説明

燃焼タービンエンジンにおける燃料送給に関連する方法及びシステム

【課題】燃料圧縮機を少なくとも間欠的に用いるシステムにおいて燃料の温度を効果的及び効率的に制御する改良された装置、方法及び/又はシステムを提供すること。
【解決手段】燃焼タービンエンジン用の燃料送給システムであって、燃料圧縮機(39)並びにアフタークーラー(51)を有する低温ブランチ(55)及び該アフタークーラー(51)をバイパスする高温ブランチ(60)である、燃料圧縮機(39)の下流側にある並列ブランチを有する燃料管路(50)と、燃料源からの燃料の発熱量を測定し、該測定値に関する発熱量データを伝達するよう構成された高速発熱量メーター(83)と、低温ブランチ(55)を通って配向される燃料の量及び高温ブランチ(60)通って配向される燃料の量を制御する手段と、低温ブランチ(55)及び高温ブランチ(60)が合流する燃料混合接合部(64)と、を備え、燃料混合接合部(64)が燃焼ガス制御バルブ(66)に近接して位置付けられる、燃料送給システム。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、燃焼タービンエンジンの効率、性能、及び作動を向上させる方法、システム、及び装置に関する。特に記載のない限り、本明細書で使用される燃焼タービンエンジンは、航空機エンジン、発電プラントのエンジン、及びその他を含む燃焼タービン又は回転エンジンの全てのタイプを含むものとする。より具体的には、限定ではないが、本出願は、燃焼タービンエンジンにおける燃料送給に関連する方法、システム及び装置に関する。
【背景技術】
【0002】
一般に、ガスタービンエンジンは、圧縮機、燃焼器、及びタービンを含む。圧縮機及びタービンは一般に、軸方向に多段にスタックされたブレードの列を含む。各段は、円周方向に離間して固定されるステータブレードの列と、中心軸又はシャフトの回りを回転するロータブレードの列とを含む。作動中、圧縮機ロータブレードは一般に、シャフトの回りを回転し、ステータブレードと協働して空気流を加圧する。次いで、供給加圧空気は、燃焼器内で供給燃料を燃焼させるために使用される。結果として生じた高温燃焼ガスの流れは、タービンセクションを通って膨張する。タービンを通る作動流体の流れはロータブレードを回転させるよう誘起する。ロータブレードは中心シャフトに接続され、該ロータブレードの回転によりシャフトが回転するようになる。このようにして、燃料に含まれるエネルギーは、回転シャフトの機械エネルギーに変換され、例えば、この機械エネルギーを用いて圧縮機のロータブレードを回転させて燃焼に必要な供給加圧空気を生成するようにし、更に、発電機のコイルを回転させて電力を発生させるようにすることができる。
【0003】
供給燃料を予熱し、燃焼器に高温で送給できるようにすることは、当該技術分野で公知である。幾つかの理由により、加熱した燃料はエンジン作動の効率を向上させる。場合によっては、燃料特性の変化に基づいて燃料温度を変える必要がある。しかしながら、従来の燃料送給システムには、燃焼器に送給するときに燃料の温度を正確に制御する上での問題又は遅延を生じる特定の限界がある。このことは、許容可能でない温度で燃料が送給されることにつながる可能性がある。
【0004】
より具体的には、燃焼タービンエンジンは一般に、発熱量に関して特定の特性を有する燃料を用いて作動するよう設計されている。燃料の発熱量は、総発熱量、総エネルギー、又はウォッベ指数レーティングと呼ばれる場合もあり一般に、燃料が燃焼したときに放出される熱又はエネルギーの量を表している。しかしながら、燃焼タービンエンジン用途では、所与の圧力比で燃料ノズルを通って燃焼される燃料が放出するエネルギーの量は、ノズルに送給される燃料の温度が与えられると更に正確に表すことができる。燃料の温度を考慮又は補償する燃料特性は一般に、修正ウォッベ指数レーティング又はMWIレーティングと呼ばれる。本出願ではこれに応じてこの用語を使用するが、その用法は限定を意図するものではない。(本明細書で使用されるように、修正ウォッベ指数レーティング又はMWIレーティングは、ノズルに送給される燃料の温度を考慮又は補償し、所与の圧力比にて燃料ノズルを通って燃焼している燃料が放出するエネルギーの量を表す燃料尺度を広く称するものとする)。従って、燃焼タービンエンジンは一般に、特定の修正ウォッベ指数レーティングを有する燃料、又は許容可能な修正ウォッベ指数レーティングのある範囲内の燃料で作動するよう設計される。このような状況では、燃焼器に送給される燃料の温度を修正又は制御する能力を有する(これにより燃料の修正ウォッベ指数レーティングを好ましい範囲に修正又は制御する)ことは、エンジンが、効率的な運転を促進し、燃焼器損傷のリスクを低減する燃料を使用することを保証する有用な方法である。
【0005】
しかしながら、従来のシステムの限界を考慮すると、以下でより詳細に検討するように燃料状態が可変であることにより、許容可能又は目標とする修正ウォッベ指数レーティングの範囲外の燃料が燃焼器に送給される場合がある。言い換えると、従来のシステムでは、許容可能又は目標とする修正ウォッベ指数レーティングを提供する温度範囲外の燃料が燃焼器に送給される場合がある。これにより燃焼器への損傷が生じ、非効率的なエンジン性能になる可能性がある。更に、この結果として、タービンエンジンの「ランバック」状況が生じることもあり、この状況の間は一般に、エンジンの運転システムが自動的にエンジン出力を低下又はカットし、エンジン仕様に適合しない燃料に起因して生じる可能性のあるエンジン損傷を回避するようにする。勿論、エンジン出力の急激な低下がピーク需要時のような不適切な時期に生じる場合もあり、それ自体で大きな問題となる場合がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6389794号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
一般に、従来の燃料送給システムにおけるこれらのタイプの性能上の欠点には幾つかの理由がある。これらの理由の1つは、燃料温度を操作する際に生じる熱遅延である。例えば、圧縮機を通じて燃料を加熱し、次いで燃料アフタークーラーを使用することによって加熱流の成分を冷却する燃料圧縮機を含むシステムにおいては、この遅延は、2つの流れが混合される箇所の位置に少なくとも部分的に起因する。すなわち、従来のシステムによれば、2つの流れ(すなわち、アフタークーラーにより冷却される流れと、冷却されない流れ)は、所望の量で混合されて所望の温度を有する供給燃料が燃焼器に送給されるようにする。以下でより詳細に検討するように、混合箇所の位置は、燃焼器に流入するときの燃料流の温度を変えることができる割合に影響を及ぼす。
【0008】
別の問題は、供給燃料内の発熱量特性などの可変燃料特性の適時検出に関連する。変化する状態の検出遅延により、燃焼器に燃料を送給すべき適切な温度(又は温度範囲)を適時決定することが困難になる。結果として、燃焼タービンエンジンにおける燃料の送給に関係する改良された方法、システム、及び装置、詳細には、エンジンにおける発熱量及び目標とする修正ウォッベ指数レーティングを考慮した場合に適切となる温度で燃焼器に安定して燃料を送給できるように、燃料圧縮機を少なくとも間欠的に用いるシステムにおいて燃料の温度を効果的及び効率的に制御する改良された装置、方法及び/又はシステムに対する要求がある。
【課題を解決するための手段】
【0009】
従って、本出願は、燃焼タービンエンジン用の燃料送給システムを記載しており、該燃料送給システムは、燃料源への第1の接続部と燃焼タービンエンジンの燃焼器への第2の接続部との間に位置付けられた燃料圧縮機を有する燃料管路を備え、燃料管路が更に、燃料圧縮機の下流側にある並列ブランチを含み、該並列ブランチが、アフタークーラーを有する低温ブランチと該アフタークーラーをバイパスする高温ブランチとを有し、燃料送給システムが更に、燃料源からの燃料の発熱量を測定し、該測定値に関する発熱量データを伝達するよう構成された高速発熱量メーターと、低温ブランチを通って配向される燃料の量及び高温ブランチ通って配向される燃料の量を制御する手段と、低温ブランチ及び高温ブランチが合流する燃料混合接合部と、を備え、燃料混合接合部が燃焼ガス制御バルブに近接して位置付けられる。
【0010】
本出願は更に、燃焼タービンエンジンの燃焼器への燃料の送給を制御する方法を記載しており、燃焼タービンエンジンの燃料送給システムが、燃料源への第1の接続部と燃焼タービンエンジンの燃焼器への第2の接続部との間に位置付けられた燃料圧縮機を有する燃料管路を備え、燃料管路が更に、燃料圧縮機の下流側にある並列ブランチを含み、該並列ブランチが、アフタークーラーを有する低温ブランチと該アフタークーラーをバイパスする高温ブランチとを有し、燃料送給システムが更に、燃料源からの燃料の発熱量を測定し、該測定値に関する発熱量データを伝達するよう構成された高速発熱量メーターと、低温ブランチを通って配向される燃料の量及び高温ブランチ通って配向される燃料の量を制御する手段と、燃焼ガス制御バルブに近接して位置付けられ、且つ低温ブランチ及び高温ブランチが合流する燃料混合接合部と、を備え、本方法が、高速発熱量メーターを用いて燃料の発熱量を測定する段階と、測定した発熱量及び燃焼器の目標修正ウォッベ指数範囲に基づいて燃料の目標温度範囲を決定する段階と、燃焼器に送給される燃料の温度が目標温度範囲内の温度を含むように低温ブランチ及び高温ブランチを通る燃料の流れを制御する段階と、を含む。
【0011】
本出願のこれら及び他の特徴は、図面及び請求項を参照しながら以下の好ましい実施形態の詳細な説明を精査することによって明らかになるであろう。
【0012】
本発明のこれら及び他の特徴は、添付図面を参照しながら、本発明の例示的な実施形態の以下の詳細な説明を注意深く検討することによって完全に理解され認識されるであろう。
【図面の簡単な説明】
【0013】
【図1】本出願の特定の実施形態を使用できる例示的なタービンエンジンの概略図。
【図2】図1のガスタービンエンジンの圧縮機セクションの断面図。
【図3】図1のガスタービンエンジンのタービンセクションの断面図。
【図4】従来の設計による燃焼タービンシステムの燃料送給システムの概略図。
【図5】本出願の例示的な実施形態による燃焼タービンエンジンの燃料送給システムの概略図。
【図6】本出願の代替の実施形態による燃焼タービンエンジンの燃料送給システムの概略図。
【図7】本出願の代替の実施形態による燃焼タービンエンジンの燃料送給システムの概略図。
【図8】本出願の代替の実施形態による燃焼タービンエンジンの燃料送給システムの概略図。
【図9】本出願の例示的な実施形態の作動を示す流れ図。
【図10】本出願の代替の実施形態の作動を示す流れ図。
【発明を実施するための形態】
【0014】
次に各図を参照すると、図1は、本発明を利用できる例示的な環境を説明するのに用いられるガスタービンエンジン10の概略図を示す。本発明はこのタイプの利用に限定されない点は、当業者には理解されるであろう。上述のように、本発明は他のタイプのガスタービンエンジンで使用してもよい。
【0015】
一般に、ガスタービンエンジンは、加圧空気のストリーム中で燃料を燃焼させることにより発生する高温ガスの加圧流からエネルギーを抽出することによって作動する。図1に示すように、ガスタービンエンジン10は、軸流圧縮機11を備えて構成することができ、該軸流圧縮機は、下流側タービンセクション又はタービン12と、圧縮機11及びタービン12間に位置付けられた燃焼器13とに共通シャフト又はロータによって機械的に結合される。
【0016】
図2は、図1のガスタービンエンジンで使用できる例示的な多段軸流圧縮機11の図を示す。図示のように、圧縮機11は複数の段を含むことができる。各段は、圧縮機ロータブレード13の列と、その後に続く圧縮機ステータブレード14の列とを含むことができる。従って、第1の段は、中心シャフトの周りを回転する圧縮機ロータブレード13の列と、その後に続く作動中に固定したまままの圧縮機ステータブレード14の列とを含むことができる。圧縮機ステータブレード14は一般に、互いに円周方向に間隔を置いて配置されて回転軸の周りに固定される。圧縮機ロータブレード13は、円周方向に間隔を置いて配置されてシャフトに取り付けられ、作動中にシャフトが回転すると、圧縮機ロータブレード13がシャフトの周りを回転する。当業者であれば理解されるように、圧縮機ロータブレード13は、シャフトの周りを回転したときに圧縮機11を通って流れる空気又は流体に運動エネルギーを与えるように構成される。圧縮機11は、図2に示した段以外の他の段を有することができる。追加の段は、円周方向に間隔を置いて配置された複数の圧縮機ロータブレード13と、その後に続く円周方向に間隔を置いて配置された複数の圧縮機ステータブレード14とを含むことができる。
【0017】
図3は、図1のガスタービンエンジンで使用することができる例示的なタービンセクション又はタービン12の部分図を示す。タービン12はまた複数の段を含むことができる。3つの例示的な段が示されているが、タービン12内にはより多く又はより少ない段が存在してもよい。第1の段は、作動中にシャフトの周りを回転する複数のタービンバケット又はタービンロータブレード15と、作動中固定したままの複数のノズル又はタービンステータブレード16とを含む。タービンステータブレード16は一般に、互いに間隔を置いて円周方向に配置され、回転軸の周りに固定される。タービンロータブレード15は、シャフト(図示せず)の周りを回転するようにタービンホイール(図示せず)上に取り付けることができる。タービン12の第2の段も示されている。この第2の段も同様に、円周方向に間隔を置いて配置された複数のタービンステータブレード16と、その後に続いて、回転するようにタービンホイール上に取り付けられ、円周方向に間隔を置いて配置される複数のタービンロータブレード15とを含む。第3の段も示されており、同様に複数のタービンステータブレード16と、複数のタービンロータブレード15とを含む。タービンステータブレード16及びタービンロータブレード15は、タービン12の高温ガス経路内に位置することは理解されるであろう。この高温ガス経路を通る高温ガスの流れの方向は矢印で示されている。当業者であれば理解されるように、タービン12は、図3に示した段以外の他の段を有することができる。追加の各段は、タービンステータブレード16の列と、その後に続くタービンロータブレード15の列とを含むことができる。
【0018】
使用時には、軸流圧縮機11内の圧縮機ロータブレード13の回転によって、空気流を加圧することができる。燃焼器13では、加圧空気を燃料と混合して点火したときにエネルギーを放出させることができる。次いで、作動流体と呼ばれることもある結果として生じた燃焼器13からの高温ガス流は、タービンロータブレード15にわたって配向され、該作動流体の流れがタービンロータブレード15のシャフト周りの回転を誘起する。これにより、作動流体の流れのエネルギーは、回転するブレードの機械エネルギー、並びにロータブレードとシャフトとの間が接続されていることにより、回転するシャフトの機械エネルギーに変換される。次いで、このシャフトの機械エネルギーを使用して圧縮機ロータブレード13の回転をもたらすことができ、必要とされる供給加圧空気が生成され、更に例えば発電機が電気を生成するようにする。
【0019】
本出願の発明を明確に説明するために、タービンエンジンの特定の機械構成要素又は部品に言及し説明する用語を選択することが必要な場合がある。当該業界で通常使用される用語は、可能な限り、一般に受け入れられる意味と適合するように使用及び利用されることになる。可能な限り、一般的な工業用語がその受け入れられた意味と同じ意味で使用及び利用される。しかしながら、このような用語は広義に与えられ、本明細書で意図する意味及び添付の請求項の範囲が不当に制限されるような狭義に解釈されないものとする。当業者であれば、特定の構成要素が複数の異なる名称で呼ばれる場合が多いことは理解されるであろう。加えて、本明細書で単一の要素として説明できる事柄は、別の状況では複数の構成要素を含み、又は複数の構成要素からなるものとして言及することができ、或いは、本明細書で複数の構成要素を含むものとして説明できる事柄は、単一要素に構築され、場合によっては単一の要素として言及することができる。従って、本明細書で記載された本発明の範囲を理解する際に、提供される用語及び説明にのみ留意するのではなく、本明細書に記載される構成要素の構造、構成、機能、及び/又は使用に対しても留意すべきである。
【0020】
加えて、タービンエンジン用途で一般的な幾つかの記述上の用語を本明細書で使用する場合がある。これらの用語の定義を以下に示す。用語「下流」及び「上流」は、タービン又はコンドー(condo)を通る作動流体の流れに対する方向を指す用語である。従って、用語「下流」は流れ方向を意味し、用語「上流」は、タービンを通る流れとは反対の方向を意味する。これらの用語に関連して、用語「後方」及び/又は「後縁」は、説明している構成要素の下流方向、下流端部及び/又は下流端部の方向を指す。また、用語「前方」又は「前縁」は、説明している構成要素の上流方向、上流端部及び/又は上流端部の方向を指す。用語「半径方向」は、軸線に垂直な移動又は位置を指す。多くの場合、1つの軸線に対して異なる半径方向位置にある複数の部品を説明することが必要となることがある。この事例では、第1の構成要素が第2の構成要素よりもその軸線に近接して位置する場合、本明細書では、第1の構成要素は、第2の構成要素の「内寄り」又は「半径方向内向きに」にあると記述することができる。反対に、第1の構成要素が第2の構成要素よりもその軸線から離れた位置にある場合、本明細書では、第1の構成要素は、第2の構成要素の「外寄り」又は「半径方向外向き」にあると記述することができる。用語「軸方向」は、軸線に平行な移動又は位置を指す。また、用語「円周方向」は、軸線の周りの移動又は位置を指す。
【0021】
再び図面を参照すると、図4は、従来の設計による燃焼タービンシステムの一実施例である燃焼タービンシステム20を示す。燃焼タービンシステム20は、ロータシャフト24によって圧縮機26及びタービン28に接続された発電機22を含むことができる。これらの構成要素の接続及び構成は、従来技術に従って実施することができる。燃焼器30は、圧縮機26とタービン28との間に位置付けることができる。図示のように、空気取入れ管路32を圧縮機26に接続することができる。空気取入れ管路32は圧縮機26への入口を提供する。次いで、第1の導管は、圧縮機26を燃焼器30に接続することができ、該圧縮機26によって加圧された空気を燃焼器30に配向することができる。上記で説明したように、燃焼器30は一般に、供給加圧空気を燃料と共に公知の方法で燃焼させ、高温の加圧駆動ガスを生成する。この駆動ガスは、燃焼器30から第2の導管によって導かれ、タービン28に配向される。この供給燃焼ガスはタービン28を駆動する。駆動ガスによって駆動されたタービン28は、ロータシャフト24を転回させ、シャフト又はロータシャフト24を回転させ、このエネルギーを使用して圧縮機26及び発電機22を駆動することによって発電を行うことができる。
【0022】
タービンシステム20は更に、燃料圧縮機39を含むことができる。燃焼タービンエンジンは、作動中に燃焼器の供給圧力要件を満たすために燃料圧縮機を必要とすることが多い点は理解されるであろう。システム及び利用可能な供給燃料に応じて、燃料圧縮機39を間欠的(すなわち、供給燃料を昇圧することが必要なとき)に用いるか、或いは、連続的(すなわち、所望の圧力で燃焼器に送給するよう、燃料の昇圧を常に必要とするとき)に用いることができる。使用中、燃料圧縮機39は圧縮機の熱によって供給燃料を加熱する点は理解されるであろう。
【0023】
燃料管路50は、燃料源(図示せず)から燃料圧縮機39を通って燃焼器30に延び、燃料を燃焼器30に送給することができる。燃料管路50は、燃焼タービンシステムでは一般的なメタンなどの液体燃料又はガス状燃料を送ることができる。上述のように加圧プロセスを通じて、燃料は、燃料圧縮機39を通って流れるときに加熱される。従来のシステムは一般に、必要に応じて供給燃料から熱を除去する燃料アフタークーラー又はアフタークーラー(以降、「アフタークーラー51」とする)を含む。本明細書で使用されるアフタークーラー51は、空気・ガス熱交換器、液体・ガス熱交換器、又は、供給燃料から熱を除去する機能を完遂するのに使用できる別の構成要素とすることができる。
【0024】
図4に示すように、これらの構成要素を考慮すると、燃料管路50は、2つの並列ブランチを有するように説明することができる。第1のブランチは、燃料をアフタークーラー51に配向するブランチである。このブランチは、本明細書では低温ブランチ55と呼ばれることになる。第2のブランチは、本明細書で高温ブランチ60と呼ばれ、アフタークーラー51をバイパスするブランチである。本明細書で使用される「低温」及び「高温」は、他のブランチと比べた各ブランチに流れる燃料の相対的な温度の識別にのみ用いられている点に留意されたい。すなわち、「高温」ブランチ60は一般に、「低温」ブランチ55により送られる供給燃料よりも高温の供給燃料を送る。図示のように、低温ブランチ55及び高温ブランチ60は、アフタークーラー51の上流側で且つ燃料圧縮機39の下流側にある箇所で分岐することができる。この箇所は、本明細書では上流側分岐点62と呼ばれる。次に、低温ブランチ55及び高温ブランチ60は、アフタークーラー51の下流側で且つ燃焼器30の上流側にある箇所で合流することができる。この箇所は、本明細書では、燃料混合接合部64と呼ばれる。このようにして、並列燃料管路により一部の燃料をアフタークーラー51にバイパスできることは理解されるであろう。1つ又はそれ以上のバルブを用いて、高温ブランチ60を通って移動する燃料の量、及び低温ブランチ55を通って移動する燃料の量を制御し、所望の量が各々に流れるようにすることができる。図示のように、このことは、高温ブランチ60に位置付けられる単一の2ウェイバルブ65を用いて実施することができる。この流れを所望の方法で制御する他のバルブ構成も実施可能である。加えて、本システムは、図示していないが、流れの方向(線上の矢印で示される)を維持して逆流を阻止する他の構成要素を含むことができる。このことはまた、図5から8を通じて当てはまる。
【0025】
システム20の構成を考慮すると、バルブ65を用いて、アフタークーラー51をバイパスする燃料の量を調節することができ、これを実施することによって、バルブ65を用いて燃焼器30に流れる供給燃料の温度を制御することができる。すなわち、アフタークーラー51をバイパスする供給燃料の量を操作し、次いで下流側で冷却燃料流と非冷却燃料流とを組み合わせることによって、従来のタービンシステム20は燃焼器30に送給される燃料の温度を少なくとも部分的に制御することができる。
【0026】
しかしながら、以下でより詳細に検討するように、作動時には、従来のシステムは、燃料の温度の比較的適時又は正確な修正又は調節を実質的に不可能にする温度遅延を有する。これは、他にも理由があるが、図4に示したシステムなどの従来のシステムが、燃料混合接合部64と燃焼器30との間に比較的長い範囲の燃料管路50を含むことに起因する。燃料管路のこの範囲は一般に、本明細書では燃焼器ガス制御バルブ66と呼ばれる、燃焼器30の直ぐ上流側のバルブで終端する。図4に示すように、この距離を距離「L1」と呼び、燃料混合接合部64と燃焼器ガス制御バルブ66又は燃焼器30の入口との間の導管の長さを示す。従来のシステムでは、距離L1は、少なくとも20m超、典型的には50m超である。燃料混合接合部64と燃焼器30の間の導管の距離が長いと、燃焼器30に送給中の燃料の温度を比較的迅速に調整することが不可能になる。この遅延は、この長さの導管が燃料温度の変化を抑制するヒートシンク特性を有すること、及び/又は温度調整された燃料を燃焼器30に送給する前に既にある導管内の燃料をパージする必要があることによって引き起こされる点は理解されるであろう。
【0027】
場合によっては、従来システムはまた、従来のガスクロマトグラフ67又は他の同様の装置を含むことができる。当業者であれば理解されるように、ガスクロマトグラフ67を使用して供給燃料を試験し、供給燃料の個々の成分の組成及び/又は発熱量を決定することができる。より具体的には、ガスクロマトグラフ67を使用して供給燃料をサンプリングし、その種々の成分の相対量を測定することができる。このようにして、従来のシステムは、供給燃料内の様々な炭化水素の分解を判定し、供給燃料の発熱量に関するデータを提供することができる。しかしながら、一般的には、ガスクロマトグラフ67及び従来のシステムで一般に使用される他の同様の試験装置に関連したかなりの時間遅延がある。すなわち、クロマトグラフ66が供給燃料からサンプルを採取してから、関連する又は必要な試験結果、或いは燃料の化学組成又は発熱量に関する情報を制御システムに提供するまでの間にかなりの遅延がある。クロマトグラフ(及び/又は従来のシステムにおいて同じ目的で一般に使用される他の同様の装置)に関連するこの遅延は比較的大きく(多くの場合、数分又はそれ以上)、以下でより詳細に検討するように、エンジン制御設定に対する変更が必要になった後で提供されることが多い(すなわち「適時」でない試験結果)。言い換えると、試験結果が提供されるのが遅すぎる。クロマトグラフ及び/又は他の同様の装置は、供給燃料の発熱量に関して、直ちに利用可能で且つ適時の情報を提供するものではなく、これは、燃料がエンジンの目標修正ウォッベ指数の範囲外でエンジンに送給されることになる可能性がある。このことは、エンジンの損傷、ランバック、又は他の性能上の問題を生じさせる可能性がある。この遅延は、上記で検討した温度遅延によって悪化することが多い。
【0028】
当業者であれば理解されるように、図示の構成要素に加えて、燃焼タービンシステム20、並びに以下で説明するすなわち図5から10の例示的な実施形態の燃焼タービンシステムは、凝集フィルタ、燃料ガス洗浄装置、始動加熱器、その他などの他の構成要素を含むこともできる。しかしながら、これらの要素の包含及び構成は、請求項に記載された発明の作動にとって必須ではなく、従って、添付図には示されておらず、或いは、詳細には検討していない。
【0029】
図5から8は、本出願による燃料送給及び燃焼タービンエンジンシステムの例示的な実施形態を示す。図5から8に示したシステムの構成要素の多くは、図4のシステムに関して上記で説明した構成要素と実質的に同じか又は同様のものである。従って、明瞭且つ簡潔にするために、共通の構成要素については図4で使用した参照符号を図5から9でも使用する。
【0030】
燃焼タービンシステム70は、従来の設計に従って、ロータシャフト24によって圧縮機26及びタービン28に接続された発電機22を含むことができる。燃焼器30は、圧縮機26とタービン28との間に位置付けることができる。空気取入れ管路32を圧縮機26に接続し、供給空気用の入口が設けられるようにすることができる。第1の導管は、圧縮機26によって加圧された空気を燃焼器30に配向することができ、ここで加圧空気を使用して供給燃料を燃焼させることができる。結果として生じた高温ガスの流れは、タービン28を通って膨張することができ、ここで上述のようにエネルギーは回転シャフト24の機械エネルギーに変換される。次いで、この回転シャフトのエネルギーを使用して圧縮機26及び発電機22を駆動し、これにより、供給加圧空気及び電気をそれぞれ生成することができる。しかしながら、この燃焼タービンエンジン用途は例証であり、本発明は他の燃焼タービンエンジン用途でも使用することができる。
【0031】
本出願の例示的な一実施形態によれば、燃焼タービンシステム70は、燃焼器30に送給される燃料の温度をシステムオペレータ又は制御ユニットが適時に制御して、エンジンに対する目標MWI値を燃料が満たすことができるように構成される。上述のように、燃焼タービンエンジンは一般に、発熱量に関係する特定の特性を有する燃料を使用して作動するように設計される。総発熱量、総エネルギー又はウォッベ指数レーティングとも呼ばれることがある燃料の発熱量は一般に、燃料が燃焼したときに放出される熱量又はエネルギーの量を表す。しかしながら、燃焼タービンエンジン用途では、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギー量は、ノズルに送給される燃料の温度を考慮した場合により正確に表すことができる。燃料の温度を考慮又は補償した燃料特性は一般に、修正ウォッベ指数レーティング又はMWIレーティングと呼ばれる。本明細書で使用する場合、修正ウォッベ指数又はMWIは、ノズルに送給される燃料の温度を考慮又は補償した、所与の圧力比で燃料ノズルを通って燃焼している燃料が放出するエネルギーの量を表す燃料尺度を広く称するものとする。従って、燃焼タービンエンジンは一般に、特定の修正ウォッベ指数レーティングを有する燃料、又は許容可能な修正ウォッベ指数レーティングのある範囲内の燃料で作動するよう設計される。本明細書で使用する場合、燃焼タービンエンジンが設計される特定の修正ウォッベ指数レーティング又は許容可能な修正ウォッベ指数レーティング範囲は共に、「目標修正ウォッベ指数範囲」又は「目標MWI範囲」と呼ぶ。燃焼器に送給されている燃料の温度を修正又は制御する(これにより燃料の修正ウォッベ指数レーティングを修正又は制御する)能力を有することは、そのエンジンが、エンジンの目標MWI範囲内の燃料を使用していることを保証する有用な方法である。
【0032】
図5及び6に示すように、燃料管路50は、燃料源(図示せず)から燃焼器30に延びることができる。加圧プロセス全体を通じて、燃料は、燃料圧縮機39において加圧されるときに加熱される可能性があるので、燃料圧縮機39の下流側に位置付けられたアフタークーラー51が必要となり、燃料圧縮機39を通って流れる供給燃料の一部を必要に応じて冷却して、燃料温度要件に適合させることができるようにする。上述のように、燃料管路50は、2つの並列ブランチを有するように説明することができる。低温ブランチ55は、アフタークーラー51を通じて燃料を配向するブランチであり、高温ブランチ60は、アフタークーラー51をバイパスするブランチである。図5及び6の低温ブランチ55及び高温ブランチ60は、図4の低温ブランチ55及び高温ブランチ60と特定の態様で類似することができる。図示のように、高温ブランチ60は、アフタークーラー51の上流側箇所で、すなわち上流側分岐点62で低温ブランチ55から分岐し、アフタークーラー51の下流側の箇所で、すなわち燃料混合接合部64で低温ブランチ55と合流する。このようにして、高温ブランチ60は、供給燃料がアフタークーラー51により冷却されることなく燃料圧縮機39から燃焼器30に移動できる代替の又はバイパスルートを形成する。結果として、高温ブランチ60を通って流れる燃料は一般に、低温ブランチ55を通って流れる燃料よりも高い温度を有する。
【0033】
以下でより詳細に説明するように、低温ブランチ55及び高温ブランチ60を通って流れる燃料の量は、1つ又はそれ以上の従来のバルブにより制御又は操作することができ、このバルブの各々は、そこを通る燃料流量の異なるレベルを可能にする少なくとも複数の流量設定を有することができる。幾つかの実施形態では、燃焼タービンシステム70は、何れかのブランチに位置付けることができる単一の従来型2ウェイバルブによって2つの並列ブランチ間の流量レベルを制御することができる。図5に示すように、燃焼タービンシステム70は、2つの従来型2ウェイバルブ、高温ブランチ60上に位置づけられた高温燃料制御バルブ78、及び低温ブランチ55上に位置づけられた低温燃料制御バルブ79によってより正確に流量レベルを制御することができる。加えて、図6に示すように、低温燃料制御バルブ79及び高温燃料制御バルブ78は、従来の3ウェイバルブ80と置き換えることもえきる。3ウェイバルブ80は、図6に示すように燃料混合接合部64に配置することができる。他の実施形態では、3ウェイバルブ80は、上流側分岐点62に配置することができる。加えて、システム70は、流れ方向(線上の矢印で示される)を維持して逆流が阻止されるチェックバルブ(図示せず)のような他の構成要素を含むことができる。
【0034】
従来の手段及び方法に従って、低温燃料制御バルブ79及び高温燃料制御バルブ78(図5の実施形態の場合)又は3ウェイバルブ80(図6の実施形態の場合)を含むことができる関連するバルブの動作及び設定は、制御ユニット82により制御することができる。より詳細には、高温ブランチ60及び低温ブランチ55を通る燃料流量を調節するバルブ設定は、制御ユニット82から受け取る信号(図上では破線で示す)に従って制御することができる。以下でより詳細に検討する制御ユニット82は、1つ又はそれ以上のバルブの動作に関係した制御論理を含む電子装置又はコンピュータ実装装置を備えることができる。この制御論理及び/又は制御ユニット82により監視される1つ又はそれ以上の動作パラメータ(以下でより詳細に検討する)に従って、制御ユニット82は、1つ又はそれ以上のバルブに電子信号を送り、これにより、バルブの設定を制御することができる。このようにして、この1つ又はそれ以上のバルブを制御して、例えば、高温ブランチ60を通る流れを減少させて低温ブランチ55を通る流れを増大させることができ、或いは、高温ブランチ60を通る流れを増大させて低温ブランチ55を通る流れを減少させることができる。
【0035】
アフタークーラー51を通過する供給燃料の割合を操作することによって、燃焼器30に送給される供給燃料の温度(及び、その結果としてMWIレーティング)を制御することができる点は理解されるであろう。例えば、燃焼器に送給される供給燃料の温度を減少させたい(これによりMWIレーティングを増大させたい)場合には、1つ又はそれ以上のバルブ(すなわち、高温燃料制御バルブ78、低温燃料制御バルブ、3ウェイバルブ80、又は他のタイプのバルブ及び他のバルブ構成)を制御し、より高い割合の供給燃料がアフタークーラー51を通って配向されるようにすることができる。これにより、冷却を促進し、燃料混合接合部64の下流側の燃料温度が減少する結果となる。或いは、燃焼器に送給される供給燃料の温度を増大させたい(これによりMWIレーティングを減少させたい)場合には、1つ又はそれ以上のバルブを制御し、より低い割合の供給燃料が、アフタークーラー51を通って配向されるようにすることができる。これにより、冷却が低下し、燃料混合接合部64の下流側の燃料温度が増大する結果となる。
【0036】
本発明の例示的な実施形態によれば、燃焼タービンシステム70は更に、高速発熱量メーター83を含むことができる。本明細書で使用されるときに、高速発熱量メーター83は、天然ガスなどの燃料を試験し、試験した燃料の発熱量に関する試験結果又はデータを迅速に提供するのに用いることができる機器又は装置を含めるよう定義される。更に、本明細書で使用するとき、試験結果を「高速に」提供することとは、試験結果を適時に提供すること、又は、本発明の他の実施形態に関しては、本明細書に明記された時間期間内に試験結果を提供することと定義される。一部の実施形態では、高速燃料発熱量メーター83がガス熱量計を含むことができる。当業者であれば理解されるように、ガス熱量計は、燃料の発熱量を測定する機器である。上述のように、本明細書では、総発熱量、総エネルギー又はウォッベ指数レーティングとしても知られている燃料の発熱量は、燃料が燃焼したときに放出される熱又はエネルギーの量を一般に表すように定義される。一部の実施形態では、本発明の高速発熱量メーター83は、本明細書に記載された他の作動要件を満たすように構成された以下の装置及び/又は他の同様の装置、すなわち、ウォッベメータ、ガス熱量計、又は発熱量トランスミッタを含むことができる。図示のように、一部の実施形態では、高速発熱量メーター83は、上流側分岐点62の上流側及び燃料圧縮機39の上流側に配置することができる。
【0037】
一部の実施形態では、高速発熱量メーター83は、作動時には、燃焼器30に送給されている供給燃料を定期的にサンプリングし、該供給燃料の発熱量を試験するように構成することができる。高速発熱量メーター83による供給燃料の定期的な試験は、少なくとも約60秒以内ごとに実施することができる。より好ましい他の実施形態では、高速発熱量メーター83による供給燃料の定期的な試験は、少なくとも約30秒以内ごとに実施することができる。また更に好ましい他の実施形態では、高速発熱量メーター83による供給燃料の定期的な試験は、少なくとも約15秒以内ごとに実施することができる。
【0038】
上述のように、高速発熱量メーター83は、比較的短い時間期間内に燃料の試験を完了させ、燃料の発熱量に関するデータを提供するように構成することができる。一部の実施形態では、高速発熱量メーター83は、試験サンプル料を採取して試験手順を開始してから少なくとも約2分以内に発熱量試験を完了させて、結果を提供するように構成された装置を備える。より好ましい他の実施形態では、高速発熱量メーター83は、試験サンプルを採取して験手順を開始してから少なくとも約1分以内に発熱量試験を完了させて、結果を提供するように構成することができる。更により好ましい他の実施形態では、高速発熱量メーター83は、サンプルを採取して験手順を開始してから少なくとも約30秒以内に発熱量試験を完了させて結果を提供するように構成することができる。理想的には、他の実施形態では、高速発熱量メーター83は、サンプルを採取して試験手順を開始してから少なくとも約10秒以内に発熱量試験を完了させて、結果を提供するように構成することができる。
【0039】
高速発熱量メーター83及び制御ユニット82は一般に、他者と電子的に通信するように構成することができるが、これは図示していない。より具体的には、高速発熱量メーター83は、供給燃料の発熱量の試験に関するデータを従来の手段及び方法に従って制御ユニット82に送ることができる。
【0040】
燃焼タービンシステム70は更に、燃料送給システム内の1つ又はそれ以上の位置における供給燃料の温度を測定するための従来の機器を更に含むことができる。例えば、高速発熱量メーター83の位置において、第1の熱電対又は他の温度測定装置85は、高速発熱量メーター83内に位置付けるか、又はこれと一体化し、発熱量が決定されて制御ユニット82に伝達されると同時に供給燃料の温度を測定できるようにすることができる。この位置では、この温度測定は、本明細書では「未処理燃料温度」と呼ばれるもの、すなわち、加熱又は加圧前の未処理の供給燃料の温度を提供することができる。第2の温度測定装置85は、燃料圧縮機39の出口と上流側分岐点62との間、又は上流側分岐点62と燃料混合接合部64との間の高温ブランチ60に沿って配置することができる。この温度測定は、本明細書では「加圧燃料温度」と呼ばれるもの、すなわち、燃料圧縮機39により加圧及び加熱された後の燃料の温度を提供する。第3の温度測定装置は、アフタークーラー51の出口と燃料混合接合部64との間に配置することができる。この温度測定は、本明細書では「冷却燃料温度」と呼ばれるもの、すなわち、アフタークーラー51により冷却された後の燃料温度を提供する。第4の温度測定装置85は、燃料混合接合部64の下流側に配置することができる。この温度測定装置85は、例えば、燃焼器30の入口、又は燃焼器ガス制御バルブ66の入口に位置付けることができる。この位置における温度測定は、本明細書では「混合燃料温度」と呼ばれるもの、すなわち、燃料混合接合部64のほぼ下流側及び/又は燃焼器30の入口における燃料の温度を提供する。温度測定装置85は、測定した温度データを従来の手段及び方法に従って制御ユニット82に伝達することができる。加えて、図7に関して以下で説明する実施形態に関連して、第5の温度測定装置85は、槽ヒータなどの2次熱源の下流側に配置することができる。この温度測定装置85は、例えば、高温圧縮機バイパスと呼ばれる場合があるものに沿って熱源の出口に位置付けることができる。この温度測定は、「加熱燃料温度」と呼ばれるもの、すなわち、2次熱源のほぼ下流側で且つ燃料混合接合部64の上流側の燃料の温度を提供する。温度を測定する機器は、測定した温度データを従来の手段及び方法に従って制御ユニット82に伝達することができる。
【0041】
上述のように、従来のシステムでは、燃料混合接合部64と燃焼器ガス制御バルブ66又は燃焼器30の入口との間の導管又は燃料管路の距離が比較的長い。(「燃焼器ガス制御バルブ66」は、燃焼器30の直ぐ上流側及び燃焼器30に近接した制御バルブを指すことが意図されており、従って、本明細書では「燃焼器30の入口」と実質的に同義的に使用され、供給燃料が燃焼器30に導入されるおおよその位置を表している点に留意されたい。具体的には、本明細書で意図されるように、「燃焼器ガス制御バルブ66」への言及は、燃焼器30の入口への言及と実質的に同じである。従って、何らかの理由で燃焼器30の直ぐ上流側にあるか又は燃焼器30に近接した制御バルブを持たないシステムでは、本明細書における「燃焼器ガス制御バルブ66」への言及は、その代わりに燃焼器30の入口への言及を意味する。)燃料混合接合部64と燃焼器ガス制御バルブ66との間の距離が非常に長いときには、長い導管は一般に、迅速な温度変化に不利に作用するヒートシンクを形成すること、及び/又は、燃焼器ガス制御バルブ66又は燃焼器30の入口において燃料温度の有意な変化(従って燃料のMWIレーティングの有意な変化)の作用を受ける前に長い導管を実質的に洗浄しなければならないので、燃焼器30に送給されている供給燃料の温度を迅速に変化させることがより困難になる点は理解されるであろう。結果として、従来のシステムでは、燃料温度を変化させるための措置がとられてから、結果として生じる変化が燃焼器ガス制御バルブ66/燃焼器30の入口でその作用を受けるまでの間に有意な遅延がある。
【0042】
更に、従来の燃焼タービンシステムでは、供給燃料の温度を変化させる能力のこの遅延は一般に、ガスクロマトグラフ又はこの目的で使用される他の同様の装置から供給燃料の発熱量データを得ることに関連する典型的な遅延によって悪化する。結果として、従来の燃焼タービンシステムは、供給燃料の発熱量の変化を検出する遅延を生じる可能性があり、これは、燃焼器30に供給されている燃料の温度変化をさせる際に一般に生じる第2の遅延によって一層悪化する可能性がある。以下でより詳細に説明するように、本発明の例示的な実施形態に従って作動するよう構成された燃焼タービンシステムは、供給燃料の発熱量データを制御ユニット82に更に適時且つ迅速に提供するように構成できる高速発熱量メーター83を使用することによって、これらの遅延問題を軽減又は実質的に排除する。
【0043】
更に、本発明の例示的な実施形態は、バイパス燃料管路50を提供し、これにより燃料がアフタークーラー51をバイパスすることができ、燃料温度の変化(及び結果として生じる燃料のMWIレーティングの変化)を燃焼器30の入口でより迅速に作用できるようにする。本発明の一部の実施形態では、この結果は、燃料混合接合部64(すなわち非加熱供給燃料と加熱供給燃料を混合して所望の温度にする位置)を燃料混合接合部64と燃焼器ガス制御バルブ66との間の導管の長さが短くなるように位置付けることによって達成することができる。上述のように、導管のこの長さを短くすることにより、加熱燃料と非加熱燃料との混合を燃焼器ガス制御バルブ66に近接して行うことができ、これによって一般に、燃焼器30に達する燃料の温度変化を比較的迅速に生じさせることができるようになる。
【0044】
また、一部のケースでは、加熱燃料及び非加熱燃料が混合される位置と燃焼器ガス制御バルブ66との間には、最小限の距離を残すべきであることが判った。この最小限の距離によって加熱燃料及び非加熱燃料が十分に混合することができ、燃料が燃焼器30に送給されて該燃焼器30内で燃焼する前に供給燃料全体を通して比較的均一な燃料温度が得られるようになる。供給燃料全体を通して燃料温度を比較的均一にすることは、特に燃焼器30の作動に対して良好なエンジン性能を促進する点は理解されるであろう。これらの競合する考慮事項を考えて、本明細書に記載された発明の一部として導管の長さの好ましい範囲を決定した。従って、好ましい一部の実施形態では、燃料混合接合部64は、燃料混合接合部64と燃焼器ガス制御バルブ66(又は燃焼器30の入口)との間の導管の長さが、約2から20メートルとなるように位置付けることができる。より好ましくは、燃料混合接合部64は、該燃料混合接合部64と燃焼器ガス制御バルブ66(又は燃焼器30の入口)との間の導管の長さが約4から14メートルとなるように位置付けることができる。理想的には、燃料混合接合部64は、該燃料混合接合部64と燃焼器ガス制御バルブ66(又は燃焼器30の入口)との間の導管の長さが約6から10メートルとなるように位置付けることができる。これらの範囲の各々は性能の向上をもたらす。上述のように、供給燃料の温度を制御する位置と燃焼器のおおよその入口との間の導管の全長を短くすると、温度変化(及びひいては燃料のMWIレーティングの変化)をより迅速にすることができる(すなわち、フラッシング又はパージの必要性が低減され、ヒートシンクとして機能する導管が短くなる)。また、最小限の導管距離を維持することによって、2つの供給燃料の十分な混合が達成される。
【0045】
当業者であれば、図5及び6に関連して上記で説明した態様の1つ又はそれ以上と適合するシステムを用いて、燃焼器に送給される燃料の温度を効果的且つ適時に制御し、効率的なエンジン作動が促進されるようにすることができる点は理解されるであろう。例示的な運転方法を示す流れ図を図9及び10に関連して以下に示す。
【0046】
1つの典型的な応用において、図5及び6の実施形態は、供給燃料が燃焼器の燃料圧力要件に適合させるために燃料圧縮機を常時使用する必要がある場合に利用することができる。場合によっては、供給燃料は既に十分に加圧されていることがあるので、多くの燃焼タービンシステムが常に燃料圧縮機を必要とする訳ではない点は当業者であれば理解されるであろう。このタイプのシステムは一般に、供給圧力を増大するために燃料圧縮機の間欠的作動のみを必要とし、勿論、これは、燃料の加圧により提供される熱が間欠的にしか利用できないことを意味している。図7及び8は、本発明の例示的な実施形態によるタービンシステム構成の態様を示している。図7及び8によるシステムは、燃料圧縮機の間欠的使用のみを必要とするタービンシステムにおいて効果的に用いることができる。
【0047】
図7は、供給燃料に熱を提供するための代替の熱源を含む燃焼タービンシステム90を示している。以下で詳細に説明するように、代替の熱源を用いて、燃料圧縮機がオフラインであるときに所望の温度レベルにまで燃料流を加熱することができる。図示のように、タービンシステム90の代替の熱源は、槽ヒータ91とすることができる。他の熱源を用いることもでき、槽ヒータ91は単に好ましい実施形態として設けられている点は理解されるであろう。他の実施形態では、例えば、代替の熱源は、直接燃焼式ヒータ、電気ヒータ、ヒートパイプ熱交換器、蒸気ヒータ、温水ヒータ、又は燃焼エンジンの排気からの熱を使用する熱交換器、並びに従来の熱源の他のタイプとすることができる。当業者であれば、槽ヒータ91は一般に、水又はより高温の熱油とすることができ、通過する燃料を加熱するために熱交換器93で加熱され使用される熱伝導流体を含む点は理解されるであろう。槽ヒータ91は、ヒータと熱交換器93との間で熱伝導流体を循環させるポンプ94を含む。図示していないが、槽ヒータ91用の供給燃料は、燃料管路50から取り出すことができる。槽ヒータ91を使用する利点の1つは、タービンエンジンからの熱を使用することなく燃料を加熱できる点であり、これは、タービンエンジンからの熱が実質的に利用可能ではないエンジンの始動中に有利とすることができる。
【0048】
図7に示すように、タービンシステム90は、熱源(図示せず)から燃焼器30に延びる燃料管路50を有することができる。上述のように、燃料管路50は並列ブランチを有する。この場合、例示的な実施形態によれば、燃料管路50は、低温ブランチ55、高温ブランチ60、並びに燃料圧縮機39をバイパスする2つのブランチ、すなわち低温圧縮機バイパス96及び高温圧縮機バイパス97を有するものとして説明することができる。上述のように、低温ブランチ55は、燃料圧縮機39からアフタークーラー51を通じて燃料を配向するブランチであり、高温ブランチ60は、燃料圧縮機39からの燃料の流れがアフタークーラー51をバイパスするブランチである。低温圧縮機バイパス96は、図示のように、燃料圧縮機39の上流側の燃料管路50上のある箇所から燃料流を受け取り、図示のように好ましくはアフタークーラー51の下流側にある低温ブランチ55上のある箇所に燃料流を送給するブランチである。低温圧縮機バイパス96は、燃料を非加熱状態のままにするために燃料圧縮機39及び代替熱源(この事例では槽ヒータ91の熱交換器93)をバイパスする点は理解されるであろう。高温圧縮機バイパス97は、燃料圧縮機39の上流側のある箇所から受け取った燃料流を配向し、この流れを代替熱源の熱交換器93に通して配向し、次いで、加熱流を高温ブランチ60上のある箇所に送給するブランチである。図7及び8で4つの燃料流(すなわち、低温ブランチ55、高温ブランチ60、低温圧縮機バイパス96、及び高温圧縮機バイパス97を通る燃料流)を検討した際に、これらの流れは図示とは異なる構成で合流及び分岐してもよく、他のバルブ構成を用いて、燃料混合接合部64にて異なる流れの混合を制御することができる点は理解されるであろう。例えば、燃料流の混合の制御において、図7は、高温ブランチ60及び低温ブランチ55上にそれぞれ高温燃料制御バルブ78と低温制御バルブ79を示しており、図8は、燃料混合接合部64にて3ウェイバルブ80を示している。また、本明細書において「燃料混合接合部」への言及は、比較的「高温」の燃料流が比較的「低温」の燃料流と混合する何れかの構成を考慮すべきである点も理解されたい。全ての実施形態で、燃料混合接合部64は燃焼器30に近接した位置に配置され、様々な温度を有する少なくとも2つの燃料流の合流を含む点は理解されるであろう。
【0049】
燃焼タービンシステム90は、図示のように、上述のように機能する高速発熱量メーター83を有することができる。システム90はまた、図示の位置において温度測定装置85を有することができ、これらの装置は、図5及び6に関して上述したものと同様に機能することができる。システム90は、燃料が熱交換器93を通過したあとの燃料温度を測定する追加の温度測定装置85を有することができる。この温度測定は、本明細書では「加熱燃料温度」と呼ばれるもの、すなわち、槽ヒータ91又は他の代替のもしくは2次的な熱源によって加熱された後の燃料温度を提供する。
【0050】
システム90は、燃料の圧力を増大するために燃料圧縮機39が必要とされるときに作動することができ、代替の熱源91を考慮すると、システム90はまた、燃料圧縮機39が使用中でないときも作動する場合もある。燃料圧縮機39が作動しているときには、図5及び6の実施形態は、圧縮プロセス全体を通じて燃料圧縮機39が供給燃料に熱を提供するシステムに適用可能であるので、システム90は、これら図5及び6の実施形態に関連して上記で説明されたのとほとんど同様に作動することができる点は理解されるであろう。燃料圧縮機39がオフラインであるときには、システム90は、利用可能な代替の熱源(すなわち槽ヒータ91)を用いることによって異なるように作動することができる。ここでの作動の説明は、当業者であれば理解されるように、特定の用途に対して柔軟性及び性能上の利点をもたらす他のタイプの作動に焦点を当てることにする。
【0051】
燃料圧縮機39が作動しているときには、高温圧縮機バイパス97は、燃料流が通過しないように閉鎖されている。高温圧縮機バイパス97は、熱交換器93を通って燃料圧縮機39をバイパスする燃料流を配向するのに用いられる点は理解されるであろう。燃料圧縮機39が作動中の場合、燃料は、燃焼器供給要件に適合する十分な圧力がない可能性があり、従って、昇圧が得られる燃料圧縮機39と通って燃料の全てが配向されるように、バイパス97を閉鎖しなければならない。高温圧縮機バイパス97の閉鎖は、図7及び8に示すように位置付けられた3ウェイバルブ98を使用することにより行うことができる。同様に、低温圧縮機バイパス96もまた、燃料が燃料圧縮機39をバイパスできるようにするので、低温圧縮機バイパス96は一般に、このタイプの作動でも同様に閉鎖される。低温圧縮機バイパス96は、図示のように2ウェイバルブ99により閉鎖することができる。他のバルブ構成も実施可能である。
【0052】
このモードにおいて、図7及び8に示す構成要素の作動及び構成は一般に、図5及び6について上記で提供された構成要素と関連して説明されたものと同様又は同じである。これらの構成要素は、燃料圧縮機39、アフタークーラー51、低温ブランチ55、高温ブランチ60、燃料混合接合部64(及びその位置)、制御ユニット82、高速発熱量メーター83、及び流量制御用の種々のバルブを含む。
【0053】
システム90は、燃料圧縮機39が燃料の加熱に利用可能ではないとき(すなわち、燃料圧縮機39が燃料の圧力を増大する必要がないとき)に該燃料の加熱に用いることができる代替の熱源91を有するので、該システム90は、燃料圧縮機39が作動しているとき及び不作動であるときでも所望の温度の加熱燃料を供給する作動上の融通性を提供する。燃料圧縮機39が不作動であるときには、燃料圧縮機39から低温ブランチ55及び高温ブランチ60を通る流れは存在せず、アフタークーラー51は不作動である点は理解されるであろう。燃料圧縮機39がオフラインであるときに作動状態である他の構成要素の作動及び構成は一般に、これらの構成要素に関連する説明において上記で提供されたものと同様又は同じであり、これらの構成要素は一般に、燃料混合接合部64(及びその位置)、制御ユニット82、高速発熱量メーター83、及び種々のバルブの制御装置を含む。
【0054】
燃料圧縮機39から低温ブランチ55及び高温ブランチ60を通る流れが存在しない場合、システム90は、本質的に、2つの並列流、すなわち、代替熱源(すなわち槽ヒータ91)により加熱される高温圧縮機バイパス97を通る非加圧燃料の流れと、低温圧縮機バイパス96を通る非加熱及び非加圧燃料の流れに限定される点は理解されるであろう。これら2つの流れは、燃料混合接合部64にて併合され、本発明の複数の実施形態に関連して本明細書で説明されるシステム及び方法(例えば、燃焼器30の入口及び高速発熱量メーター83に対して燃料混合接合部64の近接した位置を含むことができる)に従って、結果として得られる温度が燃焼器に好ましいMWI範囲内にある燃料を提供するように混合することができる。
【0055】
上述のように、制御ユニット82は、1つ又はそれ以上の動作パラメータを監視し、1つ又はそれ以上のバルブの機能を制御して、供給燃料が、本発明の例示的な実施形態に従って、本明細書では目標MWI範囲と呼ばれる好ましいMWIレーティング又は好ましいMWIレーティング範囲内で燃焼器に送給されるようにすることができるプログラム論理を有することができる。当業者であれば理解されるように、以下で詳細に説明するアルゴリズム、制御プログラム、論理流れ図及び/又はソフトウェアプログラムは、燃焼タービンエンジンシステムの変化する動作パラメータを監視し、燃焼器に送給される燃料の温度を制御することによって、燃焼器への供給燃料のMWIレーティングが目標MWI範囲内にあるように構築することができる。当業者であれば理解されるように、このようなシステムは、上記で検討したように関連するタービンエンジン動作パラメータを監視する複数のセンサ及び機器を含むことができる。これらのハードウェア装置及び機器は、制御ユニット82のような従来のコンピュータによって実施される制御システムにデータ及び情報を送り、このような制御システムを制御及び操作することができる。すなわち、従来の手段及び方法に従って、制御ユニット82などの制御システムは、燃焼タービンシステム70からデータを受け取り及び/又は取得し、このデータを処理し、燃焼タービンシステムのオペレータと通信し、及び/又はシステムの種々の機構装置を命令セット又は論理流れ図に従って制御することができ、当業者であれば理解されるように、この命令セット又は論理流れ図は、制御ユニット82により稼働されるソフトウェアプログラムの一部をなすことができ、本発明の一実施形態を構成する。
【0056】
図9及び10は、本出願の実施形態による論理流れ図を示している。図9は、動作モードどのようにして選択することができるか、すなわち、燃料圧縮機39が供給圧力を増大する必要があるか否か、及び2次熱源が燃焼システムに熱を提供する必要があるか否かを表す最上位図を提供する。図5及び6の例示的な実施形態では、燃料圧縮機39が常に作動しており、2次熱源は存在しないので、最上位論理流れ図は必要ではない点は理解されるであろう。図10は、異なる動作モードがどのように機能することができるかに関する実施例を示している。本出願による実施形態は、複数の動作モードの1つ又はそれ以上又は全て、その何れかの一部、或いは、添付の請求項により記載される他の何れかの組み合わせを含むことができる点は理解されるであろう。
【0057】
図9は、論理流れ図100を示す。当業者であれば理解されるように、図9及び10の論理流れ図は、制御ユニット82によって実現し実行することができる。一部の実施形態では、制御ユニット82は、何れかの適切な高出力固体スイッチングデバイスを含むことができる。制御ユニット82はコンピュータとすることができるが、これは単に本出願の範囲内にある適切な高出力制御システムの実施例に過ぎない。制御ユニット82はまた、全体的なシステムレベルの制御のためのメイン又は中央プロセッサセクションと、中央プロセッサセクションの制御下で様々な異なる特定の組み合わせ、機能及び他のプロセス専用に実行する別個のセクションとを有する、ASICなどの単一の特定用途集積回路として実現することもできる。当業者であれば、制御ユニットはまた、個別素子回路又はPLD、PAL、PLAなどのプログラマブルロジックデバイスを含む、ハードワイヤード電子回路又は論理回路などの様々な別個の専用又はプログラム可能な集積回路又は他の電子回路もしくはデバイスを使用して実現することもできる点は理解されるであろう。制御ユニット82はまた、マイクロプロセッサ、マイクロコントローラなどの好適なプログラムド汎用コンピュータ、或いは、CPU、MPUなどの他のプロセッサデバイスを単独で、或いは1つ又はそれ以上の周辺データ及び信号処理装置と共に使用して実現することもできる。一般に、有限状態機械が図10及び11の論理流れ図を実現できる何れかの装置又は同様の装置は、制御ユニット82として使用することができる。
【0058】
論理流れ図100は、ステップ又はブロック102から始めることができ、ここでシステムへの供給燃料が燃料圧縮機39による圧力増大を必要とするかどうかを判定することができる。(上述のように、図5及び6のシステムの実施形態は、燃料圧縮機39が常に機能しており、この問い合わせが必要ではないように構成される。)燃料圧縮機39が必要とされるか否かに関する判定は一般に、流入する供給燃料に伴う従来の圧力測定値を考慮して行う。「いいえ」すなわち圧力増大が必要ではないと判定された場合、方法はステップ104に進むことができる。「はい」すなわち圧力増大が必要であると判定された場合、方法はステップ105に進むことができる。
【0059】
ステップ104では、供給燃料への圧力増大は必要ではないので、プロセスは一般に、燃料圧縮機39の作動を終了し、供給燃料が燃料圧縮機39をバイパスするようシステムバルブ99を構成する。より詳細には、燃料圧縮機39の上流側の燃料管路50上のある箇所において、供給燃料が低温圧縮機バイパス96及び高温圧縮機バイパス97を通って送られ、燃料圧縮機39への通路は従来の手段又は装置(図示せず)に従って閉鎖される。図10の流れ図は、低温圧縮機バイパス96及び高温圧縮機バイパス97を通る2つの流れが燃料混合接合部64において混合され、結果として生じる燃料温度が目標MWI範囲の燃料を燃焼器30に提供するようにすることができる方法を説明している。
【0060】
ステップ105では、供給燃料への圧力増大が必要であるとプロセスが判定したので、本プロセスは、燃料圧縮機39の作動を開始又は継続し、供給燃料の実質的に全てが燃料圧縮機39に配向されるようにシステム制御バルブを構成することができる。より詳細には、制御バルブは、低温圧縮機バイパス96及び高温圧縮機バイパス97を閉鎖し、燃料圧縮機39への導管を開くよう構成することができる。プロセスはまた、燃料圧縮機39から出る供給燃料が所望の方法で低温ブランチ55及び高温ブランチ60を通って配向されるように制御バルブを構成することができる。図10の流れ図は、これら2つの流れ(すなわち、低温ブランチ55からの流れと高温ブランチ60からの流れ)が燃料混合接合部64において混合され、結果として生じる燃料温度が目標MWI範囲の燃料を燃焼器30に提供できるようにする方法を説明している。
【0061】
ここで、異なる温度の2つ又はそれ以上の燃料流を併合して所望の方法で混合し、燃焼器30に入る燃料のMWIレーティングが目標範囲内にあるようにする例示的な動作モードである図10を参照する。ステップ202において、制御ユニット82は、上記で検討した方法の何れかに従って、制御ユニット82は、燃焼タービンシステム70、90、特に燃焼タービンシステム70、90の燃料送給システムの動作パラメータに関するデータを受け取り、監視し、記録することができる。
【0062】
上述のように、動作パラメータは、以下のもの、すなわち、供給燃料の発熱量(例えば、高速発熱量メーター83により測定できる);燃料供給システム内の種々の位置での供給燃料の温度(例えば、上記で検討したような、未処理の燃料温度測定値、加熱燃料温度測定値、加圧燃料温度測定値、冷却燃料温度測定値、及び混合燃料温度測定値を含むことができる);及び/又は、低温ブランチ55、高温ブランチ60、低温圧縮機バイパス96、及び高温圧縮機バイパス97を通る流量に関する測定値(例えば、これらの導管を通る流れを制御するバルブの何れかの設定を含むことができ、また、内部に位置付けられた従来の圧力変換器によって行うことができる、これらの導管の何れかの内部で取得される燃料圧力測定値を含むことができる)の1つ又はそれ以上を含むことができる。動作パラメータの測定、監視、及び/又は記録は、図10においてステップ202を別のステップに接続する直接線が存在するか否かに関わらず、論理流れ図200の複数のステップの何れか全体で最新のデータを使用できるように連続的に又は規則的な間隔で実施し更新することができる点は理解されるであろう。
【0063】
ステップ204において、供給燃料の発熱量の現在の測定値が与えられると、プロセスは、目標MWI範囲を満たすために燃焼器30に送給すべき供給燃料の許容可能な温度又は温度範囲を決定することができる。上述のように、燃焼タービンエンジンは一般に、特定の発熱量又は発熱量範囲を有する燃料で作動するように設計される。より詳細には、エンジンは、目標MWI範囲に合わせて設計することができる。実際には、エンジンの供給燃料の発熱量は一般に変動する。燃料の温度を変化させることによって、目標MWI範囲を満たすように、変動する発熱量レベルを補償することができる。具体的には、供給燃料のMWIレーティングは、エンジンの燃焼器に送給される燃料が、エンジンが設計された所定の又は好ましいMWIレーティングにあるか、或いは所定又は好ましいMWIレーティングの範囲内にあるように供給燃料の温度を上昇又は下降させることによって調整することができる。上述のように、エンジンが設計された燃料の所定の又は好ましいMWIレーティング、或いは所定の又は好ましいMWIレーティングの範囲は、本明細書では共に目標MWI範囲と呼ぶ。当業者であれば理解されるように、燃焼タービンエンジンは、目標MWI範囲と一致するMWIレーティングで燃料が燃焼器に送給されたときに、より効率的又はより確実を含むより良好に動作する。目標MWI範囲外で燃焼器に燃料を送給する(すなわち、燃焼器に送給されている燃料の温度が目標MWI範囲内のMWIレーティングを生成しないときに起こる可能性がある)と、エンジン性能及びエンジン効率の損失が生じ、及び/又は、タービン構成要素に損傷を与える可能性がある。更に上述のように、適切な範囲外で燃料を燃焼器30に送給すると、ガスタービン「ランバック」状況に陥る可能性があり、これは、一般的には、エンジンがエンジン出力を大幅に低減させる予防的ステップを自動的に行うことになるので極めて望ましくない場合がある。この予防的措置は、燃料のMWIレーティングが推奨範囲内にないときに起こる可能性がある潜在的な損傷を最小限にするために実行されるが、出力の急落もまた極めて望ましくない別の問題を引き起こす可能性がある。
【0064】
燃料のMWIレーティングと燃料の温度とは反比例の関係にある。すなわち、燃料の温度が増大すると、MWIレーティングは減少する。或いは、燃料の温度が低下すると、MWIレーティングは増大する。従って、例えば、燃料の発熱量を「X」と仮定し、タービンエンジンが設計された目標MWI範囲が与えられると、MWIレーティングを目標MWI範囲内に維持するために燃料を送給できる許容可能な温度範囲は、「Z」から「Y」までの温度範囲を構成する。供給燃料の発熱量が値(X+10)まで増大した場合、一般的には、MWIレーティングを目標MWI範囲内に維持するためにこの燃料を送給することができる許容可能な温度範囲は、ある温度範囲まで、例えば(Z−20)から(Y−20)まで低下する。従って、燃焼タービンエンジンは一般に、燃料の発熱量が与えられると、燃焼器に送給すべき燃料の許容可能又は推奨される温度及び/又は許容又は推奨温度範囲(すなわちMWIレーティングを目標MWI範囲内に維持する温度範囲)を有する。ステップ204では、この好ましい温度又は推奨温度範囲(以後「目標温度範囲」と呼ぶ)を決定する。要約すると、目標温度範囲とは、目標MWIレーティング内の燃料が燃焼器に送給されたときに、燃料のMWIレーティングを高速燃料発熱量メーター83によって測定された発熱量測定値に基づいて維持する温度値又は温度範囲である。次いで、プロセスは、ステップ204からステップ206に進むことができる。
【0065】
ステップ206において、(ステップ202の連続作動の一部として測定及び監視される)燃料混合接合部64と燃焼器30の入口との間で測定される混合燃料温度が与えられると、プロセスは、混合燃料温度がステップ204で算出した目標温度範囲内にあるかどうかを判定することができる。燃焼器の入口における供給燃料の温度が、目標温度範囲又はその範囲内にあると判定された場合、図示のように、プロセスはステップ204に戻ることができる。燃焼器の入口における供給燃料の温度が、目標温度範囲又はその範囲内にないと判定された場合、プロセスはステップ208に進むことができる。
【0066】
ステップ208において、制御ユニットは、種々のシステムバルブ99の設定を操作し、混合燃料温度が目標温度範囲又はその範囲内に近付けるように該混合燃料温度を修正することができる。従って、混合燃料温度を低下させる必要があると判定された場合(すなわち測定された混合燃料温度が目標温度範囲よりも高い場合)には、有効ブランチを通る再配分された流れが混合燃料温度を低下させるように、複数の制御バルブの設定を修正することができる。これは、上述のように、どのようにシステムが機能しているかに応じて複数の方法で達成することができる。例えば、図5及び6のシステム70において、低温ブランチ55を通じてより多くの燃料を配向し、高温ブランチ60を通じてより少ない燃料を配向することができ、燃料混合接合部64において混合される燃料のより多くがアフタークーラー51により冷却されているようにする。燃料圧縮機39が作動しており、2次熱源が非作動状態にあるときの図7及び8のシステム90において、同じ温度低減方法を利用できる点は理解されるであろう。他方、燃料圧縮機39がシステム90において作動中ではないときには、システムを通る燃料流は、低温圧縮機バイパス96により多くを配向し、高温圧縮機バイパス97により少なく配向して、燃料混合接合部64において混合される燃料のより少ない部分が加熱されているように再配分することができる。
【0067】
或いは、混合燃料温度を増大させる必要があると判定された場合(すなわち測定された混合燃料温度が目標温度範囲よりも低い場合)には、有効ブランチを通る再配分された流れが混合燃料温度を増大させるように、複数の制御バルブの設定を修正することができる。これは、上述のように、どのようにシステムが機能しているかに応じて複数の方法で達成することができる。例えば、図5及び6のシステム70において、低温ブランチ55を通じてより少ない燃料を配向し、高温ブランチ60を通じてより多くの燃料を配向することができ、燃料混合接合部64において混合される燃料のより少ない部分がアフタークーラー51により冷却されているようにする。燃料圧縮機39が作動しており、2次熱源が非作動状態にあるときの図7から9のシステム90において、同じ温度増大方法を利用できる点は理解されるであろう。他方、燃料圧縮機39がシステム90において作動中ではないときには、燃料流は、低温圧縮機バイパス96により少なく配向し、高温圧縮機バイパス97により多く配向して、燃料混合接合部64において混合される燃料のより多くが加熱されているように再配分することができる。
【0068】
ステップ210において、ステップ208において取られた措置から結果として生じた修正混合燃料温度が与えられると、プロセスは、混合燃料温度がステップ204で算出された目標温度範囲内にあるかどうかを判定することができる。混合燃料温度(理解されるように、燃焼器30への入口にて測定できる)が目標温度範囲内にある(これにより目標MWI範囲内で燃料を生成する)と判定された場合、プロセスはステップ212に進むことができる。しかしながら、混合燃料温度が依然として目標温度範囲内にない(これにより目標MWI範囲内で燃料を生成できない)と判定された場合、プロセスはステップ208に戻りことができ、ここでシステム制御値バルブは別の機会に調整することができる。プロセスは、燃焼器に送給される燃料の温度が目標温度範囲又はそれ以内になるまでステップ208から210まで制御ループを繰り返すことができる点は理解されるであろう。ステップ212において、プロセスが終了することができる。或いは、(図示しないが)プロセスは、ステップ202に戻り、再度開始することができる。
【0069】
図9及び10のプロセス要素の実施例は例証として示したものである。他のプロセス及び流れ図の実施形態は、これよりも少ないか又はこれよりも多い要素又はステップを有することができ、このような要素又はステップは、本発明の他の実施形態による代替構成で配置することができる点は理解されるであろう。当業者であれば理解されるように、幾つかの例示的な実施形態に関して上述された多くの様々な特徴及び構成は、本発明の他の実施可能な実施形態を形成するよう更に選択的に適用することができる。簡潔にするため、及び当業者の能力を考慮して、各々の可能な繰り返しは本明細書で詳細には述べていないが、添付の複数の請求項によって包含される全ての組み合わせ及び可能な実施形態は、本出願の一部をなすものとする。加えて、本発明の複数の例示的な実施形態の上記の説明から、当業者であれば改善、変更、及び修正が理解されるであろう。当該技術分野の範囲内にあるこのような改善、変更、及び修正はまた、添付の請求項によって保護されるものとする。更に、上記のことは、本出願の記載された実施形態にのみに関連しているが、添付の請求項及びその均等物によって定められる本出願の精神及び範囲から逸脱することなく、当業者によって多くの変更及び修正を本明細書において行うことができる点を理解されたい。更に、以上の説明は、本出願に記載された実施形態だけに関係するものであること、並びに、下記の特許請求項及びそれらの等価物によって定義される本出願の趣旨及び範囲から逸脱することなく、数多くの変更及び修正を本明細書に加えることができることは明白である。
【符号の説明】
【0070】
10 ガスタービンエンジン
11 圧縮機
12 タービン
13 燃焼器
14 圧縮機ロータブレード
15 圧縮機ステータブレード
16 タービンロータブレード
17 タービンステータブレード
20 燃焼タービンシステム
22 発電機
24 ロータ
26 圧縮機
28 タービン
30 燃焼器
32 空気取入れ管路
39 燃料圧縮機
50 燃料管路
51 アフタークーラー
55 低温ブランチ
60 高温ブランチ
62 上流側分岐点
64 燃料混合接合部
65 バルブ
66 燃焼ガス制御バルブ
67 ガスクロマトグラフ
70 燃焼タービンシステム
78 高温燃料制御バルブ
79 低温燃料制御バルブ
80 3ウェイバルブ
82 制御ユニット
83 高速発熱量メーター
85 温度測定装置

【特許請求の範囲】
【請求項1】
燃焼タービンエンジン(10)用の燃料送給システムであって、
燃料源への第1の接続部と前記燃焼タービンエンジン(10)の燃焼器(13)への第2の接続部との間に位置付けられた燃料圧縮機(39)を有する燃料管路(50)であって、前記燃料圧縮機(39)の下流側にある並列ブランチをさらに備えていて、該並列ブランチが、アフタークーラー(51)を有する低温ブランチ(55)と該アフタークーラー(51)をバイパスする高温ブランチ(60)とを有している、燃料管路(50)と、
前記燃料源からの燃料の発熱量を測定し、該測定値に関する発熱量データを伝達するよう構成された高速発熱量メーター(83)と、
前記低温ブランチ(55)を通って配向される燃料の量及び前記高温ブランチ(60)通って配向される燃料の量を制御する手段と、
前記低温ブランチ(55)及び前記高温ブランチ(60)が合流する燃料混合接合部(64)であって、燃焼ガス制御バルブ(66)に近接して位置する燃料混合接合部(64)と
を備える、燃料送給システム。
【請求項2】
前記燃焼ガス制御バルブ(66)が、前記燃焼器(13)への入口から直ぐ上流側に位置付けられた燃料バルブを含み、
前記燃料混合接合部(64)が、
a)前記低温ブランチ(55)を通って配向される燃料の量及び前記高温ブランチ(60)を通って配向される燃料の量を制御する手段による変化が前記燃焼ガス制御バルブ(66)での燃料温度の時間的変化を引き起こすように、前記燃焼ガス制御バルブ(66)に十分に近接しており、b)前記燃料が前記燃焼ガス制御バルブ(66)に到達する前に実質的に均一な温度に混合されているように、前記燃焼ガス制御バルブ(66)から十分に離れている位置にある、
請求項1記載の燃料送給システム。
【請求項3】
燃料温度を測定し、該燃料温度測定値に関する燃料温度データを伝達するよう構成された複数の温度測定装置(85)を更に備え、
前記温度測定装置(85)が、前記燃料管路(50)に沿って配置されて、前記燃料圧縮機(39)により加圧された後の燃料の温度を含む加圧燃料温度と、前記アフタークーラー(51)によって冷却された後の燃料の温度を含む冷却燃料温度と、前記燃料混合接合部(64)の下流側の燃料の温度を含む混合燃料温度と、を少なくとも測定し、
前記制御手段が、前記燃料管路(50)に沿って配置された1つ又はそれ以上のバルブの作動を制御するよう構成された制御ユニット(82)を含み、
該制御ユニット(82)は、前記温度測定装置(85)からの燃料温度データと前記高速発熱量メーター(83)からの発熱量データとを受け取るよう構成され、
前記温度測定装置(85)から受け取った前記燃料温度データと、前記高速発熱量メーター(83)から受け取った前記発熱量データとが与えられたときに、前記制御ユニット(82)が、目標温度範囲を算出し、前記燃料の所望の部分が前記低温ブランチ(55)を通って配向され且つ前記燃料の所望の部分が前記高温ブランチ(60)を通って配向されるよう前記1つ又はそれ以上のバルブを制御し、前記燃料混合接合部(64)の上流側の混合燃料温度が前記目標温度範囲に達するようにする、
請求項1記載の燃料送給システム。
【請求項4】
前記燃料の目標温度範囲は、前記燃料の測定発熱量が与えられたときに前記燃焼タービンエンジン(10)用の目標修正ウォッベ指数範囲を有する燃料の温度範囲を含み、
前記アフタークーラー(51)が、ガス熱交換器への空気及びガス熱交換器への液体のうちの1つを含み、
前記高速発熱量メーター(83)が、前記燃料の発熱量を適時測定して、該測定値に関する発熱量データを伝達するよう構成され、
前記1つ又はそれ以上のバルブが、a)前記高温ブランチ(60)上に位置付けられた2ウェイ高温燃料制御バルブ(78)及び前記低温ブランチ(55)上に位置付けられた2ウェイ低温燃料制御バルブ(79)と、b)前記燃料混合接合部(64)に位置付けられた3ウェイバルブ(80)のうちの1つを含む、
請求項3記載の燃料送給システム。
【請求項5】
前記制御ユニット(82)は、
前記目標温度範囲が与えられたときに前記混合燃料温度の増大が必要な場合、前記燃料管路(50)の高温ブランチ(60)を通って配向される燃料の部分を増大させるように前記1つ又はそれ以上のバルブを制御し、
前記目標温度範囲が与えられたときに前記混合燃料温度の減少が必要な場合、前記燃料管路(50)の低温ブランチ(55)を通って配向される燃料の部分を増大させるように前記1つ又はそれ以上のバルブを制御する、
よう構成されている、
請求項3記載の燃料送給システム。
【請求項6】
前記高速発熱量メーター(83)が、発熱量試験結果を該試験プロセスの開始からおよそ30秒未満で提供する装置を含み、前記燃料送給システムが、およそ30秒未満の規則的な間隔で前記燃料を試験するよう構成されており、前記燃料混合接合部(64)は、該燃料混合接合部(64)と前記燃焼ガス制御バルブ(66)との間の前記燃料管路(50)の長さがおよそ6から10メートルの間になるように位置付けられる、
請求項2記載の燃料送給システム。
【請求項7】
前記燃料管路(50)が更に、
前記燃料圧縮機(39)の上流側の位置にて前記燃料管路(50)に接続され、通過する燃料の流れが前記燃料圧縮機(39)をバイパスしてヒータに送られて加熱されるように構成され、前記燃料混合接合部(64)の上流側の位置にて前記ヒータから前記高温ブランチ(60)に接続される高温圧縮機バイパスと、
前記燃料圧縮機(39)の上流側の位置にて前記燃料管路(50)に接続され、通過する燃料の流れが前記燃料圧縮機(39)及び前記ヒータをバイパスするように構成され、前記燃料混合接合部(64)の上流側で且つ前記アフタークーラー(51)の下流側の位置にて前記低温ブランチ(55)に接続される低温圧縮機バイパスと、
を含み、
前記燃料送給システムが更に、
燃料温度を測定し、該燃料温度測定値に関する燃料温度データを伝達するよう構成された複数の温度測定装置(85)を更に備え、
前記複数の温度測定装置(85)が、複数の位置にて前記燃料管路(50)に沿って配置されて、前記燃料圧縮機(39)により加圧された後の燃料の温度を含む加圧燃料温度と、前記アフタークーラー(51)によって冷却された後の燃料の温度を含む冷却燃料温度と、前記ヒータにより加熱された後の燃料の温度を含む加熱燃料温度と、前記低温圧縮機バイパス内の燃料の温度を含み未処理の燃料温度と、前記燃料混合接合部(64)の下流側の燃料の温度を含む混合燃料温度と、を少なくとも測定し、
前記制御手段が、前記燃料管路(50)に沿って配置された1つ又はそれ以上のバルブの作動を制御するよう構成された制御ユニット(82)を含み、
該制御ユニット(82)は、前記複数の温度測定装置(85)からの燃料温度データと前記高速発熱量メーター(83)からの発熱量データとを受け取るよう構成され、
前記複数の温度測定装置(85)から受け取った前記燃料温度データと、前記高速発熱量メーター(83)から受け取った前記発熱量データとが与えられたときに、前記制御ユニット(82)が、目標温度範囲を算出し、前記燃料の所望の部分が前記低温ブランチ(55)を通って配向され、前記燃料の所望の部分が前記高温ブランチ(60)を通って配向され、前記燃料の所望の部分が前記高温圧縮機バイパス通って配向され、更に前記燃料の所望の部分が前記低温圧縮機バイパスを通って配向されるよう前記1つ又はそれ以上のバルブを制御し、前記燃料混合接合部(64)の上流側の混合燃料温度が前記目標温度範囲に達するようにする、
請求項1記載の燃料送給システム。
【請求項8】
前記燃料送給システムが、a)前記燃料圧縮機(39)が前記燃焼器への燃料の流れを加圧するよう作動する第1の動作モードと、b)前記燃料圧縮機(39)が非作動になる第2の動作モードを含む2つの動作モード間を選択的に作動可能であり、
前記第1の動作モードでは、前記制御ユニット(82)が、前記1つ又はそれ以上のバルブを制御して、前記燃料の実質的に全てが前記燃料圧縮機(39)を通って配向されるように構成され、
前記第2の動作モードでは、前記制御ユニット(82)が、前記1つ又はそれ以上のバルブを制御して、前記燃料の実質的に全てが前記高温圧縮機バイパス及び前記低温圧縮機バイパスを通って配向され、前記燃料圧縮機(39)には実質的に燃料が配向されないように構成される、
請求項7記載の燃料送給システム。
【請求項9】
前記第1の動作モードにおいて、前記高温圧縮機バイパスを通って配向されている燃料の所望の部分が実質的に存在せず、前記低温圧縮機バイパスを通って配向されている燃料の所望の部分が実質的に存在せず、前記低温ブランチ(55)を通って配向されている燃料の所望の部分及び前記高温ブランチ(60)を通って配向されている燃料の所望の部分が、前記燃料混合接合部(64)の下流側の混合燃料温度が前記目標温度範囲内に維持されるように前記制御ユニット(82)によって制御される、
請求項8記載の燃料送給システム。
【請求項10】
前記第2の動作モードにおいて、前記燃料圧縮機(39)から前記高温ブランチ(60)を通って配向されている燃料の所望の部分が実質的に存在せず、前記燃料圧縮機(39)から前記低温圧縮機バイパスを通って配向されている燃料の所望の部分が実質的に存在せず、前記低温圧縮機バイパスを通って配向されている燃料の所望の部分及び前記高温圧縮機バイパスを通って配向されている燃料の所望の部分が、前記燃料混合接合部(64)の下流側の混合燃料温度が前記目標温度範囲内に維持されるように前記制御ユニット(82)によって制御される、
請求項8記載の燃料送給システム。
【請求項11】
前記燃料源の圧力を測定して、該圧力測定値に関する圧力データを前記制御ユニット(82)に伝達する手段を更に備え、前記燃料源の圧力が所定の閾値圧力を下回る場合には、前記制御ユニット(82)が、前記第1の動作モードで前記燃料送給システムを自動的に作動するよう構成され、前記燃料源の圧力が所定の閾値圧力を上回る場合には、前記制御ユニット(82)が、前記第2の動作モードで前記燃料送給システムを自動的に作動するよう構成され、前記所定の閾値圧力は前記燃焼器の好ましい燃料圧力レベルを含む、
請求項8記載の燃料送給システム。
【請求項12】
燃焼タービンエンジンの燃焼器への燃料の送給を制御する方法であって、前記燃焼タービンエンジンの燃料送給システムが、
燃料源への第1の接続部と前記燃焼タービンエンジンの燃焼器への第2の接続部との間に位置付けられた燃料圧縮機(39)を有する燃料管路(50)を備え、
前記燃料管路(50)が更に、前記燃料圧縮機(39)の下流側にある並列ブランチを含み、該並列ブランチが、アフタークーラー(51)を有する低温ブランチ(55)と該アフタークーラー(51)をバイパスする高温ブランチ(60)とを有し、前記燃料送給システムが更に、
前記燃料源からの燃料の発熱量を測定し、該測定値に関する発熱量データを伝達するよう構成された高速発熱量メーター(83)と、
前記低温ブランチ(55)を通って配向される燃料の量及び前記高温ブランチ(60)通って配向される燃料の量を制御する手段と、
燃焼ガス制御バルブ(66)に近接して位置付けられ、且つ前記低温ブランチ(55)及び前記高温ブランチ(60)が合流する燃料混合接合部(64)と、
を備え、
前記方法が、
前記高速発熱量メーター(83)を用いて前記燃料の発熱量を測定する段階と、
前記測定した発熱量及び前記燃焼器の目標修正ウォッベ指数範囲に基づいて前記燃料の目標温度範囲を決定する段階と、
前記燃焼器に送給される燃料の温度が前記目標温度範囲内の温度を含むように前記低温ブランチ(55)及び前記高温ブランチ(60)を通る前記燃料の流れを制御する段階と、
を含む、
方法。
【請求項13】
前記燃料管路(50)が更に、
前記燃料圧縮機(39)の上流側の位置にて前記燃料管路(50)に接続され、通過する燃料の流れが前記燃料圧縮機(39)をバイパスしてヒータに送られて加熱されるように構成され、前記燃料混合接合部(64)の上流側の位置にて前記ヒータから前記高温ブランチ(60)に接続される高温圧縮機バイパスと、
前記燃料圧縮機(39)の上流側の位置にて前記燃料管路(50)に接続され、通過する燃料の流れが前記燃料圧縮機(39)及び前記ヒータをバイパスするように構成され、前記燃料混合接合部(64)の上流側で且つ前記アフタークーラー(51)の下流側の位置にて前記低温ブランチ(55)に接続される低温圧縮機バイパスと、
を含み、
前記燃料送給システムが更に、燃料温度を測定するよう構成された複数の温度測定装置(85)を更に備え、前記複数の温度測定装置(85)が、複数の位置にて前記燃料管路(50)に沿って配置されて、前記燃料圧縮機(39)により加圧された後の燃料の温度を含む加圧燃料温度と、前記アフタークーラー(51)によって冷却された後の燃料の温度を含む冷却燃料温度と、前記ヒータにより加熱された後の燃料の温度を含む加熱燃料温度と、前記低温圧縮機バイパス内の燃料の温度を含み未処理の燃料温度と、前記燃料混合接合部(64)の下流側の燃料の温度を含む混合燃料温度と、を少なくとも測定し、
前記方法が更に、
前記加圧燃料温度、前記冷却燃料温度、前記加熱燃料温度、前記未処理の燃料温度、及び前記混合燃料温度を周期的に測定する段階と、
前記発熱量測定値及び前記温度測定値に基づいて、前記燃料の所望の部分が前記低温ブランチ(55)を通って配向され、前記燃料の所望の部分が前記高温ブランチ(60)を通って配向され、前記燃料の所望の部分が前記高温圧縮機バイパス通って配向され、更に前記燃料の所望の部分が前記低温圧縮機バイパスを通って配向されるように前記燃料の流れを制御し、前記燃料混合接合部(64)の上流側の混合燃料温度が前記目標温度範囲に達するようにする段階と、
を更に含む、
請求項12記載の方法。
【請求項14】
前記燃料送給システムが、a)前記燃料圧縮機(39)が前記燃焼器への燃料の流れを加圧するよう作動する第1の動作モードと、b)前記燃料圧縮機(39)が非作動になる第2の動作モードを含む2つの動作モード間を選択的に作動可能に構成され、
前記方法が更に、
前記第1の動作モードで動作する場合、前記燃料の実質的に全てが前記燃料圧縮機(39)を通って配向されるように前記燃料流を制御する段階と、
前記第2の動作モードで動作する場合、前記燃料の実質的に全てが前記高温圧縮機バイパス及び前記低温圧縮機バイパスを通って配向され、前記燃料圧縮機(39)には実質的に燃料が配向されないように前記燃料流を制御する段階と、
を含む、
請求項13記載の方法。
【請求項15】
前記燃料送給システムが前記燃料源の圧力を測定するよう構成され、
前記方法が更に、
前記燃料源の圧力が所定の閾値圧力を下回る場合には、前記第1の動作モードで前記燃料送給システムを自動的に作動する段階と、
前記燃料源の圧力が所定の閾値圧力を上回る場合には、前記第2の動作モードで前記燃料送給システムを自動的に作動する段階と、
を含み、
前記所定の閾値圧力が前記燃焼器の好ましい燃料圧力レベルを含み、前記燃料の目標温度範囲は、前記燃料の測定発熱量が与えられたときに前記燃焼タービンエンジン用の目標修正ウォッベ指数範囲内にある燃料の温度範囲を含む、
請求項14記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate