説明

特性曲線法による地盤抵抗解析

【課題】 動的載荷試験により得られる計測波から、特性曲線法を使用して、正確な地盤抵抗を得る。
【解決手段】 演算部53は、入力波の導入位置を杭頭とした特性曲線法による杭モデルへの入力波として、動的載荷試験において計測された計測波から杭頭での波を計算する。そして、演算部53は、その入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する。制御部56は、パラメータ選択部52、演算部53および波形マッチング部54を利用して、ノードでの波に基づいてノードでの地盤抵抗を特定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特性曲線法による地盤抵抗解析に関するものである。
【背景技術】
【0002】
杭の支持力確認および杭の健全性試験のために、杭の衝撃載荷試験法が実施されている。杭の衝撃載荷試験法では、(a)杭頭を打撃し所定の計測点での加速度、ひずみなどが計測され、(b)計測された加速度、ひずみなどから杭に生じる軸方向力を求め、(c)杭と地盤をモデル化し、波形マッチング解析により、杭先端および周面の地盤抵抗を求め、杭の荷重−変位関係と支持力が推定される。この杭の衝撃載荷試験法については、地盤工学会の基準がある(非特許文献1)。
【0003】
非特許文献1では、波形マッチング解析法として、一次元波動理論に基づいた特性曲線法を使用するものが推奨されている。特性曲線法では、離散化されたノードに地盤抵抗が集中しているモデルが使用され、軸方向力を上昇波と下降波とに分離して波動伝播が表現される。
【0004】
この特性曲線法は、波形マッチング解析手法において、日本だけではなく、世界的に用いられている解法である。
【0005】
例えば、米国PdI者のCAPWAP(CAse Pile Wave Analysis Program)およびオランダ国応用科学研究所建設工学部門(TNO)のFPDS(Foundation Pile Diagnostic System)が、特性曲線法を用いたソフトウェアを販売している。
【0006】
非特許文献1に記載されている特性曲線法では、杭モデルに対する入力波として、杭頭ではなく計測点での下降波を使用し、各ノードでの波が計算される。
【0007】
【非特許文献1】「杭の鉛直載荷試験方法・同解説」地盤工学会、2002年5月、ISBNコード:978-4-88644-064-8
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述のように、従来、特性曲線法による波形マッチング解析手法を用いた地盤抵抗解析においては、計測点での下降波が入力波として使用されている。つまり、計測データから入力波を計算する際に、計測点での下降波が計算される。他方、実際の計測環境では、計測点は、杭頭から離れた位置とされる。これは、計測点を杭頭とすると、計測に使用する加速度センサが打撃により破損するとともに、ひずみゲージが計測点に貼れないためである。また、杭頭への打撃が偏打となると、杭頭近辺では、杭周面のひずみ、加速度といった計測値が一様にならない。このため、上記非特許文献1における基準では、杭直径の1.5倍以上、杭頭から計測点を離さなければならないとしている。これらの理由から、計測点は、杭頭には設けられず、外界から杭モデルへ入力波が印加される位置は、杭頭ではなく計測点としてモデル化されていた。
【0009】
しかしながら、実際に計測される計測点での下降波は打撃力により杭内に発生する応答波であり、打撃力に対する応答波は、杭の境界条件に応じて変化するものであるにも拘わらず、その応答波を、杭モデルへの入力波に使用しているため、真の地盤抵抗を設定した場合のみ波形マッチングが正確に行われる。この理由から、従来の特性曲線法による地盤抵抗解析においては、解析結果として、正しい地盤抵抗を得ることが困難である。ここでいう杭の境界条件とは、杭の諸条件(断面積、ヤング率、波動の伝播速度、密度、杭長など)および地盤抵抗(杭周面地盤抵抗、杭先端地盤抵抗)のことである。
【0010】
波形マッチング解析法とは、杭と地盤モデルを構築し、動的載荷試験の波を、応答解析などを用いてシミュレートし、シミュレートした波と試験から得られた波とがマッチングするように地盤抵抗を求める解析手法である。具体的には、波形マッチング解析では、地盤抵抗のパラメータの値を変化させつつ、杭頭、計測点、あるいはその他の所定の位置での応力の上昇波(または下降波、または応力(下降波と上昇波とを加算した波))を計算により求め、計測データから得られるその位置での応力の上昇波(または下降波、または応力(下降波と上昇波とを加算した波))と、計算による応力の上昇波(または下降波、または応力(下降波と上昇波とを加算した波))とを比較して、両者の誤差が所定の条件を満足した場合のパラメータの値から地盤抵抗を特定する。そして、地盤抵抗が求まったら、この地盤抵抗から静的抵抗成分だけを分離して杭の支持力を評価する。
【0011】
このため、上述のように、入力波として計測点での下降波を使用しても、波形マッチング解析によりパラメータの値は得られるものの、真の値から離れた値となってしまう。
【0012】
本発明は、上記の問題に鑑みてなされたものであり、正確な地盤抵抗を得ることができる特性曲線法による地盤抵抗解析装置、地盤抵抗解析プログラムおよび地盤抵抗解析方法を得ることを目的とする。
【課題を解決するための手段】
【0013】
上記の課題を解決するために、本発明では以下のようにした。
【0014】
本発明に係る地盤抵抗解析装置は、入力波の導入位置を杭頭とした特性曲線法による杭モデルへの入力波として、動的載荷試験において計測された計測波から杭頭での波を計算し、入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する計算手段と、1または複数のノードでの波に基づいて1または複数のノードでの地盤抵抗を特定する特定手段とを備える。
【0015】
また、本発明に係る地盤抵抗解析装置は、上記の地盤抵抗解析装置に加え、次のようにしてもよい。この場合、計算手段は、動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(a1)で、
杭頭での応力σ(t)を式(a2)で、
杭頭での上昇応力g(t)を式(a3)または式(a5)で、
杭頭での下降応力f(t)を式(a4)または式(a6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(a1)
σ(t)=FInput(t)/A ・・・(a2)
(t)=g(t−Δt)+Q/2A ・・・(a3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(a4)
(t)=σ(t)−f(t) ・・・(a5)
(t)=σ(t)−g(t) ・・・(a6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、Qは、杭頭での周面抵抗とし、gは杭頭から最も近いノードでの上昇応力とし、Aは、杭頭での杭の断面積とする。)
杭の1または複数のノードでの波として、
1または複数のノードでの変位u(t)、
1または複数のノードでの上昇応力g(t)、
1または複数のノードでの応力σ(t)、および
1または複数のノードでの下降応力f(t)を計算する。
【0016】
本発明に係る地盤抵抗解析プログラムは、コンピュータを、入力波の導入位置を杭頭とした特性曲線法による杭モデルへの入力波として、動的載荷試験において計測された計測波から杭頭での波を計算し、入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する計算手段、および1または複数のノードでの波に基づいて1または複数のノードでの地盤抵抗を特定する特定手段として機能させる。
【0017】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムに加え、次のようにしてもよい。この場合、計算手段は、動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(b1)で、
杭頭での応力σ(t)を式(b2)で、
杭頭での上昇応力g(t)を式(b3)または式(b5)で、
杭頭での下降応力f(t)を式(b4)または式(b6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(b1)
σ(t)=FInput(t)/A ・・・(b2)
(t)=g(t−Δt)+Q/2A ・・・(b3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(b4)
(t)=σ(t)−f(t) ・・・(b5)
(t)=σ(t)−g(t) ・・・(b6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、gは杭頭から最も近いノードでの上昇応力とし、Qは、杭頭での周面抵抗とし、Aは、杭頭での杭の断面積とする。)
杭の1または複数のノードでの波として、
1または複数のノードでの変位u(t)、
1または複数のノードでの上昇応力g(t)、
1または複数のノードでの応力σ(t)、および
1または複数のノードでの下降応力f(t)を計算する。
【0018】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムのいずれかに加え、次のようにしてもよい。この場合、計算手段は、動的載荷試験において杭頭から所定の距離の計測位置で計測された計測波から杭頭での軸方向力FInput(t)を計算する。
【0019】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムのいずれかに加え、次のようにしてもよい。この場合、計算手段は、計測位置で計測されたひずみおよび加速度の時系列データ、またはひずみおよび加速度の時系列データから杭頭での軸方向力FInput(t)を計算する。
【0020】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムのいずれかに加え、次のようにしてもよい。この場合、計算手段は、動的載荷試験において杭頭に配置されたロードセルで計測された計測波から杭頭での軸方向力FInput(t)を計算する。
【0021】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムのいずれかに加え、次のようにしてもよい。この場合、特定手段は、1または複数のノードでの波と計測波に基づく波形マッチング解析により地盤抵抗のパラメータの値を特定する。
【0022】
また、本発明に係る地盤抵抗解析プログラムは、上記の地盤抵抗解析プログラムのいずれかに加え、次のようにしてもよい。この場合、特定手段は、波形マッチング解析により、杭頭側から杭先端へ向かって各ノードの地盤抵抗のパラメータの値を順番に特定していく。
【0023】
本発明に係る記録媒体は、上記の地盤抵抗解析プログラムのいずれかを格納したコンピュータ読み取り可能な記録媒体である。
【0024】
本発明に係る地盤抵抗解析方法は、入力波の導入位置を杭頭とした特性曲線法による杭モデルへの入力波として、動的載荷試験において計測された計測波から杭頭での波を計算するステップと、入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算するステップと、1または複数のノードでの波に基づいて1または複数のノードでの地盤抵抗を特定するステップとを備える。
【0025】
また、本発明に係る地盤抵抗解析方法は、上記の地盤抵抗解析方法に加え、次のようにしてもよい。この場合、動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(d1)で、
杭頭での応力σ(t)を式(d2)で、
杭頭での上昇応力g(t)を式(d3)または式(d5)で、
杭頭での下降応力f(t)を式(d4)または式(d6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(d1)
σ(t)=FInput(t)/A ・・・(d2)
(t)=g(t−Δt)+Q/2A ・・・(d3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(d4)
(t)=σ(t)−f(t) ・・・(d5)
(t)=σ(t)−g(t) ・・・(d6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、gは杭頭から最も近いノードでの上昇応力とし、Qは、杭頭での周面抵抗とし、Aは、杭頭での杭の断面積とする。)
杭の1または複数のノードでの波として、
1または複数のノードでの変位u(t)、
1または複数のノードでの上昇応力g(t)、
1または複数のノードでの応力σ(t)、および
1または複数のノードでの下降応力f(t)を計算する。
【0026】
なお、地盤抵抗の解析法としては、差分法の杭モデルを使用したものがある。本願発明者は、入力波の導入位置を杭頭とした差分法による杭モデルを、特願2003−110828号(特開2004−316216号公報)において提案しているが、差分法と特性曲線法とでは杭モデルの定式化が全く異なるため、特開2004−316216号公報等に基づき当業者が容易に本願発明を想到できるものではない。本願発明は、特願2003−110828号の出願後にさらに本願発明者が創意工夫を重ねた結果により得られたものである。
【0027】
特性曲線法は、日本のみならず、世界中で用いられている解析方法であり、波形マッチング解析ソフトウェアの多くが、この解析方法を用いている。特性曲線法による解析の場合、差分法より解析時の計算量が少ないため、短時間で解析を行うことができるとともに、解析時に使用されるデータ量が少ないため、少ないメモリ量で解析を行うことができるという利点がある。
【発明の効果】
【0028】
本発明によれば、特性曲線法を用いて正確な地盤抵抗を得ることができる。
【発明を実施するための最良の形態】
【0029】
以下、図に基づいて本発明の実施の形態を説明する。
【0030】
図1は、衝撃載荷試験の計測系の一例を示す図である。図1に示す計測系では、試験杭などの杭1が地盤2に鉛直に埋設され、その頭部のみが地盤2上に露出している。その状態で、杭頭にハンマーを落とすことにより、杭1に打撃が与えられる。そして、杭1の杭頭から地表までの間にある所定の計測点に設置されたセンサ4により、その計測点での加速度およびひずみが検出される。そのセンサ4からの電気信号は、計測装置5によりサンプリングされ、加速度およびひずみの時系列データとして記録される。センサ4は、加速度センサおよびひずみゲージを有する。
【0031】
なお、センサ4としては、2点ゲージ法、2点の加速度センサなどを使用したものとしてもよい。これらの方法でも、加速度およびひずみの時系列データが得られる。
【0032】
このようにして、衝撃載荷試験により、加速度およびひずみの時系列データが得られる。
【0033】
次に、本発明の実施の形態に係る地盤抵抗解析装置について説明する。図2は、本発明の実施の形態に係る地盤抵抗解析装置の構成を示すブロック図である。
【0034】
図2に示すように、この地盤抵抗解析装置は、CPU11、ROM12、RAM13などを内蔵するコンピュータとして実現される。
【0035】
CPU11は、プログラムを実行し、プログラムに記述された処理を実行する演算処理装置である。また、ROM12は、プログラムおよびデータを予め記憶した不揮発性のメモリである。また、RAM13は、プログラムを実行する際にそのプログラムおよびデータを一時的に記憶するメモリである。
【0036】
入力装置14は、ユーザ操作に応じた電気信号を出力する装置である。入力装置14としては、キーボード、マウスなどが使用される。また、表示装置15は、CPU11の演算結果などのデータに基づいて各種情報を表示する装置である。表示装置15としては、液晶ディスプレイなどが使用される。入力装置14および表示装置15によるユーザインタフェースは、各種プログラムの起動、解析結果の表示などのために使用される。
【0037】
データ格納装置16は、上述の計測系により得られた計測データ31、上述の計測系を表す各種定数を含む定数データ32、図示せぬオペレーティングシステム、地盤抵抗解析のための解析プログラム33などのアプリケーションプログラムを格納する記録媒体を含む装置である。データ格納装置16としては、ハードディスクドライブ、不揮発性の半導体メモリ、光ディスクおよびその駆動装置などが使用される。また、解析プログラム33は、光ディスクなどの可搬性のある記録媒体に格納され、流通されるようにしてもよい。また、その場合、解析プログラム33を、コンピュータにインストールするインストーラとしてそのような可搬性のある記録媒体に格納しておいてもよい。この実施の形態では、計測データ31には、計測点でのひずみおよび加速度の時系列データが含まれる。また、定数データ32には、後述のモデルにおける計測点および各要素の杭断面積、ヤング率、密度、縦波伝播速度、機械インピーダンスなどが含まれる。なお、計測データ31、定数データ32および解析プログラム33は、それぞれ異なる記録媒体に格納されていてもよい。また、計測データ31および定数データ32は、他の装置に格納されており、他の装置からインタフェース17を介して受信されるようにしてもよい。
【0038】
インタフェース17は、外部装置を接続され、外部装置との間でデータ通信を行う回路である。インタフェース17としては、例えばUSB(Universal Serial Bus)といった周辺機器インタフェース、例えばイーサネット(登録商標)といったネットワークインタフェースなどが使用される。
【0039】
図3は、図2における解析プログラム33により実現される処理部を示すブロック図である。CPU11により解析プログラム33が実行されると、データ読取部51、パラメータ選択部52、演算部53、波形マッチング部54、データ出力部55および制御部56が実現される。
【0040】
データ読取部51は、計測データ31などをデータ格納装置16からRAM13へ読み出す処理部である。
【0041】
パラメータ選択部52は、波形マッチング解析に使用される各ノードでの地盤抵抗のパラメータの候補値を選択する処理部である。パラメータ選択部52は、選択したパラメータ候補値をRAM13に格納する。
【0042】
演算部53は、計測データ31から杭頭での軸方向力および粒子速度の時系列データを生成し、また、パラメータ選択部52により選択されたパラメータの候補値を使用して、特性曲線法に従って各ノードでの変位、下降応力、上昇応力および粒子速度の時系列データを計算する処理部である。演算部53は、RAM13に格納されているデータを使用して計算を行い、計算結果をRAM13に格納する。なお、時系列データとは、離散的に連続する時刻における一連の値を含むデータである。
【0043】
波形マッチング部54は、演算部53により生成された杭頭などの所定の位置での上昇応力または下降応力の時系列データ(つまり応力の上昇波または下降波)と、計測データ31から得られる同位置での上昇応力または下降応力の時系列データとを比較し、両者の誤差が所定の閾値以下であるか否かを判定する処理部である。
【0044】
データ出力部55は、解析結果のデータをRAM13から読み出しデータ格納装置16に格納する処理部である。
【0045】
制御部56は、処理部51〜55を制御して解析処理の流れを制御する処理部である。
【0046】
ここで、本実施の形態における特性曲線法に使用されるモデルを説明する。
【0047】
まず、杭1は複数の要素に分割され、軸方向に沿って、杭頭、隣接する2つの要素の境界の位置、および杭先端がノードされる。図4は、杭1に設定されたノードおよび要素を示す図である。
【0048】
図4において、ノード0は、杭頭に位置し、ノードnは、杭先端に位置する。uはノードmでの変位を示す。gはノードmでの上昇応力を示し、fはノードmでの下降応力を示す。Qはノードmでの周面の抵抗を示し、Rは杭先端での抵抗を示す。FInputは、入力波、つまり杭頭での軸方向力を示す。これらの変数の値は、時間とともに変化する。つまり、これらの変数は時間の関数となっている。なお、杭頭での周面抵抗Qは、ゼロとされる。
【0049】
また、ΔLは、ノードm−1とノードmとの間の要素(以下、要素mとする)の長さを示し、Aは、要素mの杭断面積を示し、Eは、要素mのヤング率を示し、ρは、要素mの杭密度を示す。cは、要素mにおける縦波の伝播速度であり、Zは、要素mの機械インピーダンスであり、Δtは、要素mを縦波が通過するのに要する伝播時間である(Δt=ΔL/c)。なお、c=√(E/ρ)であり、Z=A・E/cである。
【0050】
そして、図4に示す各ノードにおける変位uと抵抗Q,Rとの関係(特性)が、弾塑性モデルで表現される。図5は、ノードに適用される弾塑性モデルを説明する図である。図5(A)に示すように、このモデルは、バネ61とスライダ62とを直列に接続し、そのバネ61およびスライダ62と並列にダッシュポッド63が接続された機械系として表現される。そして、このモデルによると、ノードにおける変位と抵抗との関係は、図5(B)に示すようになる。また、完全弾塑性モデルの場合の特性は、図5(C)に示すようになる。このモデルのバネ61のバネ係数Kおよびダッシュポッドの減衰率がパラメータとされる。なお、スライダ62の静的抵抗値QM,RNをパラメータに含めてもよい。これらのパラメータについて、試験の対象となった地盤の特性を正確に表す値が解析により導出される。なお、塑性による変位が発生した場合、軸方向力がなくなっても変位が残留する。このため、図5(B)における点線で示すように、特性の原点は、軸方向力の履歴に応じて移動することがある。
【0051】
次に、特性曲線法による各ノードでの変位、上昇応力、下降応力および粒子速度の導出について説明する。図6は、計測点での軸方向力および粒子速度と杭頭での軸方向力および粒子速度を示す図である。図7は、時系列に沿って計算される各ノードでの上昇応力および下降応力について説明する図である。
【0052】
なお、ここでは、杭を単一杭として説明する。ただし、単一杭ではない杭においても本発明を適用可能である。単一杭である場合、すべての要素での断面積A、ヤング率E、杭密度ρ、縦波伝播速度c、機械インピーダンスZは、同一とされる。
A=A=・・・=A=・・・=A
E=E=・・・=E=・・・=E
ρ=ρ=・・・=ρ=・・・=ρ
c=c=・・・=c=・・・=c
Z=Z=・・・=Z=・・・=Z
【0053】
まず、計測データ31である加速度αmeasの時系列データおよびひずみεmeasの時系列データから、杭頭での軸方向力FInputが導出される。杭頭での軸方向力FInputは、式(01)に従って、計測点mでの軸方向力Fmeasおよび粒子速度vmeasから導出される。また、計測点mでの軸方向力Fmeasおよび粒子速度vmeasは、式(02)および式(03)に従って、計測点mでの軸方向力Fmeasおよび粒子速度vmeasの時系列データから導出される。なお、式(01)〜式(03)における、tは、杭頭から計測点mへの縦波の伝播に要する時間であり、Zm0、Am0およびEm0は、計測点mでの機械インピーダンス、断面積およびヤング率である。
【0054】
【数1】

【0055】
従来、計測点mでの軸方向力Fmeasおよび粒子速度vmeasが、入力波として使用されていたが、この実施の形態では、図6に示すように、杭頭での軸方向力FInputが計算され、入力波として使用される。式(01)に示すように、この実施の形態では、入力波が杭内を伝播していき現れる計測位置での下降波と上昇波とを合成したものが計測波となるように、入力波が計算される。さらに、この実施の形態では、入力波は、計測波の上昇波と下降波を所定の距離の伝播時間だけ前後にずらした2つの波を合成して計算される。
【0056】
次に、杭頭での変位u、下降応力f、上昇応力gおよび応力σの時系列データは、式(04)〜式(07)に従って導出される。なお、杭頭が露出していれば、Q=0とされる。式(06)に示すように、本実施の形態では、杭頭での応力σが、入力波(つまり、杭頭での軸方向力FInput)から導出されている。
【0057】
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(04)
(t)=g(t−Δt)+Q/2A=g(t−Δt)・・・(05)
σ(t)=FInput(t)/A ・・・(06)
(t)=FInput(t)/A−g(t−Δt)−Q/2A=FInput(t)/A−g(t−Δt) ・・・(07)
【0058】
なお、f(t)は、式(07)ではなく、g(t)およびσ(t)を計算した後に、式(08)に従って計算されるようにしてもよい。また、g(t)は、式(05)ではなく、f(t)およびσ(t)を計算した後に、式(09)に従って計算されるようにしてもよい。
【0059】
(t)=σ(t)−g(t) ・・・(08)
(t)=σ(t)−f(t) ・・・(09)
【0060】
また、杭頭での粒子速度v(t)は、式(10)または式(11)に従って計算される。
【0061】
(t)=(Finput(t)−2・A・g(t))/Z ・・・(10)
(t)=(f(t)−g(t))・A/Z ・・・(11)
【0062】
なお、時刻t=0以前については、u(t)、g(t)、σ(t)およびf(t)(i=0〜n)は、すべてゼロとされる。
【0063】
また、中間ノードmでの変位u、下降応力f、上昇応力gおよび応力σの時系列データは、式(12)〜式(15)に従って導出される。式(13)および式(14)における抵抗Qは、上述の弾塑性モデルに従って変位uから導出される。
【0064】
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(12)
(t)=fm−1(t−Δt)−Q/2A ・・・(13)
(t)=gm+1(t−Δtm+1)+Q/2A ・・・(14)
σ(t)=f(t)+g(t)=fm−1(t−Δt)+gm+1(t−Δtm+1) ・・・(15)
【0065】
なお、中間ノードmでの粒子速度v(t)は、f(t)およびg(t)を計算した後に、式(16)により求めればよい。
【0066】
(t)=(A・f(t)−A・g(t)+Q/2)/Z ・・・(16)
【0067】
そして、杭先端での変位u、下降応力f、上昇応力gおよび応力σの時系列データは、式(17)〜式(20)に従って導出される。ただし、杭先端での周面抵抗Qはゼロとし、先端抵抗Rのみを考慮するようにしてもよい。式(20)における抵抗Rは、上述の弾塑性モデルに従って変位uから導出される。
【0068】
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(17)
(t)=fn−1(t−Δt)−Q/2A=fn−1(t−Δt) ・・・(18)
σ(t)=f(t)+g(t)=R(t)/A ・・・(19)
(t)=R(t)/A−f(t)=R(t)/A−fn−1(t−Δt) ・・・(20)
【0069】
なお、杭先端での粒子速度v(t)は、f(t)およびg(t)を計算した後に、式(21)により求めればよい。
【0070】
(t)=(A・f(t)+A・g(t)−R)/Z ・・・(21)
【0071】
特性曲線法では、波の伝播を考慮して、図7に示すように、時系列に沿って順番に時系列データが計算されていく。つまり、まず、時刻tでの各ノードでの変位u、下降応力f、上昇応力gおよび応力σ(i=0,・・・,n)が計算され、次に、次の時刻t+Δtでの変位u、下降応力f、上昇応力gおよび応力σが計算される。ただし、図7では、ΔtおよびΔtm+1がサンプリングタイムΔtと同一であるとして説明している。
【0072】
このように、本実施の形態における特性曲線法では、入力波として、計測点での軸方向力Fmeasではなく、波の伝播時間および機械インピーダンスを考慮して計測点での軸方向力Fmeasおよび粒子速度vmeasから推定される杭頭での軸方向力Fmeasが使用される。
【0073】
次に、上記装置の動作について説明する。図8は、図2に示す装置により実行される、波形マッチングに基づく地盤抵抗解析について説明するフローチャートである。
【0074】
装置の起動後、CPU11により解析プログラム33が実行される。これにより、図3に示す処理部51〜56が形成される。そして、以下の処理が実行される。
【0075】
制御部56は、まず、データ読取部51に、解析に使用するデータのロードを実行させる。データ読取部51は、定数データ32をデータ格納装置16からRAM13へロードする(ステップS1)。また、データ読取部51は、計測データ31をデータ格納装置16からRAM13へロードする(ステップS2)。
【0076】
次に、制御部56は、演算部53に、計測点での軸方向力Fmeasおよび粒子速度vmeasの計算を実行させる。演算部53は、RAM13にロードされたひずみおよび加速度の時系列データおよび計測点での杭断面積およびヤング率から、式(02)および式(03)に従って、計測点での軸方向力Fmeasおよび粒子速度vmeasの時系列データを計算し、RAM13に格納する(ステップS3)。
【0077】
次に、制御部56は、演算部53に、杭頭での軸方向力FInputの計算を実行させる。演算部53は、RAM13に格納されている計測点での軸方向力Fmeasおよび粒子速度vmeasの時系列データから、式(01)に従って、杭頭での軸方向力FInputの時系列データを計算し、RAM13に格納する(ステップS4)。
【0078】
定数データ32および杭頭での軸方向力FInputの時系列データが用意されると、制御部56は、波形マッチング解析を実行する。
【0079】
まず、制御部56は、パラメータ選択部52に、各ノード(杭頭および杭先端を含む)での弾塑性モデルにおけるパラメータ(弾塑性定数)の候補値を選択させる(ステップS5)。この実施の形態では、パラメータとしては、上述のバネ係数Kおよび減衰率が使用される。パラメータ選択部52は、各ノードのバネ係数Kおよび減衰率の候補値を選択する。例えば、最初の候補値は、予め決められている初期値を使用し、次回以降の候補値は、以前の候補値、誤差の大きさなどに応じて、パラメータのうちの一方または両方の前回の候補値から変化させることにより決定する。
【0080】
図9は、図8に示す地盤抵抗解析で使用される各ノードの弾塑性モデルのパラメータの値の例を示す図である。例えば、図9に示すように、各ノード(杭頭および杭先端を含む)について、バネ係数Kおよび減衰率の候補値が設定される。
【0081】
次に、制御部56は、演算部53に、選択されたパラメータ値に基づき、各ノード(杭頭および杭先端を含む)での変位u、下降応力f、上昇応力gおよび粒子速度vの時系列データの計算を実行させる。
【0082】
演算部53は、まず、時系列データの時刻を示す変数kに値「1」をセットする(ステップS6)。次に、演算部53は、時刻k(ここでは、k=1)における各ノードiでの変位u、下降応力f、上昇応力gおよび粒子速度vの時系列データを、式(04)〜式(21)に従って計算する(ステップS7)。そして、演算部53は、時系列データの時刻を示す変数kの値が各時系列データの個数nnに一致するか否かを判定する(ステップS8)。時系列データの時刻を示す変数kの値が各時系列データの個数nnに一致するまで、演算部53は、変数kの値を1ずつ増加させ(ステップS9)、時刻kにおける各ノードiでの変位u、下降応力f、上昇応力gおよび粒子速度vの時系列データを繰り返し計算する(ステップS7)。これにより、各ノード(杭頭および杭先端を含む)での変位u、下降応力f、上昇応力gおよび粒子速度vの時系列データが計算される。
【0083】
次に、制御部56は、波形マッチング部54に、波形マッチングを実行させる。波形マッチング部54は、上述の計算により得られた杭頭での上昇応力の時系列データと、計測データ31から得られる杭頭での上昇応力の時系列データとを比較し、両者の誤差を計算する(ステップS10)。例えば、各時刻での両者の値の差分の絶対値を求め、時系列に沿ったその値の総和を両者の誤差とすればよい。
【0084】
そして、制御部56は、波形マッチングの結果として得られた誤差に基づいて、今回の波形マッチングが良好であるか否かを判定する(ステップS11)。
【0085】
今回の波形マッチングが良好ではないと判定した場合、ステップS5に戻り、制御部56は、パラメータ選択部52に、再度、パラメータ候補値の選択を実行させ、演算部53および波形マッチング部54に、ステップS6〜S10の処理を実行させる。
【0086】
これにより、各ノードでの弾塑性モデルのパラメータが変更されて繰り返し、波形のマッチングが行われる。そして、制御部56は、波形マッチングが良好であると判定すると、そのときの弾塑性モデルのパラメータの値(ここでは、各ノードでの抵抗および減衰率の値)を、解析結果として、RAM13に格納する。この解析結果は、データ出力部55により、適宜、データ格納装置16に書き込まれる。
【0087】
以上のように、上記実施の形態によれば、演算部53は、入力波の導入位置を杭頭とした特性曲線法による杭モデルへの入力波として、動的載荷試験において計測された計測波から杭頭での波を計算する。そして、演算部53は、その入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する。制御部56は、パラメータ選択部52、演算部53および波形マッチング部54を利用して、ノードでの波に基づいてノードでの地盤抵抗を特定する。なお、演算部53は、計算手段の一例である。制御部56は、特定手段の一例である。
【0088】
これにより、計測波から杭頭での軸方向力、すなわち正しい入力波を求め、この正しい入力波を用いて波形マッチングを行っているため、正しい地盤抵抗を得ることができる。
【0089】
従来の特性曲線法は、計測点の軸方向力の下降波を入力波とし、マッチング対象波に計測点の軸方向力の上昇波を用いている。これらの波は、いずれも打撃力に対する応答波である。波形マッチング解析は、動的載荷試験をシミュレーションして、計測した波に合致する地盤抵抗を同定する解析手法である。従来の特性曲線法を使用した波形マッチング解析では、打撃力の応答波を入力波としてマッチングをしているため、合理的な解析手法であるとは言えない。
【0090】
従来の特性曲線法では計測点の軸方向力の上昇波および計測点の軸方向力の下降波という応答波を入力波およびマッチング対象波としてシミュレーションをしているため、応答波である入力波から、応答波であるマッチング対象波を求めることになる。
【0091】
また、従来の特性曲線法における入力波は、計測点の軸方向力の下降波であり、実現象での入力波である打撃力(杭頭での軸方向力)とは異なる。このため、従来の特性曲線法によるシミュレーションでは、打撃力は、入力波とした計測点の軸方向力の下降波と、波形マッチングした計測点の軸方向力の上昇波とを杭頭に戻し、それらを加えた波として表すことができるものの、波形マッチングの過程で境界条件が変化すると、この打撃力も変動してしまう。
【0092】
さらに、従来の特性曲線法では、計測点の軸方向力を上昇波と下降波に分離するが、現実の計測点の軸方向力を完全に分離できない場合、入力波が正しくないため、シミュレーションの過程で、マッチング対象波である計測点の軸方向力の上昇波に対応する打撃力(実現象に合致する、本来入力波とすべき杭頭での軸方向力)が実在し得ないものとなり計測点の軸方向力の上昇波に対応するすべての応答波が得られない可能性がある(シミュレーション上、発散する可能性や収束しない可能性がある)。
【0093】
また、従来の特性曲線法では、シミュレーションでは実現象をモデル化しているため、モデルが実現象と合致していないことに起因して、マッチング対象波である計測点の軸方向力の上昇波に対応する打撃力が実在し得ないものとなる可能性がある。したがって、計測点の軸方向力の上昇波に対応するすべての応答波が得られない可能性がある(シミュレーション上、発散する可能性や収束しない可能性がある)。
【0094】
上記実施の形態における新たな特性曲線法では、従来の特性曲線法とは全く異なり、まず、波形マッチングから独立して、計測点の軸方向力から杭頭の打撃力を予め推定しておき、シミュレーションでは、この推定した打撃力から、杭の応答波である計測点の軸方向力の上昇波などを求める。したがって、シミュレーションにおいて杭にどのような境界条件を与えても、推定した打撃力は境界条件の変化によって変動せず、その境界条件に合致する応答波は実在するものとなる。このように、実現象に合致する、本来入力波とすべき杭頭での軸方向力を入力波としているため、上記実施の形態における新たな特性曲線法は、合理的な解析手法である。
【0095】
なお、上述のステップS5〜S11において、すべてのノードの地盤抵抗を1回のマッチングで同定するのではなく、同定していない地盤抵抗をゼロとし、杭頭側から杭先端へ向かって、各ノードの地盤抵抗を順次同定していく。このとき、地盤抵抗が同定されていないノードでの波はマッチングの対象とはしないようにする。
【0096】
なお、上述の実施の形態は、本発明の好適な例であるが、本発明は、これらに限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の変形、変更が可能である。
【0097】
例えば、上記実施の形態における杭1は、杭と呼ばれていないものであっても、棒状の構造物であれば、どのようなものでもよい。
【0098】
また、上記実施の形態においては、一例として、ノードでの変位と抵抗との関係に完全弾塑性モデルを採用しているが、他のモデルを採用してもよい。
【0099】
また、上記実施の形態においては、杭頭で波形マッチングが行われるが、他の位置で波形マッチングを行ってもよい。また、上記実施の形態においては、上昇応力で波形マッチングが行われるが、下降応力、応力(上昇応力と下降応力の和)、軸方向力、粒子速度などの他の波で波形マッチングを行うようにしてもよい。
【0100】
また、上記実施の形態においては、計測データ31は、ひずみおよび加速度の時系列データであるが、事前にひずみおよび加速度の時系列データから計測点での軸方向力および粒子速度の時系列データを計算しておき、計測点での軸方向力および粒子速度の時系列データを計測データ31として格納しておいてもよい。
【0101】
また、上記実施の形態においては、杭頭ではない計測点において計測された計測波から、杭頭での軸方向力と粒子速度を計算しているが、その代わりに、杭頭にロードセルを配置し、動的載荷試験時にそのロードセルから得られる計測波から杭頭での軸方向力と粒子速度を計算するようにしてもよい。
【0102】
また、上記実施の形態においては、動的載荷試験の一種である衝撃載荷試験により得られた計測データ31を使用しているが、急速載荷試験といった他の動的載荷試験により得られた計測データ31を使用してもよい。
【0103】
また、上記実施の形態において説明した数式の代わりに、等価な数式を使用して各値を計算する場合も、上述の数式を使用していることになる。
【産業上の利用可能性】
【0104】
本発明は、特性曲線法による地盤抵抗解析に適用可能である。
【図面の簡単な説明】
【0105】
【図1】衝撃載荷試験の計測系の一例を示す図である。
【図2】本発明の実施の形態に係る地盤抵抗解析装置の構成を示すブロック図である。
【図3】図2における解析プログラムにより実現される処理部を示すブロック図である。
【図4】杭に設定されたノードおよび要素を示す図である。
【図5】ノードに適用される弾塑性モデルを説明する図である。
【図6】計測点での軸方向力および粒子速度と杭頭での軸方向力および粒子速度を示す図である。
【図7】時系列に沿って計算される各ノードでの上昇応力および下降応力について説明する図である。
【図8】図2に示す装置により実行される、波形マッチングに基づく地盤抵抗解析について説明するフローチャートである。
【図9】図8に示す地盤抵抗解析で使用される各ノードの弾塑性モデルのパラメータの値の例を示す図である。
【符号の説明】
【0106】
33 解析プログラム(地盤抵抗解析プログラム)
53 演算部(計算手段)
56 制御部(特定手段)

【特許請求の範囲】
【請求項1】
特性曲線法による地盤抵抗解析装置において、
入力波の導入位置を杭頭とした特性曲線法による杭モデルへの前記入力波として、動的載荷試験において計測された計測波から杭頭での波を計算し、前記入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する計算手段と、
前記1または複数のノードでの波に基づいて前記1または複数のノードでの地盤抵抗を特定する特定手段と、
を備えることを特徴とする地盤抵抗解析装置。
【請求項2】
前記計算手段は、
動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(a1)で、
杭頭での応力σ(t)を式(a2)で、
杭頭での上昇応力g(t)を式(a3)または式(a5)で、
杭頭での下降応力f(t)を式(a4)または式(a6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(a1)
σ(t)=FInput(t)/A ・・・(a2)
(t)=g(t−Δt)+Q/2A ・・・(a3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(a4)
(t)=σ(t)−f(t) ・・・(a5)
(t)=σ(t)−g(t) ・・・(a6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、Qは、杭頭での周面抵抗とし、gは杭頭から最も近いノードでの上昇応力とし、Aは、杭頭での杭の断面積とする。)
前記杭の1または複数のノードでの波として、
前記1または複数のノードでの変位u(t)、
前記1または複数のノードでの上昇応力g(t)、
前記1または複数のノードでの応力σ(t)、および
前記1または複数のノードでの下降応力f(t)を計算すること、
を特徴とする請求項1記載の地盤抵抗解析装置。
【請求項3】
特性曲線法による地盤抵抗解析プログラムにおいて、
コンピュータを、
入力波の導入位置を杭頭とした特性曲線法による杭モデルへの前記入力波として、動的載荷試験において計測された計測波から杭頭での波を計算し、前記入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する計算手段、および
前記1または複数のノードでの波に基づいて前記1または複数のノードでの地盤抵抗を特定する特定手段、
として機能させるための地盤抵抗解析プログラム。
【請求項4】
前記計算手段は、
動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(b1)で、
杭頭での応力σ(t)を式(b2)で、
杭頭での上昇応力g(t)を式(b3)または式(b5)で、
杭頭での下降応力f(t)を式(b4)または式(b6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(b1)
σ(t)=FInput(t)/A ・・・(b2)
(t)=g(t−Δt)+Q/2A ・・・(b3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(b4)
(t)=σ(t)−f(t) ・・・(b5)
(t)=σ(t)−g(t) ・・・(b6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、Qは、杭頭での周面抵抗とし、gは杭頭から最も近いノードでの上昇応力とし、Aは、杭頭での杭の断面積とする。)
前記杭の1または複数のノードでの波として、
前記1または複数のノードでの変位u(t)、
前記1または複数のノードでの上昇応力g(t)、
前記1または複数のノードでの応力σ(t)、および
前記1または複数のノードでの下降応力f(t)を計算すること、
を特徴とする請求項3記載の地盤抵抗解析プログラム。
【請求項5】
前記計算手段は、動的載荷試験において杭頭から所定の距離の計測位置で計測された計測波から杭頭での軸方向力FInput(t)を計算することを特徴とする請求項4記載の地盤抵抗解析プログラム。
【請求項6】
前記計算手段は、前記計測位置で計測されたひずみおよび加速度の時系列データ、または前記ひずみおよび加速度の時系列データから杭頭での軸方向力FInput(t)を計算することを特徴とする請求項5記載の地盤抵抗解析プログラム。
【請求項7】
前記計算手段は、動的載荷試験において杭頭に配置されたロードセルで計測された計測波から杭頭での軸方向力FInput(t)を計算することを特徴とする請求項4記載の地盤抵抗解析プログラム。
【請求項8】
前記特定手段は、前記1または複数のノードでの波と前記計測波に基づく波形マッチング解析により前記地盤抵抗のパラメータの値を特定することを特徴とする請求項4記載の地盤抵抗解析プログラム。
【請求項9】
前記特定手段は、前記波形マッチング解析により、杭頭側から杭先端へ向かって各ノードの前記地盤抵抗のパラメータの値を順番に特定していくことを特徴とする請求項8記載の地盤抵抗解析プログラム。
【請求項10】
特性曲線法による地盤抵抗解析プログラムを格納した記録媒体において、
コンピュータを、
入力波の導入位置を杭頭とした特性曲線法による杭モデルへの前記入力波として、動的載荷試験において計測された計測波から杭頭での波を計算し、前記入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算する計算手段、および
前記1または複数のノードでの波に基づいて前記1または複数のノードでの地盤抵抗を特定する特定手段、
として機能させるための地盤抵抗解析プログラムを格納したコンピュータ読み取り可能な記録媒体。
【請求項11】
前記計算手段は、
動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(c1)で、
杭頭での応力σ(t)を式(c2)で、
杭頭での上昇応力g(t)を式(c3)または式(c5)で、
杭頭での下降応力f(t)を式(c4)または式(c6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(c1)
σ(t)=FInput(t)/A ・・・(c2)
(t)=g(t−Δt)+Q/2A ・・・(c3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(c4)
(t)=σ(t)−f(t) ・・・(c5)
(t)=σ(t)−g(t) ・・・(c6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、Qは、杭頭での周面抵抗とし、gは杭頭から最も近いノードでの上昇応力とし、Aは、杭頭での杭の断面積とする。)
前記杭の1または複数のノードでの波として、
前記1または複数のノードでの変位u(t)、
前記1または複数のノードでの上昇応力g(t)、
前記1または複数のノードでの応力σ(t)、および
前記1または複数のノードでの下降応力f(t)を計算すること、
を特徴とする請求項10記載の地盤抵抗解析プログラムを格納したコンピュータ読み取り可能な記録媒体。
【請求項12】
特性曲線法による地盤抵抗解析方法において、
入力波の導入位置を杭頭とした特性曲線法による杭モデルへの前記入力波として、動的載荷試験において計測された計測波から杭頭での波を計算するステップと、
前記入力波に基づいて特性曲線法により杭の1または複数のノードでの波を計算するステップと、
前記1または複数のノードでの波に基づいて前記1または複数のノードでの地盤抵抗を特定するステップと、
を備えることを特徴とする地盤抵抗解析方法。
【請求項13】
動的載荷試験において計測された計測波から杭頭での波として、杭頭での軸方向力FInput(t)を計算し、
杭頭での変位u(t)を式(d1)で、
杭頭での応力σ(t)を式(d2)で、
杭頭での上昇応力g(t)を式(d3)または式(d5)で、
杭頭での下降応力f(t)を式(d4)または式(d6)で計算し、
(t)=u(t−Δt)+v(t−Δt)・Δt ・・・(d1)
σ(t)=FInput(t)/A ・・・(d2)
(t)=g(t−Δt)+Q/2A ・・・(d3)
(t)=FInput(t)/A−g(t−Δt)−Q/2A ・・・(d4)
(t)=σ(t)−f(t) ・・・(d5)
(t)=σ(t)−g(t) ・・・(d6)
(ただし、Δtは、計測データのサンプリングタイムとし、v(t)は、杭頭での粒子速度とし、Δtは、杭頭から最も近いノードから杭頭までの波の伝播時間とし、Qは、杭頭での周面抵抗とし、gは杭頭から最も近いノードでの上昇応力とし、Aは、杭頭での杭の断面積とする。)
前記杭の1または複数のノードでの波として、
前記1または複数のノードでの変位u(t)、
前記1または複数のノードでの上昇応力g(t)、
前記1または複数のノードでの応力σ(t)、および
前記1または複数のノードでの下降応力f(t)を計算すること、
を特徴とする請求項12記載の地盤抵抗解析方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−249974(P2009−249974A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−101882(P2008−101882)
【出願日】平成20年4月9日(2008.4.9)
【出願人】(505408686)ジャパンパイル株式会社 (67)
【Fターム(参考)】