と同様の効果を得ることができる。また、層状珪酸塩の積層数は、5層以下に分層していることが好ましく、3層以下に分層していることがより好ましい。更に好ましくは単層状(薄片状)に分散していることである。
【0044】
また、層状珪酸塩の一部又は全部が10層以下に分散しているということは、具体的には、層状珪酸塩の集合体の10%以上が10層以下に分散している状態にあることが好ましいことを意味し、より好ましくは層状珪酸塩の集合体の20%以上が10層以下に分散している状態である。
なお、層状珪酸塩の分散状態は、透過型電子顕微鏡により5万倍から10万倍の倍率で観察して、一定面積中において観察できる層状珪酸塩の積層集合体の数(X)のうち、10層以下に分散している積層集合体の数(Y)をカウントし、下記式(2)により算出することができる。
10層以下に分散している層状珪酸塩の割合(%)=(Y/X)×100 (2)
【0045】
上記層状珪酸塩は、広角X線回折法により測定した(001)面の平均層間距離が3nm以上であることが好ましい。
なお、本明細で言う、層状珪酸塩の平均層間距離とは、層状珪酸塩の微細薄片状結晶を層とした場合の平均の層間距離を意味し、X線回折ピーク及び透過型電子顕微鏡撮影により、すなわち、広角X線回折法により算出することができる。
また、上記平均層間距離は、6nm以上であることが好ましい。層状珪酸塩の結晶薄片層間の平均層間距離が6nm以上であると、層状珪酸塩の結晶薄片層が層ごとに分離し、層状珪酸塩の結晶薄片層間における相互作用がほとんど無視できるほどに弱まるので、層状珪酸塩を構成する結晶薄片のシェル中での分散状態が離砕安定化の方向に進行する利点がある。
【0046】
上記層状珪酸塩を含む粘土鉱物は、シェル中における分散径が0.001〜5μmであることが好ましい。上記分散径が0.001μm未満であると、ガス抜けを防止する効果や、耐熱性が不充分となることがあり、上記分散径が5μmを超えると、逆に発泡倍率が低下することがある。
【0047】
上記粘土鉱物の形状としては特に限定されないが、平均長さが0.01〜3μm、厚みが0.001〜1μm、アスペクト比が20〜500であることが好ましく、より好ましくは、平均長さが0.05〜2μm、厚みが0.01〜0.5μm、アスペクト比が50〜200である。
【0048】
上記粘土鉱物の含有量の好ましい下限は0.01重量%、好ましい上限は10重量%である。上記粘土鉱物の含有量が0.01重量%未満であると、ガス抜けを防止する効果や、耐熱性が不充分となることがあり、10重量%を超えると、シェルの形成が困難となることがある。上記粘土鉱物の含有量のより好ましい下限は0.1重量%、より好ましい上限は2.0重量%である。
【0049】
上記シェルは、更に必要に応じて、安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、難燃剤、シランカップリング剤、色剤等を含有していてもよい。
【0050】
本発明の熱膨張性マイクロカプセルは、熱機械分析で測定した最大変位量(Dmax)の好ましい下限が300μmである。上記最大変位量が300μm未満であると、発泡倍率が低下し、所望の発泡性能が得られない。上記最大変位量のより好ましい下限は400μmである。
なお、上記最大変位量は、所定量の熱膨張性マイクロカプセルを常温から加熱しながらその高さ方向の変位を測定したときに、所定量全体の熱膨張性マイクロカプセルの高さ方向の変位が最大となるときの値をいう。
【0051】
本発明の熱膨張性マイクロカプセルは、最大発泡温度(Tmax)の好ましい下限が150℃である。上記最大発泡温度が150℃未満であると、耐熱性が低くなることから、高温領域や成形加工時において、熱膨張性マイクロカプセルが破裂、収縮することがある。上記最大発泡温度のより好ましい下限は180℃である。
【0052】
本発明の熱膨張性マイクロカプセルは、発泡開始温度(Ts)の好ましい上限が180℃である。上記発泡開始温度が180℃を超えると特に射出成形の場合、発泡倍率が上がらないことがある。上記発泡開始温度の好ましい下限は130℃、より好ましい上限は160℃である。
なお、本明細書において、最大発泡温度は、熱膨張性マイクロカプセルを常温から加熱しながらその高さ方向の変位を測定したときに、熱膨張性マイクロカプセルが最大変位量となったときにおける温度を意味する。
【0053】
本発明の熱膨張性マイクロカプセルは、上記シェルにコア剤として揮発性膨張剤が内包されている。
上記揮発性膨張剤は、シェルを構成するポリマーの軟化点以下の温度でガス状になる物質であり、低沸点有機溶剤が好適である。
上記揮発性膨張剤としては、例えば、エタン、エチレン、プロパン、プロペン、n−ブタン、イソブタン、ブテン、イソブテン、n−ペンタン、イソペンタン、ネオペンタン、n−へキサン、ヘプタン、石油エーテル等の低分子量炭化水素、CClF、CCl、CClF、CClF−CClF等のクロロフルオロカーボン、テトラメチルシラン、トリメチルエチルシラン、トリメチルイソプロピルシラン、トリメチル−n−プロピルシラン等のテトラアルキルシラン等が挙げられる。なかでも、イソブタン、n−ブタン、n−ペンタン、イソペンタン、n−へキサン、石油エーテル、及び、これらの混合物が好ましい。これらの揮発性膨張剤は単独で用いてもよく、2種以上を併用してもよい。
【0054】
本発明の熱膨張性マイクロカプセルでは、上述した揮発性膨張剤のなかでも、炭素数が5以下の低沸点炭化水素を用いることが好ましい。このような炭化水素を用いることにより、発泡倍率が高く、速やかに発泡を開始する熱膨張性マイクロカプセルとすることができる。
また、揮発性膨張剤として、加熱により熱分解してガス状になる熱分解型化合物を用いることとしてもよい。
【0055】
本発明の熱膨張性マイクロカプセルにおいて、コア剤として用いる揮発性膨張剤の含有量の好ましい下限は10重量%、好ましい上限は40重量%である。
上記シェルの厚みはコア剤の含有量によって変化するが、コア剤の含有量を減らして、シェルが厚くなり過ぎると発泡性能が低下し、コア剤の含有量を多くすると、シェルの強度が低下する。上記コア剤の含有量を10〜40重量%とした場合、熱膨張性マイクロカプセルのへたり防止と発泡性能向上とを両立させることが可能となる。
【0056】
本発明の熱膨張性マイクロカプセルの体積平均粒子径の好ましい下限は5μm、好ましい上限は100μmである。上記熱膨張性マイクロカプセルの体積平均粒子径が5μm未満であると、得られる成形体の気泡が小さすぎるため、成形体の軽量化が不充分となることがあり、上記熱膨張性マイクロカプセルの体積平均粒子径が100μmを超えると、得られる成形体の気泡が大きくなりすぎるため、強度等の面で問題となることがある。上記熱膨張性マイクロカプセルの体積平均粒子径のより好ましい下限は10μm、より好ましい上限は70μmである。
【0057】
本発明の熱膨張性マイクロカプセルを製造する方法としては特に限定されないが、例えば、水性媒体を調製する工程、重合性モノマー、揮発性膨張剤及び粘土鉱物を含有する油性混合液を水性媒体中に分散させる工程、並びに、前記重合性モノマーを重合させる工程を行うことにより製造することができる。
【0058】
本発明の熱膨張性マイクロカプセルを製造する場合、最初に水性媒体を調製する工程を行う。具体例には例えば、重合反応容器に、水と分散安定剤、必要に応じて補助安定剤を加えることにより、分散安定剤を含有する水性分散媒体を調製する。また、必要に応じて、亜硝酸アルカリ金属塩、塩化第一スズ、塩化第二スズ、重クロム酸カリウム等を添加してもよい。
【0059】
上記分散安定剤としては、例えば、シリカ、リン酸カルシウム、水酸化マグネシウム、水酸化アルミニウム、水酸化第二鉄、硫酸バリウム、硫酸カルシウム、硫酸ナトリウム、シュウ酸カルシウム、炭酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム等が挙げられる。
【0060】
上記分散安定剤の添加量は特に限定されず、分散安定剤の種類、熱膨張性マイクロカプセルの粒子径等により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.1重量部、好ましい上限が20重量部である。
【0061】
上記補助安定剤としては、例えば、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物、尿素とホルムアルデヒドとの縮合生成物、ポリビニルピロリドン、ポリエチレンオキサイド、ポリエチレンイミン、テトラメチルアンモニウムヒドロキシド、ゼラチン、メチルセルロース、ポリビニルアルコール、ジオクチルスルホサクシネート、ソルビタンエステル、各種乳化剤等が挙げられる。
【0062】
また、上記分散安定剤と補助安定剤との組み合わせとしては特に限定されず、例えば、コロイダルシリカと縮合生成物との組み合わせ、コロイダルシリカと水溶性窒素含有化合物との組み合わせ、水酸化マグネシウム又はリン酸カルシウムと乳化剤との組み合わせ等が挙げられる。これらの中では、コロイダルシリカと縮合生成物との組み合わせが好ましい。
更に、上記縮合生成物としては、ジエタノールアミンと脂肪族ジカルボン酸との縮合生成物が好ましく、特にジエタノールアミンとアジピン酸との縮合物やジエタノールアミンとイタコン酸との縮合生成物が好ましい。
【0063】
上記水溶性窒素含有化合物としては、例えば、ポリビニルピロリドン、ポリエチレンイミン、ポリオキシエチレンアルキルアミン、ポリジメチルアミノエチルメタクリレートやポリジメチルアミノエチルアクリレートに代表されるポリジアルキルアミノアルキル(メタ)アクリレート、ポリジメチルアミノプロピルアクリルアミドやポリジメチルアミノプロピルメタクリルアミドに代表されるポリジアルキルアミノアルキル(メタ)アクリルアミド、ポリアクリルアミド、ポリカチオン性アクリルアミド、ポリアミンサルフォン、ポリアリルアミン等が挙げられる。これらのなかでは、ポリビニルピロリドンが好適に用いられる。
【0064】
上記コロイダルシリカの添加量は、熱膨張性マイクロカプセルの粒子径により適宜決定されるが、ビニル系モノマー100重量部に対して、好ましい下限が1重量部、好ましい上限が20重量部である。より好ましい下限は2重量部、より好ましい上限は10重量部である。また、上記縮合生成物又は水溶性窒素含有化合物の量についても熱膨張性マイクロカプセルの粒子径により適宜決定されるが、モノマー100重量部に対して、好ましい下限が0.05重量部、好ましい上限が2重量部である。
【0065】
上記分散安定剤及び補助安定剤に加えて、更に塩化ナトリウム、硫酸ナトリウム等の無機塩を添加してもよい。無機塩を添加することで、より均一な粒子形状を有する熱膨張性マイクロカプセルが得ることができる。上記無機塩の添加量は、通常、モノマー100重量部に対して0〜100重量部が好ましい。
【0066】
上記分散安定剤を含有する水性分散媒体は、分散安定剤や補助安定剤を脱イオン水に配合して調製され、この際の水相のpHは、使用する分散安定剤や補助安定剤の種類によって適宜決められる。例えば、分散安定剤としてコロイダルシリカ等のシリカを使用する場合は、酸性媒体で重合がおこなわれ、水性媒体を酸性にするには、必要に応じて塩酸等の酸を加えて系のpHが3〜4に調製される。一方、水酸化マグネシウム又はリン酸カルシウムを使用する場合は、アルカリ性媒体の中で重合させる。
【0067】
次いで、熱膨張性マイクロカプセルを製造する方法では、重合性モノマー、揮発性膨張剤及び粘土鉱物を含有する油性混合液を水性媒体中に分散させる工程を行う。この工程では、重合性モノマー、揮発性膨張剤、及び、粘土鉱物を別々に水性分散媒体に添加して、水性分散媒体中で油性混合液を調製してもよいが、通常は、予め重合性モノマー、揮発性膨張剤を混合した後、粘土鉱物を添加し油性混合液としてから、水性分散媒体に添加する。この際、油性混合液と水性分散媒体とを予め別々の容器で調製しておき、別の容器で攪拌しながら混合することにより油性混合液を水性分散媒体に分散させた後、重合反応容器に添加しても良い。なお、上記重合性モノマーとしては、上記ニトリル系モノマー(I)、カルボキシル基を有し、炭素数が3〜8のラジカル重合性不飽和カルボン酸モノマー(II)、分子内に二重結合を2つ以上有する重合性モノマー(III)等を用いることができる。
また、上記重合性モノマーを重合するために、重合開始剤が使用されるが、上記重合開始剤は、予め上記油性混合液に添加してもよく、水性分散媒体と油性混合液とを重合反応容器内で攪拌混合した後に添加してもよい。
【0068】
上記油性混合液を水性分散媒体中に所定の粒子径で乳化分散させる方法としては、ホモミキサー(例えば、特殊機化工業社製)等により攪拌する方法や、ラインミキサーやエレメント式静止型分散器等の静止型分散装置を通過させる方法等が挙げられる。
なお、上記静止型分散装置には水系分散媒体と重合性混合物を別々に供給してもよいし、予め混合、攪拌した分散液を供給してもよい。
【0069】
本発明の熱膨張性マイクロカプセルは、上述した工程を経て得られた分散液を、例えば、加熱することによりモノマーを重合させる工程を行うことにより、製造することができる。このような方法により製造された熱膨張性マイクロカプセルは、発泡倍率が高く、耐熱性に優れ、高温領域や成形加工時においても破裂、収縮することがない。
【0070】
本発明の熱膨張性マイクロカプセルを用いて得られる発泡成形体は、高外観品質が得られ、独立気泡が均一に形成されており、軽量性、断熱性、耐衝撃性、剛性等に優れるものとなり、住宅用建材、自動車用部材、靴底等の用途に好適に用いることができる。
【発明の効果】
【0071】
本発明によれば、優れた耐熱性を有しつつ、高い発泡倍率を実現することが可能な熱膨張性マイクロカプセルを提供できる。また、本発明は、該熱膨張性マイクロカプセルの製造方法を提供できる。
【発明を実施するための形態】
【0072】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0073】
(実施例1〜2、比較例1〜3)
(熱膨張性マイクロカプセルの作製)
重合反応容器に、水8Lと、分散安定剤としてコロイダルシリカ(旭電化社製)10重量部及びポリビニルピロリドン(BASF社製)0.3重量部と、1N塩酸0.7重量部とを投入し、水性分散媒体を調製した。次いで、表1に示した配合量のモノマー、架橋剤、揮発性膨張剤及び重合開始剤からなる油性混合液に、表1に示した種類の粘土鉱物を添加した後、更に水性分散媒体に添加することにより、分散液を調製した。得られた分散液をホモジナイザーで攪拌混合し、窒素置換した加圧重合器(20L)内へ仕込み、加圧(0.2MPa)し、60℃で20時間反応させることにより、反応生成物を調製した。得られた反応生成物について、ろ過と水洗を繰り返した後、乾燥して熱膨張性マイクロカプセルを得た。
なお、粘土鉱物としては、ルーセントSTN(層状珪酸塩、コープケミカル社製)、ソマシフMTE(層状珪酸塩、コープケミカル社製)を用いた。
【0074】
(評価)
実施例1〜2、比較例1〜3で得られた熱膨張性マイクロカプセルについて、下記の評価を行った。結果を表2に示した。
【0075】
(1)粘土鉱物の確認
(1−1)含有率
得られた熱膨張性マイクロカプセルを約0.5g計量し、600℃で5時間燃焼させ、灰分を得た。その後、得られた灰分について、蛍光X線測定を行い、灰分中のMg元素の比率(Z%)を測定した。測定した熱膨張性マイクロカプセルの重量(Xg)、灰分の重量(Yg)から、下記(3)に従って粘土鉱物の含有率を算出した。
粘土鉱物の含有率(重量%)=(Y/X)×Z (3)
【0076】
(1−2)存在部位
得られた熱膨張性マイクロカプセルのシェル断面について、SEM−EDS(HORIBA社製)を用いて、Mg成分のマッピング画像を出力し、Mg成分の有無を確認した。
更に、シェル内でMg成分が凝集した状態で存在しているか、均一に分散した状態で存在しているかを目視で確認した。
【0077】
(1−3)粒子径
上記(1−2)で得られたMg成分のマッピング画像を用いて、粘土鉱物の粒子径をノギスを用いて測定した。なお、粒子径は長径と短径の平均とし、50個の粒子径の平均値を算出した。
【0078】
(1−4)種類
上記(1−1)で行った蛍光分析の結果を参照して、Na、K、Ca、Li、Si、Fe、Al、Mg等の組成比から粘土鉱物の種類を確認した。
【0079】
(2)熱膨張性マイクロカプセルの性能評価
(2−1)発泡倍率
得られた熱膨張性マイクロカプセルを約0.1g計量し、10mLのメスシリンダーに入れた。その後、150℃に加熱したオーブンに5分間投入し、メスシリンダー内で膨張した熱膨張性マイクロカプセルの容積を測定した。8mL以上である場合を◎、5mL以上8mL未満である場合を○、2mL以上5mL未満である場合を△、2mL未満である場合を×とした。
【0080】
(2−2)へたり
上記(2−1)で測定した試料を更に200℃に加熱したオーブンに10分間投入し、メスシリンダー内の粒子の容積(H)を測定し、(2−1)で測定した容積(L)に対する比(H/L)を算出した。H/Lが0.8以上である場合を◎、H/Lが0.6以上0.8未満である場合を○、H/Lが0.4以上0.6未満である場合を△、H/Lが0.4未満である場合を×とした。
【0081】
【表1】

【0082】
【表2】

【0083】
表2に示すように、実施例1〜2で得られた熱膨張性マイクロカプセルは、へたりが生じず高い耐熱性を有していることがわかる。また、実施例1〜2で得られた熱膨張性マイクロカプセルは、発泡倍率が高いことから、良好な発泡性能を有することがわかる。
これに対して、比較例1〜3で得られた熱膨張性マイクロカプセルは、発泡倍率が低く、へたりが発生していることがわかる。
【産業上の利用可能性】
【0084】
本発明によれば、優れた耐熱性を有しつつ、高い発泡倍率を実現することが可能な熱膨張性マイクロカプセルを提供できる。また、本発明によれば、該熱膨張性マイクロカプセルの製造方法を提供できる。

【特許請求の範囲】
【請求項1】
熱可塑性樹脂からなるシェルに、コア剤として揮発性膨張剤が内包された熱膨張性マイクロカプセルであって、前記シェルは、粘土鉱物を含有することを特徴とする熱膨張性マイクロカプセル。
【請求項2】
粘土鉱物の含有量が0.01〜10重量%であることを特徴とする請求項1記載の熱膨張性マイクロカプセル。
【請求項3】
粘土鉱物は、層状珪酸塩であることを特徴とする請求項1又は2記載の熱膨張性マイクロカプセル。
【請求項4】
粘土鉱物は、スメクタイト、ベントナイト又は膨潤性マイカであることを特徴とする請求項1、2又は3記載の熱膨張性マイクロカプセル。
【請求項5】
粘土鉱物は、非極性化されていることを特徴とする請求項1、2、3又は4記載の熱膨張性マイクロカプセル。
【請求項6】
粘土鉱物のシェル中における分散径が0.001〜5μmであることを特徴とする請求項1、2、3、4又は5記載の熱膨張性マイクロカプセル。
【請求項7】
請求項1、2、3、4、5又は6記載の熱膨張性マイクロカプセルを製造する方法であって、水性媒体を調製する工程、重合性モノマー、揮発性膨張剤及び粘土鉱物を含有する油性混合液を水性媒体中に分散させる工程、並びに、前記重合性モノマーを重合させる工程を有することを特徴とする熱膨張性マイクロカプセルの製造方法。

【公開番号】特開2010−185045(P2010−185045A)
【公開日】平成22年8月26日(2010.8.26)
【国際特許分類】
【出願番号】特願2009−31523(P2009−31523)
【出願日】平成21年2月13日(2009.2.13)
【出願人】(000002174)積水化学工業株式会社 (5,781)
【Fターム(参考)】