説明

生分解性形状記憶ポリマー

【課題】生体内で再吸収可能な生分解性を有する形状記憶ポリマー組成物、および医用装置への使用法の提供。
【解決手段】組成物は、ハードなセグメントおよびソフトなセグメントを含む。ハードなセグメントのガラス転移点(Ttrans)は、好ましくは、−30℃と270℃との間である。少なくとも1つのハードまたはソフトなセグメントは、架橋可能な基を含み、このセグメントは、相互貫入網目構造または半相互貫入網目構造の形成によって、または、セグメントの物理的な相互作用によって結合され得る。物体は、ハードなセグメントのTtransよりも上の温度で所定の形状に形成され、ソフトなセグメントのTtransよりも下の温度に冷却され得る。この物体が引き続いて第2の形状に形成される場合、この物体は、ソフトなセグメントのTtransよりも上、かつハードなセグメントのTtransよりも下にこの物体を加熱することによって、その原形を回復し得る。

【発明の詳細な説明】
【技術分野】
【0001】
(発明の背景)
本願は、一般的に、形状記憶ポリマーの分野であり、そしてより詳細には、生分解性形状記憶ポリマーに関する。
【0002】
形状記憶は、機械的変形(図1)(一方向性の効果)の後にまたは冷却および加熱(図2)(二方向性の効果)によって、のいずれか一方で、その原形を記憶するための材料の能力である。この現象は、構造的な相転移に基づく。
【0003】
これらの性質を有することが公知の第1の材料は、形状記憶合金(SMA)(TiNi(Nitinol)、CuZnAl、およびFeNiAl合金を含む)であった。これらの材料の構造的な相転移は、マルテンサイト転移として公知である。これらの材料は、種々の使用(血管ステント、医療用ガイドワイヤ、歯科矯正ワイヤ、振動ダンパー、パイプ継手、電気的コネクタ、サーモスタット、アクチュエータ、眼鏡フレーム、およびブラジャーのアンダーワイヤ(underwire)を含む)が提案されている。これらの材料は、これらが比較的高価であるということが幾分かあるので、まだ幅広い使用はなされていない。
【0004】
SMAの使用と置き換えるかまたは増強させるために、形状記憶ポリマー(SMP)は開発されており、これは、これらのポリマーが、SMAと比較して軽く、高い形状回復能を有し、操作が容易であり、そして経済的であるということが幾分かあるためである。文献において、SMPは、一般的に、ハードなセグメントおよびソフトなセグメントを有する相セグメント化直線状ブロックコポリマーとして特徴付けられる。ハードなセグメントは、典型的には、結晶性(規定された融点を有する)であり、ソフトなセグメントは、典型的には、アモルファス(規定されたガラス転移温度を有する)である。しかし、いくつかの実施態様では、ハードなセグメントは、アモルファスであり、融点というよりもむしろガラス転移温度を有する。他の実施態様では、ソフトなセグメントは、結晶性であり、ガラス転移温度というよりもむしろ融点を有する。ソフトなセグメントの融点またはガラス転移温度は、実質的にハードなセグメントの融点またはガラス転移温度よりも低い。
【0005】
SMPが、ハードなセグメントの融点またはガラス転移温度よりも上に加熱される場合、この材料は形付けられ得る。この(原形の)形状は、ハードなセグメントの融点またはガラス転移温度よりも下にSMPを冷却することによって記憶され得る。形状が変形されながら、形付けられたSMPがソフトなセグメントの融点またはガラス転移温度よりも下に冷却される場合、新しい(一時的な)形状が固定される。原形は、ソフトなセグメントの融点またはガラス転移温度よりも上で、しかしハードなセグメントの融点またはガラス転移温度よりも下に加熱することによって、回復される。一時的な形状を設定する別の方法では、この材料は、ソフトなセグメントの融点またはガラス転移温度よりも低い温度で変形され、応力およびひずみはソフトなセグメントによって吸収されるようになる。この材料がソフトなセグメントの融点またはガラス転移温度よりも上で、しかし、ハードなセグメントの融点(またはガラス転移温度)よりも下に加熱される場合、この応力およびひずみは解放され、この材料はその原形に戻る。原形の回復(これは、温度の上昇によって誘発される)は、熱形状記憶効果と呼ばれる。材料の形状記憶能力を示す性質は、原形の形状回復および一時的な形状の形状固定である。
【0006】
形状を記憶するための能力以外のSMPのいくつかの物理的な性質は、特にソフトなセグメントの融点またはガラス転移温度で、温度および応力の外部変化に応じて有意に変更される。これらの性質には、弾性率、硬度、可撓性、気体透過性、減衰(damping)、屈折率、および誘電率が挙げられる。SMPの弾性率(物体の応力とそれに対応するひずみの比)は、ソフトなセグメントの融点またはガラス転移温度よりも上に加熱される場合、200までの因子によって変化し得る。また、材料の硬度は、ソフトなセグメントがその融点またはガラス転移温度以上にある場合、劇的に変化する。材料がソフトなセグメントの融点またはガラス転移温度よりも上の温度に加熱される場合、減衰能は、従来のゴム製品よりも5倍まで高くなり得る。この材料は、多くの熱サイクルの後に元の成型された形状に容易に回復され得、ハードなセグメントの融点よりも上に加熱されて、再形成され、冷却されて新しい原形に固定され得る。
【0007】
従来の形状記憶ポリマーは、一般的に、セグメント化ポリウレタンであり、そして芳香族部分を含むハードなセグメントを有する。例えば、Hayashiらの米国特許第5,145,935号は、ポリウレタンエラストマー(二官能性ジイソシアネート(diiisocyanate)、二官能性ポリオール、および二官能性鎖エキステンダー(chain extender)から重合される)から形成される形状記憶ポリウレタンエラストマー成形品を開示する。
【0008】
公知のSMPのハードおよびソフトなセグメントの調製のために使用されるポリマーの例には、種々のポリエーテル、ポリアクリレート、ポリアミド、ポリシロキサン、ポリウレタン、ポリエーテルアミド、ポリウレタン/ウレア、ポリエーテルエステル、およびウレタン/ブタジエンコポリマーが挙げられる。例えば、Wardらの米国特許第5,506,300号;Hayashiらの同第5,145,935号;Bitlerらの同第5,665,822号;およびGorden、「Applications of Shape Memory Polyurethanes」、Proceedings of the First International Conference on Shape Memory and Superelastic Technologies、SMST International Committee、115−19頁(1994)を参照のこと。
【0009】
これらのポリマーは、多数の使用が提案されてきたが、これらの医療用途は、体内に移植されないまたは残されないデバイスに制限されてきた。生分解性である形状記憶ポリマーを有することは望ましい。生分解性形状記憶ポリマーについての多くの他の適用は、明らかであり、例えば、オムツまたは医用ドレープライニング(medical drape lining)の作製における使用、あるいは食品包装または処理問題がある他の材料における使用である。生分解性材料を形状記憶ポリマーに組み込み、そしてこの構造ならびに形状記憶ポリマーおよびそれらの適用に必須である他の物理的および化学的性質を維持し得ることは、市販のポリウレタン材料からは、明らかでない。その上、公知のポリウレタン形状記憶ポリマーの成分は、生体適合性でないと予想される芳香族基を含む。
【0010】
従って、生分解性形状記憶ポリマーを提供することが、本発明の目的である。
【0011】
従来の形状記憶ポリマーのものとは異なる、物理的および化学的性質ならびに化学的構造を有する形状記憶ポリマーを提供することが、本発明のさらなる目的である。
【0012】
(発明の要旨)
生分解性形状記憶ポリマー組成物、それらの製品、ならびにそれらの調製法および使用法を、記載する。このポリマー組成物は、1個以上のハードなセグメントおよび1個以上のソフトなセグメントを含み、ここで、この組成物は生体適合性であり、少なくとも1個のセグメントが生分解性であるか、または少なくとも1個のセグメントが生分解性結合を介して別のセグメントに結合する。
【0013】
ハードなセグメントの融点またはガラス転移温度(本明細書中以下で、Ttrans)は、少なくとも10℃、そして好ましくは20℃ソフトなセグメントのTtransよりも高い。ハードなセグメントのTtransは、好ましくは−30℃と270℃との間、そしてより好ましくは30℃と150℃との間である。ハードなセグメント:ソフトなセグメントの重量比は、約5:95と95:5との間であり、好ましくは20:80と80:20との間である。これらの形状記憶ポリマーは、少なくとも1個の物理的な架橋(ハードなセグメントの物理的相互作用)を含むか、またはハードなセグメントの代わりに共有結合性の架橋を含む。これらの形状記憶ポリマーはまた、相互貫入網目構造または半相互貫入網目構造であり得る。
【0014】
固体から液体状態への状態変化(融点またはガラス転移温度)に加えて、ハードおよびソフトなセグメントは、固体から固体状態転移(solid to solid state transition)を受け得、そしては高分子電解質セグメントまたは高次に組織化された水素結合に基づく超分子効果を含むイオン相互作用を受け得る。
【0015】
結晶性またはアモルファスであり、本明細書中に規定される範囲内のTtransを有する任意のポリマーは、ハードおよびソフトなセグメントを形成するために使用され得る。代表的な生分解性ポリマーには、ポリヒドロキシ酸、ポリアルカノエート、ポリ無水物、ポリホスファゼン、ポリエーテルエステル、ポリエステルアミド、ポリエステル、およびポリオルトエステルが挙げられる。生分解性結合の例には、エステル、アミド、無水物、カーボネート、およびオルトエステル結合が挙げられる。
【0016】
製品は、形状記憶ポリマー組成物から、例えば、射出成形、ブロー成形、押し出し成形、およびレーザーアブレーションによって調製され得る。形状を記憶する物体を調製するために、この物体は、ハードなセグメントのTtransよりも上の温度で成形され、ソフトなセグメントのTtransよりも下の温度に冷却され得る。この物体が実質的に第2の形状に形成される場合、この物体は、ソフトなセグメントのTtransよりも上で、かつハードなセグメントのTtransよりも下にこの物体を加熱することによって、原形に戻され得る。
【0017】
熱硬化性ポリマーは、マクロモノマーを、例えば押し出しにより予め成形し、そして熱硬化性ポリマーのTtransよりも上の温度で、例えばマクロモノマーの反応性基を光硬化することによって原形に固定することによって調製され得る。
【0018】
(発明の詳細な説明)
生分解性形状記憶ポリマー組成物、それらの製品、ならびにそれらの調製方法および使用法を記載する。
【0019】
(定義)
本明細書中に使用される場合、用語「生分解性」は、生再吸収可能(bioresorbable)であり、および/または分解し、および/または機械的な分解によって崩壊する材料を言い、これらは、必要な構造的一体性を維持しながら、数分〜3年の期間に渡って(好ましくは1年未満で)、生理学的な環境と相互作用して、代謝可能または排出可能な成分に分解する。本明細書中でポリマーに関連して使用される場合、用語「分解」は、分子量をオリゴマーレベルでほぼ一定のままにし、そしてポリマー粒子が次の分解を維持するような、ポリマー鎖の切断をいう。用語「完全な分解」は、本質的に完全に塊を無くすような分子レベルでのポリマーの切断を言う。本明細書中で使用される用語「分解」は、そのほかに示されない場合、「完全な分解」を含む。
【0020】
たとえポリマーの原形の成形された形状が形状回復温度より低い温度で機械的に破壊されるとしても、ポリマーの原形が形状回復温度(ソフトなセグメントのTtransとして規定される)よりも上に加熱することによって回復される場合、または記憶された形状が別の刺激の適用によって回復される場合、ポリマーは、形状記憶ポリマーである。
【0021】
本明細書に使用される場合、用語「セグメント」は、形状記憶ポリマーの部分を形成するポリマーのブロックまたは配列をいう。
【0022】
本明細書中に使用される場合、用語ハードなセグメントおよびソフトなセグメントは、セグメントのTtransに関する相対的な用語である。ハードなセグメント(単数または複数)は、ソフトなセグメント(単数または複数)よりも高いTtransを有する。
【0023】
形状記憶ポリマーは、少なくとも1つのハードなセグメントおよび少なくとも1つのソフトなセグメントを含み得るか、またはハードなセグメントの存在無しで少なくとも1種類のソフトなセグメントが架橋される、少なくとも1種類のソフトなセグメントを含み得る。
【0024】
ハードなセグメントは、直鎖状オリゴマーまたはポリマーであり得、そして環状化合物(例えばクラウンエーテル、環状ジ−、トリ−、またはオリゴペプチドおよび環状オリゴ(エステルアミド))であり得る。
【0025】
ハードなセグメント間の物理的な相互作用は、電荷移動錯体(charge transfer complex)、水素結合、または他の相互作用に基づき得、これはいくつかのセグメントは分解温度よりも高い融点を有するからである。この場合、セグメントについての融点またはガラス転移温度は存在しない。非熱的機構(non−thermal mechanism)(例えば溶媒)は、セグメント結合を変化させるために必要とされる。
【0026】
ハードなセグメント:ソフトなセグメントの重量比は、約5:95と95:5との間であり、好ましくは20:80と80:20との間である。
【0027】
(形状記憶ポリマー組成物)
熱可塑性形状記憶材料は、ハードなセグメント(単数または複数)のTtransよりも上で所望の形状に形付けられ/成形され、形状回復温度より下の温度に冷却され、ここでポリマーは機械的変形を受け得、ひずみをポリマー中に生じる。変形したポリマーの原形は、それらの形状回復温度よりも高い温度にそれらを加熱することによって回復され得る。この温度よりも上で、ポリマー中のひずみは、解放され、ポリマーがその原形に戻り得る。対照的に、熱硬化性形状記憶材料は、所望の形状に形付けられ/成形され、その後熱硬化性ポリマーを形成するために使用されるマクロモノマーが重合される。形状が固定された後、マクロモノマーが重合される。
【0028】
このポリマー組成物は、好ましくは、形状回復温度より下の温度で元の厚さの少なくとも1%まで圧縮され得るか、または少なくとも5%まで伸び得、熱、光、超音波、磁場または電場のような刺激の適用によって変形が固定される。いくつかの実施態様では、この材料は、98%の回復率を示す(実験的実施例と比較して)。
【0029】
有意な応力が適用される場合、形状回復温度よりも低い温度で実施された機械的変形が生じ、ひずみがソフトなセグメントまたはアモルファスな領域に保持され、バルクの形状変化が、ポリマーの弾性によるひずみの部分的な解放の後でさえ保持される。分子鎖の立体配置が、ガラス転移温度よりも低い温度で分子鎖の調節された配置に影響を与えることによって妨げられる場合、分子鎖の再配置は、ボリュームサイズの増加およびフリーボリューム含有量の減少によって生じると仮定される。原形は、鎖の立体配座の強固な制御に従って、温度の上昇によるハードなセグメントの集合体の収縮によって回復され、ポリマーの形状が記憶された形状に回復する。
【0030】
固体から液体状態への状態変化(融点またはガラス転移温度)に加えて、ハードまたはソフトなセグメントは、高分子電解質セグメントを含むイオン相互作用または高度に組織化された水素結合に基づく超分子効果を受け得る。SMポリマーはまた、固体状態から固体状態への転移を受け得る(例えば、モルフォロジーの変化)。固体状態から固体状態への転移は、例えば、ポリ(スチレン−ブロック−ブタジエン)において、当業者に周知である。
【0031】
種々の変化が、形状記憶ポリマーを使用して形成される物体の構造に生じ得る。物体が三次元的物体である場合、形状における変化は、二次元であり得る。物体が本質的に2次元的物体(例えば繊維)である場合、形状における変化は一次元(例えば長さに沿って)であり得る。これらの材料の熱伝導率および導電率はまた、温度における変化に応答して変化し得る。
【0032】
組成物の水分透過性は、特にポリマーが薄いフィルム(すなわち、約10μm未満)に形成される場合、変わり得る。いくつかのポリマー組成物は、その原形において、水蒸気分子はポリマーフィルムを透過し得るように十分な透過性を有するが、水分子はポリマーフィルムを透過するのに十分大きくはない。得られた材料は、室温未満の温度では低い水分透過性を、および室温より上の温度では高い水分透過性を有する。
【0033】
温度以外の刺激は、形状変化を誘発するために使用され得る。以下の特定の実施態様を参照して説明される場合、形状変化は、光活性化または試薬(例えばポリマー間の結合を変化させるイオン)に曝露することによって、誘発され得る。
【0034】
(I.ポリマーセグメント)
セグメントは好ましくはオリゴマーである。本明細書中で使用される場合、用語「オリゴマー」は、15,000ダルトンまでの分子量を有する直鎖分子をいう。
【0035】
ポリマーは、所望のガラス転移温度(単数または複数)(少なくとも1つのセグメントがアモルファスである場合)または融点(単数または複数)(少なくとも1つのセグメントが結晶性である場合)に基づいて選択され、これはまた所望の適用に基づき、使用される環境を考慮する。好ましくは、このポリマーブロックの数平均分子量は、400よりも大きく、好ましくは500と15,000との間の範囲である。
【0036】
ポリマーが急激にソフトになり変形する転移温度は、モノマー組成物およびモノマーの種類を変化することによって制御され得、これにより所望の温度で形状記憶効果を調整することが可能になる。
【0037】
ポリマーの熱特性は、例えば、動機械的熱分析または示差走査熱量測定(DSC)研究によって検出され得る。加えて、融点が標準的な融点装置を使用して測定され得る。
【0038】
(1.熱硬化性または熱可塑性ポリマー)
ポリマーは、熱硬化性または熱可塑性ポリマーであり得るが、熱可塑性ポリマーが、成形が容易であるため好まれ得る。
【0039】
好ましくは、ポリマーまたはポリマー性ブロック(単数または複数)の結晶化度は、3%と80%との間、より好ましくは3%と60%との間である。結晶化度が80%よりも高いが、全てのソフトなセグメントがアモルファスである場合、得られるポリマー組成物は、乏しい形状記憶特性を有する。
【0040】
transより下のポリマーの引張り係数は、典型的には、50MPaと2GPa(ギガパスカル)との間であるのに対して、Ttransより上のポリマーの引張り係数は、典型的には、1MPaと500MPaとの間である。好ましくは、Ttransより上と下の弾性率の比は、20以上である。この比が高くなるほど、得られるポリマー組成物の形状記憶はより良くなる。
【0041】
ポリマーセグメントは、天然または合成であり得るが、合成ポリマーが好ましい。ポリマーセグメントは、生分解性または非生分解性であり得、得られるSMP組成物は生分解性、生体適合性ポリマーが医療用に特に好ましい。一般的に、これらの材料は、加水分解によって、生理学的な条件下で水または酵素に曝すことによって、表面侵食、バルク侵食(bulk erosion)、またはそれらの組み合わせによって分解する。医療用途に使用される非生分解性ポリマーは、好ましくは、天然に存在するアミノ酸中に存在するもの以外で、芳香族基を含まない。
【0042】
代表的な天然のポリマーセグメントまたはポリマーには、タンパク質(例えば、ゼイン、改変ゼイン、カゼイン、ゼラチン、グルテン、血清アルブミン、およびコラーゲン)、ならびに多糖類(例えばアルギネート、セルロース、デキストラン、プルラン(pullulane)、およびポリヒアルロン酸)、ならびにキチン、ポリ(3−ヒドロキシアルカノエート)(特に、ポリ(β−ヒドロキブチレート)、ポリ(3−ヒドロキシオクタノエート))およびポリ(3−ヒドロキシ脂肪酸)が挙げられる。
【0043】
代表的な天然の生分解性ポリマーセグメントまたはポリマーは、多糖類(例えば、アルギネート、デキストラン、セルロース、コラーゲン、ならびにそれらの化学的誘導体(化学基(例えばアルキル、アルキレン)の置換、付加、ヒドロキシル化、酸化、および当業者によって慣用的になされる他の修飾))、ならびにアルブミン、ゼインのようなタンパク質およびコポリマーおよびこれらのブレンドを、単一で、または合成ポリマーとの組み合わせで含む。
【0044】
代表的な合成ポリマーのブロックは、ポリホスファゼン、ポリ(ビニルアルコール)、ポリアミド、ポリエステルアミド、ポリ(アミノ酸)、合成ポリ(アミノ酸)、ポリ無水物、ポリカーボネート、ポリアクリレート、ポリアルキレン、ポリアクリルアミド、ポリアルキレングリコール、ポリアルキレンオキシド、ポリアルキレンテレフタレート、ポリオルトエステル、ポリビニルエーテル、ポリビニルエステル、ポリビニルハライド、ポリビニルピロリドン、ポリエステル、ポリラクチド、ポリグリコリド、ポリシロキサン、ポリウレタンおよびこれらのコポリマーを含む。
【0045】
適切なポリアクリレートの例には、ポリ(メタクリル酸メチル)、ポリ(メタクリル酸エチル)、ポリ(メタクリル酸ブチル)、ポリ(メタクリル酸イソブチル)、ポリ(メタクリル酸ヘキシル)、ポリ(メタクリル酸イソデシル)、ポリ(メタクリル酸ラウリル)、ポリ(メタクリル酸フェニル)、ポリ(アクリル酸メチル)、ポリ(アクリル酸イソプロピル)、ポリ(アクリル酸イソブチル)およびポリ(アクリル酸オクタデシル)が挙げられる。
【0046】
合成的に改質された天然のポリマーは、セルロース誘導体(例えば、アルキルセルロース、ヒドロキシアルキルセルロース、セルロースエーテル、セルロースエステル、ニトロセルロース、およびキトサン)を含む。適切なセルロース誘導体の例には、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、セルロースアセテート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、カルボキシメチルセルロース、セルローストリアセテートおよびセルローススルフェートナトリウム塩が挙げられる。これらは本明細書中では集合的に「セルロース」という。
【0047】
代表的な合成分解性ポリマーセグメントまたはポリマーは、ポリヒドロキシ酸(例えば、ポリラクチド、ポリグリコリドおよびこれらのコポリマー;ポリ(エチレンテレフタレート);ポリ(ヒドロキシ酪酸);ポリ(ヒドロキシ吉草酸);ポリ[ラクチド−co−(ε−カプロラクトン)];ポリ[グリコリド−co−(ε−カプロラクトン)]);ポリカーボネート、ポリ(擬アミノ酸);ポリ(アミノ酸);ポリ(ヒドロキシアルカノエート);ポリ無水物;ポリオルトエステル;ならびにこれらのブレンドおよびコポリマーを含む。
【0048】
非生分解性ポリマーセグメントまたはポリマーの例には、エチレンビニルアセテート、ポリ(メタ)アクリル酸、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリビニルフェノール、ならびにこれらのコポリマーおよび混合物が挙げられる。
【0049】
迅速な生腐食性(bioerodible)ポリマー(例えば、ポリ(ラクチド−co−グリコリド)、ポリ無水物、およびポリオルトエステル)(これらは、ポリマーの滑らかな表面が侵食されるような、外部面上に曝されるカルボキシル基を有する)はまた使用され得る。さらに、不安定な結合を含むポリマー(例えば、ポリ無水物およびポリエステル)は、加水分解反応性が周知である。これらの加水分解速度は、一般的に、ポリマー骨格およびその配列構造の簡単な変化で、変更され得る。
【0050】
種々のポリマー(例えば、ポリアセチレンおよびポリピロール)は、導電性高分子である。これらの材料は、電気的伝導性が重要である使用について、特に好ましい。これらの使用の例には、細胞増殖が刺激される、組織工学および任意の医用適用が挙げられる。これらの材料は、コンピュータサイエンスの分野において特定の有用性を見出し得、なぜならこれらは、温度上昇なしでSMAよりも良好に熱を吸収し得るからである。導電性形状記憶ポリマーは、細胞増殖(例えば、神経組織)を刺激するための組織工学の分野において有用である。
【0051】
(2.ヒドロゲル)
このポリマーは、ヒドロゲル(典型的には、約90重量%までの水を吸収する)の形態であり得、必要に応じて、多価のイオンまたはポリマーとイオン的に架橋され得る。ソフトなセグメント間のイオン架橋は構造を保持するために使用され得、この構造は、変形した場合、ソフトなセグメント間のイオン架橋を切断することによって再形成され得る。このポリマーはまた、水または水溶液以外の溶媒中のゲルの形態であり得る。これらのポリマーでは、一時的な形状は、ソフトなセグメント間の親水性相互作用によって固定され得る。
【0052】
ヒドロゲルは、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリレート、ポリ(エチレンテレフタレート)、ポリ(酢酸ビニル)、ならびにこれらのコポリマーおよびブレンドから形成され得る。数種のポリマー性セグメント(例えば、アクリル酸)は、ポリマーが水和され、ヒドロゲルが形成される場合だけ、エラストマー性である。他のポリマー性セグメント(例えば、メタクリル酸)は、ポリマーが水和されない場合でさえ、結晶であり、融解可能である。所望される適用および使用する条件に依存して、いずれかの種のポリマー性ブロックが使用され得る。
【0053】
例えば、形状記憶は、アクリル酸コポリマーについてヒドロゲルの状態でのみ観察される。なぜならば、アクリル酸単位は実質的に水和され、非常に低いガラス転移温度を有するソフトなエラストマーのように振る舞うためである。乾燥ポリマーは、形状記憶ポリマーではない。乾燥される場合、アクリル酸単位は、ガラス転移温度よりも上でさえハードなプラスチックとして振る舞い、加熱で力学的性質に急激な変化を示さない。反対に、ソフトなセグメントとしてアクリル酸メチルポリマーセグメントを含むコポリマーは、乾燥時でさえ形状記憶特性を示す。
【0054】
(3.高温でゲルを形成し得るポリマー)
特定のポリマー(例えば、ポリ(エチレンオキシド−co−プロピレンオキシド)(PLURONICSTM))は、体温より低い温度では水に可溶性であり、体温より高い温度ではヒドロゲルになる。形状記憶ポリマー中のこれらのポリマーのセグメントとしての組み入れは、典型的な形状記憶ポリマーの様式と全く反対の様式で温度の変化に応答し得る形状記憶ポリマーを提供する。これらの材料は、形状回復温度を超えて加熱された場合よりもむしろ形状回復温度未満に冷却された場合にその形状を回復する。この効果は、逆熱形状記憶(inversed thermal shape memory)効果と呼ばれる。これらのポリマーセグメントを含む形状記憶ポリマー組成物は、インサイチュでポリマーが液体として挿入され、そして冷却され、意図される形状に回復し得る、種々の生物医学適用に有用である。逆熱形状記憶効果は、Tmiscより低温で混和性であるが、Tmiscより高温では非混和性であるポリマーに、2つの異なるセグメントを組み込むことによって得られ得る。高温での相分離は一時的な形状を安定化する。
【0055】
このポリマーは、Sigma Chemical Co.,St.Louis,MO.;Polysciences,Warrenton,PA;Aldrich Chemical Co.,Milwaukee,WI;Fluka,Ronkonkoma,NY;およびBioRad,Richmond,CAのような市販の供給源から得られ得る。あるいは、これらのポリマーは、市販の供給源から得られるモノマーから、標準的な技術を使用して合成され得る。
【0056】
(II.ポリマーセグメントのアセンブリ)
形状記憶ポリマーは、1つ以上のハードなセグメントおよび1つ以上のソフトなセグメントを含み、ここで、これらのセグメントのうちの少なくとも1つが、生分解性であるか、またはこれらのセグメントのうちの少なくとも1つが生分解性結合を介して別のセグメントと結合される。代表的な生分解性結合には、エステル−、アミド−、無水(anhydride)−、カルボネート−、またはオルトエステル結合があげられる。
【0057】
(1.ポリマー構造)
形状記憶効果はポリマーのモルフォロジーに依存する。熱可塑性エラストマーに関して、物体の初期形状はハードなセグメントにより生じる物理的架橋によって固定される。熱硬化性ポリマーに関して、ソフトなセグメントは、ハードなセグメントを有する代わりに、共有結合的に架橋される。初期形状は架橋プロセスによって決められる。
【0058】
先行技術であるセグメント化されたポリウレタンSMPとは反対に、本明細書中に記載される組成物のセグメントは、直鎖状である必要はない。これらのセグメントは部分的にグラフト化され得るか、または樹状の側鎖に結合し得る。
【0059】
(A.熱可塑性および熱弾性ポリマー)
これらのポリマーは、直鎖状のジブロック、トリブロック、テトラブロックまたはマルチブロックコポリマー、分枝またはグラフトポリマー、熱可塑性エラストマー(これは、樹状構造を含有する)、およびそれらのブレンドの形態であり得る。図3は、ハードなおよびソフトなセグメントを形成する、適切なクラスの熱可塑性材料のいくつかの組み合わせを例示する。この熱可塑性形状記憶ポリマー組成物はまた、1つ以上のジブロック、トリブロック、テトラブロックまたはマルチブロックコポリマー、分枝またはグラフトポリマーを有する1つ以上のホモポリマーまたはコポリマーのブレンドであり得る。これらのタイプのポリマーは当業者に周知である。
【0060】
本明細書中で使用される場合、用語「分解性熱硬化性樹脂」は、(i)切断可能な結合を含むただ1つのソフトなセグメントを含む熱硬化性樹脂SMP、および(ii)少なくとも1つのソフトなセグメントが分解性であるか、または異なるソフトなセグメントが切断可能な結合によって連結される、1つより多くのソフトなセグメントを含む熱硬化性樹脂をいう。形状記憶性能を有する4つの異なるタイプの熱硬化性ポリマーがある。これらは、高分子網目構造、半相互貫入網目構造、相互貫入網目構造、および混合型相互貫入網目構造を含む。
【0061】
(i.高分子網目構造)
高分子網目構造は、マクロモノマー(macromonomer)(すなわち、炭素−炭素二重結合のような重合可能な末端基を有するポリマー)を共有結合的に架橋することによって調製される。重合化プロセスは、光または熱感応性開始剤を使用することによって、あるいは、開始剤なしで、紫外光(「UV光」)を用いて硬化することによって誘導され得る。形状記憶高分子網目構造は、1つ以上の熱転移に相当する、1つ以上のソフトなセグメントを架橋することによって調製される。
【0062】
生物医学適用に好ましい実施態様において、架橋は光架橋剤を使用して実施され、化学的開始剤は必要ではない。この光架橋剤は、有利なことに、毒性であり得る開始剤分子の必要性を排除する。図4は、好ましい光架橋剤の合成(これは、全体にわたる収率が約65%で生成する)の反応順序の図である。
【0063】
(ii.相互貫入網目構造)
相互貫入網目構造(「IPN」)は、2つの成分は架橋されているが、お互いに架橋されていない網目構造として定義される。初期形状は、最も大きい架橋密度および最も大きい力学的強度を有する網目構造によって決定される。この物質は、両方の網目構造の異なるソフトなセグメントに対応する少なくとも2つのTtransを有する。
【0064】
(iii.混合型相互貫入網目構造)
混合型IPNは少なくとも1つの物理的に架橋した高分子網目構造(熱可塑性ポリマー)、および少なくとも1つの共有結合的に架橋した高分子網目構造(熱硬化性ポリマー)を含み、これらはいかなる物理的方法によっても分離され得ない。初期形状は共有結合的に架橋した網目構造によって決定される。一時的な形状は、ソフトなセグメントのTtransおよび熱可塑性エラストマー成分のハードなセグメントのTtransに対応する。
【0065】
特に好ましい混合型相互貫入網目構造は、熱可塑性ポリマーの存在下で、反応性マクロモノマーを重合化することによって、例えば、炭素−炭素二重結合の光重合化によって調製される。この実施態様において、熱硬化性ポリマー対熱可塑性ポリマーの重量比は、好ましくは、5:95と95:5との間であり、より好ましくは、20:80と80:20との間である。
【0066】
(iv.半相互貫入網目構造)
半相互貫入網目構造(「セミ−IPN」)は、一方の成分は架橋ポリマー(高分子網目構造)であり、そして他方の成分は、非架橋ポリマー(ホモポリマーまたはコポリマー)である2つの独立した成分として定義され、ここでこれらの成分は物理的方法によって分離され得ない。セミ−IPNは、ソフトなセグメント(単数または複数)およびホモポリマーまたはコポリマー成分に対応する少なくとも1つの熱転移を有する。好ましくは、架橋ポリマーは、半相互貫入網目構造組成物の約10〜90重量%を構成する。
【0067】
(v.ポリマーブレンド)
好ましい実施態様では、本明細書中で記載される形状記憶ポリマー組成物は、生分解性ポリマーのブレンドから形成される。本明細書中で使用される場合、「生分解性ポリマーのブレンド」は、少なくとも1つの生分解性ポリマーを有するブレンドである。
【0068】
形状記憶ポリマーは熱可塑性ポリマーの物理的混合物として存在し得る。1つの実施態様において、形状記憶ポリマー組成物は、2つの熱可塑性ポリマーを相互作用させるか、またはブレンドすることによって調製され得る。これらのポリマーは、半結晶性ホモポリマー、半結晶性コポリマー、直鎖を有する熱可塑性エラストマー、側鎖または任意の種類の樹状構造要素を有する熱可塑性エラストマー、および分枝したコポリマーであり得、そして、これらは、これらの任意の組み合わせでブレンドされ得る。
【0069】
例えば、比較的高いTtransを有するハードなセグメント、および比較的低いTtransを有するソフトなセグメントを含むマルチブロックコポリマーは、比較的低いTtransを有するハードなセグメントおよび第1のマルチブロックコポリマーと同じソフトなセグメントを含む第2のマルチブロックコポリマーと、混合またはブレンドされ得る。ソフトなセグメントが融解された場合、これらのポリマーが互いに混和性であるように、両方のマルチブロックコポリマー中のソフトなセグメントは同一である。得られるブレンドには、第1のハードなセグメントの転移温度、第2のハードなセグメントの転移温度、およびソフトなセグメントの転移温度である3つの転移温度が存在する。従って、これらの物質は2つの異なる形状を記憶し得る。これらのポリマーの力学的性質は、2つのポリマーの重量比を変えることによって調整され得る。
【0070】
他の種類の少なくとも2つのマルチブロックコポリマーのブレンド(ここで少なくとも1つのセグメントは、他のマルチブロックコポリマーの少なくとも1つのセグメントと混和性である)が調製され得る。2つの異なるセグメントが混和性であり、そして一緒に1つのドメインを形成する場合、このドメインの熱転移は、2つのセグメントの含有重量に依存する。記憶される形状の最大数は、ブレンドの熱転移の数に由来する。
【0071】
形状記憶ブレンドは、ブレンド成分単独よりも優れた形状記憶特性を有し得る。形状記憶ブレンドは少なくとも1つのマルチブロックコポリマー、および少なくとも1つのホモポリマーまたはコポリマーで構成される。原則的には、ジ−、トリ−またはテトラ−ブロックコポリマーは、マルチブロックコポリマーの代わりに使用され得る。
【0072】
広範な力学的、熱的および形状記憶性能は、単に2つまたは3つの基本のポリマーからそれらを異なる重量比でブレンドすることによって得られ得るため、形状記憶ブレンドは工業用の適用に非常に有用である。ツインスクリュー押し出し機は、成分を混合し、そしてそのブレンドを処理するのに使用され得る標準的なプロセス設備の例である。
【0073】
(III.SMPを作製する方法)
上記のポリマーは、市販であるかまたは慣用的な化学を使用して合成され得るかのいずれかである。当業者は、公知の化学を使用してこのポリマーを容易に調製し得る。以下の実施例1および2は、SMPを調製するために使用される実験手順を記載する。
【0074】
(IV.SMP組成物の成形方法)
この組成物は、適切な条件下(例えば、ハードなセグメントのTtransを超える温度)で、第1の形状に形成され、そしてソフトなセグメント(単数または複数)のTtrans未満に冷却され得る。標準的な技術は押し出し成形および射出成形である。必要に応じて、物体は第2の形状に再形成され得る。熱の適用または他の適切な条件の設定を行うと、物体は初期形状に戻る。
【0075】
熱硬化性ポリマーは、あらかじめ重合化した物質(マクロモノマー)を押し出し、そして、例えば、モノマーの反応性基を光硬化することによりこの熱硬化性ポリマーのTtransより上の温度で初期形状を固定することによって調製され得る。一時的な形状は、物質を変形した後、物質をTtransより低く冷却することによって固定される。図5は、光誘起形状記憶効果を例示する。
【0076】
架橋はまた、マクロモノマーの溶液中で実施され得る。この溶媒は、その後の工程で、形成したゲルから除去される。
【0077】
熱可塑性ポリマーから形成されたこれらの組成物は、ブローするか、押し出してシートにするか、または射出成形によって成形され、例えば、繊維を形成し得る。この組成物はまた、固体物を成形するための当業者に公知の他の方法(例えば、レーザー切断、ミクロ機械加工、熱線の使用、およびCAD/CAM(コンピュータ支援設計/コンピュータ支援製造)プロセスによって成形され得る。これらのプロセスは、熱硬化性ポリマーを成形するのに好ましい。
【0078】
(V.治療的、予防的、および診断的適用)
任意の種々の治療用、予防用および/または診断用薬剤が、ポリマー組成物中に組み込まれ得、これは、患者への投与に続いて、取り込まれた薬剤を局所的または全身的に送達し得る。
【0079】
(1.治療的、診断的および予防的適用)
任意の種々の治療用薬剤が、患者への投与に続いて、取り込まれた薬剤を局所的または全身的に送達するために、粒子中に組み込まれ得る。例には、治療、予防または診断活性を有する合成無機および有機化合物または分子、タンパク質およびペプチド、多糖類および他の糖類、脂質、および核酸分子が挙げられる。核酸分子には、遺伝子、プラスミドDNA、裸のDNA、アンチセンス分子(これは、相補的DNAと結合して転写を阻害する)、リボザイムおよびリボザイム誘導配列が挙げられる。組み込まれるべき薬剤は、種々の生物学的活性、例えば、血管作用剤、神経作用剤、ホルモン、増殖因子、サイトカイン、麻酔剤(anaesthetic)、ステロイド、抗凝固剤、抗炎症剤、免疫調節剤、細胞毒性剤、予防薬剤、抗生物質、抗ウイルス剤、アンチセンス、抗原および抗体を有し得る。いくつかの例において、タンパク質は、抗体または抗原であり得、そうでなければ、適切な応答を誘発するために注射により投与されねばならない。タンパク質は100個以上のアミノ酸残基からなると定義され;ペプチドは100個より少ないアミノ酸残基である。他に記載がない場合、用語、タンパク質とはタンパク質およびペプチドの両方のことをいう。ヘパリンのような多糖類もまた投与され得る。広範囲の分子量(例えば、10〜500,000g/モル)を有する化合物は、カプセル化され得る。
【0080】
利用され得る造影剤には、陽子放射断層撮影法(PET)、コンピューター連動断層撮影法(CAT)、単光子射出断層撮影法、X−線、X線透視法、磁気共鳴画像診断法(MRI)および超音波剤に使用される市販の薬剤が挙げられる。
【0081】
(VI.物品、デバイスおよびコーティング)
SMP組成物は、生物医学および他の適用での使用のために、多数の製品を調製するために使用され得る。
【0082】
(1.生物医学適用のための物品およびデバイス)
ポリマー組成物は、生物医学適用に使用するための製品を調製するために使用され得る。例えば、縫合糸、歯科矯正材料、骨用のネジ、爪、プレート、カテーテル、チューブ、フィルム、ステント、整形用装具、副子、ギプス包帯を調製するためのテープ、組織工学用の足場、コンタクトレンズ、薬物送達デバイス、移植片、および熱指示薬が調製され得る。
【0083】
好ましくは、SMP組成物は、生体適合性ポリマーから調製され、ほとんどの適用のためには、これは生分解性ポリマーから調製される。生分解性ポリマーは、ポリマーの組成および架橋に依存して制御された速度で分解する。分解性ポリマー性移植片は、移植片を回収する必要性を排除し、同時に治療剤を送達するために使用され得る。
【0084】
これらの材料は、負荷許容支持荷重および制御された分解が必要とされる多くの適用に使用され得る。
【0085】
ポリマー組成物は、機械的機能を提供するために体内に移植され得る移植片の形状に形成され得る。このような移植片の例には、ロッド、ピン、ネジ、プレートおよび解剖学的形状が挙げられる。
【0086】
この組成物の特に好ましい使用は、縫合糸を調製することであり、この縫合糸は容易な挿入を提供するのに十分硬い組成を有するが、体温に達すると柔らかくなりそしてなお治癒を可能にしつつ、患者にとってより快適な第2の形状を形成する。
【0087】
別の好ましい使用はカテーテルの分野における使用である。カテーテルは、挿入を容易にするために体温では硬く、しかし体温まで温まった後、柔らかくなり患者に快適さを提供する。
【0088】
特定の移植適用のために必要な場合、ポリマー組成物は、充填剤、強化材料、放射線造影剤、賦形剤または他の材料と組み合わされ得る。充填剤の例には、米国特許第5,108,755号に記載されるカルシウム−ナトリウムメタホスフェートが挙げられる。当業者は、組成物中に含有するのに適切なこれらの材料の量を容易に決定し得る。
【0089】
上記のように、これらの物品は種々の治療および/または診断薬剤を組み込み得る。
【0090】
(2.非医学的適用)
生物医学的適用以外の形状記憶ポリマー組成物の多数の適用がある。
【0091】
生分解性ポリマーの非医学的種類の適用の例には、処分が問題である品目(例えば、使い捨ておむつおよび包装材料)が挙げられる。
【0092】
(3.制御された分解を有するコーティング)
形状記憶ポリマーは、分解速度が様々であるように設計され得る。例えば、1つの実施態様では、加水分解的分解性ポリマーは、水がバルクポリマー(bulk polymer)の加水分解的に切断可能な結合に達することを一時的に妨げる疎水性のSMPコーティングを塗布することによって、選択的に保護され得る。従って、コーティングの保護の特徴は、所望である場合、コーティングの拡散特性を変化させ、水または他の水溶液がコーティングを透過し、そして分解プロセスを開始し得るように外部刺激を適用することによって、変更され得る。加水分解速度が水の拡散速度に比べて比較的速い場合、コーティングを通る水の拡散速度が、分解速度を決定する。別の実施態様では、高密度に架橋されたソフトなセグメントからなる疎水性コーティングが、水または水溶液の拡散バリアとして使用され得る。ソフトなセグメントは、少なくとも部分的に、刺激の適用によって切断され得る結合によって架橋されるべきである。水の拡散速度は、架橋密度が低下することによって増加し得る。
【0093】
(VII.使用方法)
特定の製品は、それらの標準的な使用と矛盾する様式で作用されない限り、その意図された形状を保持することが設計される。例えば、車のバンパーは、衝撃を与えられるまでその意図された形状を保持する。これらの製品は、意図された形状で使用され得るが、一旦、損傷された場合、例えば熱の適用によって修復され得る。
【0094】
他の製品は、第1の形状が初期の使用を意図し、第2の形状は引き続いての使用を意図するように、設計されて使用される。これらの例には、生物医学デバイスが挙げられ、これは体温に達した際にか、または外部からの刺激の適用(これは体温より上にデバイスを加熱する)の際に第2の形状を形成し得る。
【0095】
なお他の製品は、温度変化に反応または適合して、形状が変化するように設計されて使用される(例えば、医療用デバイスの温度感知器)。
【0096】
本発明は、以下の非制限的な実施例を参照してさらに理解される。
【0097】
(実施例1:コポリエステルウレタン形状記憶ポリマー)
熱形状記憶効果を示す生体適合性および生分解性マルチブロックコポリマーのグループを合成した。これらのポリマーは、結晶化可能なハードなセグメント(Tm)および室温と体温との間の熱転移温度Ttransを有するソフトなセグメントから構成した。セグメント化ポリウレタンである先行技術とは対照的に、ハードなセグメントはオリゴエステルまたはオリゴエーテルエステルであり、芳香族成分を全く含まなかった。
【0098】
マルチブロックコポリマーの一時的な形状をプログラミングするため、およびマルチブロックコポリマーの永久型形状を回復するためのメカニズムを図6に示す。この材料の永久的な形状はポリマーを溶融し、Ttransより上で冷却することによって決定した(図6−上)。次いで、ポリマーは一時的な形状に形成し(図6−右)、これはTtransより下で冷却することによって固定した(図6−下)。負荷を除去した後、Ttransより上に再加熱することによって永久的な形状が回復した。
【0099】
テレキリックス(Telechelics)(両端に官能基を有するオリゴマー)の合成。
【0100】
テレキリックマクロジオールを、N2雰囲気下でエステル交換触媒としてジ(n−ブチル)酸化スズを用いて、環状モノマーの開環重合によって合成した。
【0101】
(ハードなセグメント)
α,ω−ジヒドロキシ[オリゴ(エチレングリコールグリコレート)エチレンオリゴ(エチレングリコールグリコレート)]−(PDS1200およびPDS1300)を以下のように調製した。使用前に、オリゴマーを蒸留(熱脱重合化)することによってモノマーのp−ジオキサン−2−オンを得た。このモノマー(57g、0.63mol)、エチレングリコール(0.673g、10.9mmol)およびジ(n−ブチル)酸化スズ(0.192g、0.773mmol)を24時間80℃まで加熱した。反応の終結(平衡)はGPCによって決定した。生成物を加熱した1,2−ジクロロエタンに可溶化し、シリカゲルを充填した温めたBuechner漏斗を通して濾過した。ヘキサン中で沈殿させ、そして真空下で6時間乾燥することによって生成物を得た。
【0102】
(ソフトなセグメント)
(i.結晶)
異なるMnを有するポリ(ε−カプロラクトン)−ジオールは、例えば、AldrichおよびPolysciencesから市販されている。PCL−2000をここで使用された。
【0103】
(ii.アモルファス)
α,ω−ジヒドロキシ[オリゴ(L−ラクテート−co−グリコレート)エチレンオリゴ(L−ラクテート−co−グリコレート)]−(PLGA2000−15と省略する)を以下のようにして調製した。1000mlの二口丸底フラスコ中の、L,L−ジラクチド(300g、2.08mol)、ジグリコリド(45g、0.34mol)およびエチレングリコール(4.94g、0.80mol)を溶融するように40℃で加熱し、撹拌した。ジ(n−ブチル)酸化スズ(0.614g、2.5mmol)を添加した。7時間後、GPCによって反応が平衡に達したことを決定した。反応混合物を1,2−ジクロロエタンに溶解し、シリカゲルカラムで精製した。ヘキサン中に沈殿させ、そして真空下で6時間乾燥することによって生成物を得た。
【0104】
(テレキリックスの特性)
以下で表1に示したように、マクロジオールの分子量Mnおよび熱特性を測定した。
【0105】
【表1】

(熱可塑性エラストマー(マルチブロックコポリマー)の合成)
モレキュラーシーブ0.4nmを充填したソックスレー抽出器に接続された100ml二口丸底フラスコ中にて、下記の表2に記載されるような2つの異なるマクロジオール(1つのハードなセグメントおよび1つのソフトなセグメント)を1,2−ジクロロエタン(80ml)に溶解した。この混合物を、溶媒の共沸抽出によって還流し乾燥した。新たに蒸留したトリメチルヘキサン−1,6−ジイソシアネートをシリンジで添加し、そして反応混合物を少なくとも10日間80℃まで加熱した。一定の間隔で混合物のサンプルを取り、GPCによってポリマーの分子量を測定した。反応の終結時に、ヘキサン中にポリマーを沈殿させて生成物を得、そして1,2−ジクロロエタンに繰り返し溶解し、ヘキサン中で析出させることによって精製した。
【0106】
マルチブロックコポリマーは、以下の2つのタイプのポリマーから調製した。
【0107】
(i)ポリ(ε−カプロラクトン)を含有するPDCポリマー。ソフトなセグメントのTtransが融解温度である。
【0108】
(ii)α,ω−ジヒドロキシ[オリゴ(L−ラクテート−co−グリコレート)エチレンオリゴ(L−ラクテート−co−グリコレート)]を含有するPDLポリマー。ソフトなセグメントのTtransはガラス転移点である。
【0109】
【表2】

(熱可塑性エラストマーの特性)
この組成物について決定した物理的、力学的および分解特性を、以下の表3〜9に提供する。
【0110】
新規の材料の加水分解挙動を37℃でpH7の緩衝液中で試験した。ポリマーは完全に分解性であり、その分解速度は容易に加水分解性エステル結合の濃度により調整され得るということが示された。37℃における相対質量の損失値mr=m(t0)/m(t)(%)、37℃における相対分子量の損失値Mr=Mw(t)/Mw(t0)(%)。
【0111】
2つの異なるマルチブロックコポリマーの毒性は鶏卵試験(chicken egg test)を使用して調査した。血管が規則正しく発達し、その状態はポリマーサンプルに影響されないということが示された。
【0112】
【表3】

【0113】
【表4】

【0114】
【表5】

【0115】
【表6】

【0116】
【表7】

【0117】
【表8】

【0118】
【表9】

(形状記憶特性)
図7は、マルチブロックコポリマーについて実施した引張り試験の結果を、熱分解サイクルの回数の関数として示す。熱サイクル(thermocyclicly)処理されたポリマーの平均形状固定速度、およびサイクルの回数の関数としてのひずみ回復速度の依存性を、それぞれ以下の表10および11に示す。ポリマーは高い形状固定性を有し、そしてわずか2サイクル後で平衡状態に達した。
【0119】
【表10】

【0120】
【表11】

(実施例2:結晶化可能なソフトなセグメントを含有する分解性形状記憶熱硬化性樹脂)
一定範囲のポリ(ε−カプロラクトン)ジメタクリレートおよび熱硬化性樹脂を、それらの力学的特性および形状記憶特性について評価した。
【0121】
(マクロモノマーの合成)
ポリ(ε−カプロラクトン)ジメタクリレート(PCLDMA)を以下のように調製した。乾燥THF(200mL)中のポリ(ε−カプロラクトン)ジオール(Mn=2,000gmol-1、20.0g、10mmol)およびトリエチルアミン(5.3mL、38mmol)の溶液に、メタクリロイルクロリド(3.7mL、38mmol)を0℃で滴下した。この溶液を0℃で3日間撹拌し、そして沈殿した塩を濾別した。室温、減圧下で混合物を濃縮した後、200mLの酢酸エチルを添加し、そしてこの溶液を再び濾過し、そして10倍過剰なヘキサン、エチルエーテルおよびメタノール(18:1:1)の混合物中に沈殿させた。無色の沈殿物を回収し、200mLのジクロロエタンに溶解し、再び沈殿させ、そして室温で注意深く減圧乾燥した。
【0122】
(熱硬化性樹脂の合成)
マクロモノマー(またはモノマー混合物)を、その融解温度(Tm)より10℃上まで加熱し、そして2つのガラスプレート(25mm×75mm)および0.60mm厚のテフロン(登録商標)のスペーサーで形成された鋳型に充填した。優れた均一性を達成するために、この鋳型をさらに1時間Tmで保存した。Tmで加熱したプレート上で15分間、光硬化を行った。加熱ランプヘッドとサンプルとの間の距離は5.0cmであった。室温まで冷却した後、このサンプルを取り出し、そして100倍過剰のジクロロメタンで一晩膨潤させ、そして注意深く洗浄した。最後に、このサンプルを室温で減圧下で乾燥した。
【0123】
(マクロモノマーおよび熱硬化性樹脂の特性)
以下の表12は、調製されたポリ(ε−カプロラクトン)ジメタクリレートを、それぞれのアクリル化の程度(Da)(%)に沿って列挙している。500単位の、PCLDMAに続く数字は、合成に使用されたポリ(ε−カプロラクトン)ジオールの分子量Mnであり、これは1H−NMRおよびGPCを使用して決定した。
【0124】
【表12】

図8は、ジオール、ジメタクリレートおよびポリ(ε−カプロラクトン)の熱硬化性樹脂の融解温度(Tm)をマクロモノマーのモル質量重量Mnの関数として示す。このグラフにおいて、マクロジオールは−−(黒四角)−−、マクロモノマーは・・・(黒丸)・・・、および熱硬化性樹脂は−(黒三角)−で表される。
【0125】
室温におけるポリ(ε−カプロラクトン)熱硬化性樹脂C1〜C7の引張り特性は以下の表13に示され、ここで、Eは弾性率(ヤング率)であり、εsは伸びであり、σsは降伏点における応力であり、σmaxは最大の応力であり、εmaxはσmaxにおける伸びであり、εRは破断したときの伸びであり、σRは破断したときの応力である。以下に提供する表14は、70℃における同一のポリ(ε−カプロラクトン)熱硬化性樹脂の引張り特性を示す。
【0126】
【表13】

【0127】
【表14】

(形状記憶特性)
熱硬化性樹脂は、表15に記載された熱力学特性を有することを測定した。数平均分子量(Mn)はマクロモノマーのものである。下限温度Tlは0℃であり、上限温度Thは70℃である。一時的な形状の伸長は50%である。Rr(2)は第2サイクルのひずみ回復率であり、Rr,totは5サイクル後の全体のひずみ回復率であり、Rfは平均ひずみ固定率である。
【0128】
【表15】

【図面の簡単な説明】
【0129】
【図1】図1は、1方向の形状記憶効果の例示である。
【図2】図2は、2方向(熱)形状記憶効果の例示である。
【図3】図3は、熱可塑性材料の適切なクラスの組み合わせの例示である。
【図4】図4は、好ましい光架橋剤の合成のための反応順序の図である。
【図5】図5は、光誘起形状記憶効果の例示である。
【図6】図6は、マルチブロックコポリマーについての熱形状記憶効果のメカニズムの例示である。
【図7】図7は、マルチブロックコポリマーの形状記憶ポリマーについての応力対伸長を示すグラフである。
【図8】図8は、マクロモノマーのモル質量重量(molar mass weight)Mnの関数として、ジオール、ジメタクリレート、および熱硬化性のポリ(ε−カプロラクトン)の融点を示すグラフである。

【特許請求の範囲】
【請求項1】
生分解性形状記憶ポリマー組成物であって、以下:
(1)ハードなセグメントおよびソフトなセグメント、あるいは
(2)共有結合的にまたはイオン的に架橋される、少なくとも1つのソフトなセグメント、あるいは
(3)ポリマーブレンド、
を含み、
ここで、該ポリマーの原形が、温度変化または別の刺激(例えば光)の適用によって回復される、生分解性形状記憶ポリマー組成物。
【請求項2】
請求項1に記載の組成物であって、以下:
a)−40℃と270℃との間のTtransを有する少なくとも1つのハードなセグメント、
b)前記ハードなセグメント(単数または複数)のTtransよりも少なくとも10℃低いTtransを有し、少なくとも1つのハードなセグメントに結合する、少なくとも1つのソフトなセグメント、
を含み、
ここで、少なくとも1つのハードなセグメントまたはソフトなセグメントが、分解性領域を含むか、あるいは少なくとも1つのハードなセグメント(単数または複数)が、分解性結合を介して少なくとも1つのソフトなセグメント(単数または複数)に結合している、組成物。
【請求項3】
請求項2に記載の組成物であって、ここで前記ハードなセグメントのTtransが30℃と150℃との間の範囲である、組成物。
【請求項4】
請求項3に記載の組成物であって、ここで前記ハードなセグメントのTtransが30℃と100℃との間の範囲である、組成物。
【請求項5】
請求項2に記載の組成物であって、前記ソフトなセグメント(単数または複数)のTtransが、前記ハードなセグメント(単数または複数)のTtransの少なくとも20℃下である、組成物。
【請求項6】
前記ハードなセグメントおよび前記ソフトなセグメントの少なくとも1つが、熱可塑性ポリマーである、請求項2に記載の組成物。
【請求項7】
前記ハードなセグメントが環式部分を含む、請求項2に記載の組成物。
【請求項8】
前記ハードなセグメントと前記ソフトなセグメントの重量比が約5:95と95:5との間である、請求項2に記載の組成物。
【請求項9】
前記形状記憶ポリマーが、グラフトポリマー、直鎖状ポリマー、および樹枝状ポリマーからなる群から選択される、請求項1に記載の組成物。
【請求項10】
請求項1に記載の組成物であって、ここで前記ポリマーが、ポリヒドロキシ酸、ポリ(エーテルエステル)、ポリオルトエステル、ポリ(アミノ酸)、合成ポリ(アミノ酸)、ポリ無水物、ポリカーボネート、ポリ(ヒドロキシアルカノエート)、およびポリ(ε−カプロラクトン)からなる群から選択される分解性領域を含む、組成物。
【請求項11】
請求項1に記載の組成物であって、ここで前記ポリマーが、エステル基、カーボネート基、アミド基、無水物基、およびオルトエステル基からなる群より選択される生分解性結合を含む、組成物。
【請求項12】
前記ポリマーが完全に生分解性である、請求項1に記載の組成物。
【請求項13】
請求項1に記載の組成物であって、以下:
共有結合的に架橋された結晶可能なソフトなセグメント(250℃と−40℃との間のTmを有する)または共有結合的に架橋されたソフトなセグメント(250℃と−60℃との間のTtransを有する)を含む分解性熱硬化性ポリマー、を含む、組成物。
【請求項14】
請求項13に記載の組成物であって、ここで、前記分解性熱硬化性ポリマーが、共有結合的に架橋された結晶可能なソフトなセグメント(200℃と0℃との間のTmを有する)または共有結合的に架橋されたソフトなセグメント(200℃と0℃との間のTtransを有する)を含む、組成物。
【請求項15】
請求項1に記載の組成物であって、以下:
a)−40℃と270℃との間のTtransを有する少なくとも1つの第1セグメント、
b)少なくとも1つの第2セグメントであって、少なくとも1つの第1セグメントに結合し、そして前記第2セグメントが融点またはガラス転移以外の物理的架橋を形成し得るのに十分な強度のイオン相互作用を含む、第2セグメント、を含み、
ここで、前記第1または第2セグメントの少なくとも1つが、分解性領域を含むか、あるいは少なくとも1つの前記第1セグメントが、生分解性結合を介して少なくとも1つの前記第2セグメントに結合している、組成物。
【請求項16】
請求項15に記載の組成物であって、ここで、前記イオン相互作用が、高分子電解質セグメントまたは高分子電解質セグメントおよびイオンまたはポリアニオンセグメントおよびポリカチオンセグメントまたは高次に組織化された水素結合に基づく超分子効果を含む、請求項15に記載の組成物。
【請求項17】
請求項1に記載の組成物であって、ここで前記ポリマーが逆の温度効果を有し、前記組成物がその形状回復温度より下で冷却されるときにその形状を回復する、組成物。
【請求項18】
前記ポリマーが光に反応して形状を変化させる、請求項1に記載の組成物。
【請求項19】
前記ポリマーがポリマーブレンドである、請求項1に記載の組成物。
【請求項20】
請求項19に記載の組成物であって、ここで前記ポリマーブレンドが、ポリマーの物理的混合物、異なるTtransを有するハードなセグメントおよび同一のTtransを有するソフトなセグメントを含むポリマーのブレンド、マルチブロックコポリマーのブレンド(ここで第1コポリマーのセグメントの少なくとも1つが、第2コポリマーのセグメントの少なくとも1つと混和性である)、ならびに少なくとも1つのマルチブロックコポリマーおよび少なくとも1つのホモまたはコポリマーのブレンド、からなる群から選択される、組成物。
【請求項21】
前記形状記憶ポリマーの分解を変化するコーティングを含む、請求項1に記載の組成物。
【請求項22】
請求項1〜21のいずれか1つに記載の分解性形状記憶ポリマー組成物を含む、物品。
【請求項23】
治療、診断および予防薬からなる群から選択される薬剤を組み込む、請求項22に記載の物品。
【請求項24】
前記物品が移植可能であり、かつ前記生分解性形状記憶ポリマーが生体適合性である、請求項22に記載の物品。
【請求項25】
前記形状記憶ポリマーが芳香族基を含まない、請求項24に記載の物品。
【請求項26】
前記物品がステント、カテーテル、人工器官、移植片、ネジ、ピン、ポンプ、およびメッシュからなる群から選択される医用装置である、請求項22に記載の物品。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−314797(P2007−314797A)
【公開日】平成19年12月6日(2007.12.6)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−190922(P2007−190922)
【出願日】平成19年7月23日(2007.7.23)
【分割の表示】特願2000−532159(P2000−532159)の分割
【原出願日】平成11年2月23日(1999.2.23)
【出願人】(596060697)マサチューセッツ・インスティテュート・オブ・テクノロジー (233)
【Fターム(参考)】