説明

画像形成装置、画像形成方法及び閾値マトリクス作成装置

【課題】シングルパス方式において筋むらの発生が抑制された画像を形成可能な画像形成装置、画像形成方法及び閾値マトリクス作成装置を提供する。
【解決手段】複数のタイミングに応じたドットの形成位置の経時的変動に伴う、用紙12上における配列方向での濃度変動を打ち消すように、ラインヘッド44を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、複数のドットを記録媒体上に形成することで画像を生成する画像形成装置及び画像形成方法、並びに画像形成装置に応じたハーフトーン処理に供される閾値マトリクスを作成する閾値マトリクス作成装置に関する。
【背景技術】
【0002】
近時、インクジェット技術の飛躍的進歩に伴い、インクジェット方式の画像形成装置による高速・高画質を両立したカラー大判印刷が可能になりつつある。この装置は、特にサイン・ディスプレイ用途において幅広い分野で用いられ、例えば、店頭POP(Point Of Purchase)や壁面ポスター、屋外広告・看板等の印刷にも適用可能である。インクジェット方式では、印刷媒体上に複数種のインク(例えばCMYKインク)の液滴を吐出して多数のドットを形成することで、印刷物を得ることができる。
【0003】
そして、前記インクジェット方式のうち、配列方向(以下、主方向という場合がある。)に沿って配列された複数のノズルを備える記録ヘッド(以下、ラインヘッドという。)を使用するシングルパス方式が特に注目されている。なぜならば、記録媒体を1回だけ搬送方向に搬送させることで記録媒体上の画像を完成可能であり、サイン・ディスプレイ用途で要求される各種仕様(高速化・低電力化・高画質化)をすべて両立し得るからである。一方、シングルパス方式では、何らかの変動要因により、各ノズルからのインク滴の着弾位置が目標位置から主方向にずれる結果、記録媒体の搬送方向に延在する濃い又は薄い筋むら(以下、単に筋むらという場合がある。)が発生し易いという課題があった。
【0004】
この課題に対して、シングルパス方式であっても、前記筋むらの発生を抑制可能なラインヘッド等の改良技術が種々提案されている。
【0005】
特許文献1には、斜めの列方向に沿って複数のノズルが規則的な配列間隔でマトリクス状に多数配置された構造を有するラインヘッドが開示されている。これにより、複数のタイミングで各ドットを順次形成させて画像を完成することで、主方向での繰り返し周期を短縮可能であり、筋むらの発生を抑制できる。
【0006】
このほか、各ノズルからインク滴を吐出制御するための制御信号を補正することで、筋むらの発生を抑制する方法も種々提案されている。
【0007】
特許文献2には、複数のノズルの特性データを平均化処理してインク滴の吐出制御信号を補正する装置が開示されている。
【0008】
特許文献3には、各ノズルの飛行曲がり量から主方向に隣接するドットの隙間を算出し、該隙間の大小に応じてハーフトーン処理に供される閾値マトリクス(ディザマトリクス)を補正する装置及び方法が開示されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2007−44967号公報
【特許文献2】特開2006−224403号公報
【特許文献3】特開2006−159810号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
ところで、各ノズルからのインク滴の着弾位置がずれる変動要因には、各ノズルの成形加工精度による恒久的な要因もあれば、ノズル付近での塵埃の付着等による一時的な要因もある。
【0011】
そして、本発明者の研究結果によれば、画像形成装置の構成部位の駆動によって、ラインヘッドが主方向に対して振動し、着弾位置が経時的にずれることを見出した。そして、着弾位置の誤差によりドットの配置の粗密が生じ、その結果、副方向に沿った波線状の筋むらが生じる場合がある。
【0012】
ところが、特許文献3に開示された装置及び方法では、1回の画像形成動作において、ドットの隙間が変動しない前提の下で閾値マトリクスを補正するので、前記波線状の筋むらの発生を抑制できないという問題があった。
【0013】
本発明は上記した問題を解決するためになされたもので、シングルパス方式において筋むらの発生が抑制された画像を形成可能な画像形成装置、画像形成方法及び閾値マトリクス作成装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明に係る画像形成装置は、配列方向に沿って配列された複数のドット形成素子を備え、該複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成部と、前記ドット形成部及び前記記録媒体のうち少なくとも一方を所定の搬送方向に搬送することで前記ドット形成部と前記記録媒体とを相対移動させる搬送部と、前記搬送部による前記相対移動の下、複数のタイミングで各ドットを順次形成させて前記配列方向の画像列を生成するように、前記ドット形成部を制御信号に基づいて制御するドット形成制御部と、前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を前記ドット形成制御部に供される前記制御信号に変換する信号変換部とを有することを特徴とする。
【0015】
このように、複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、記録媒体上における配列方向での濃度変動を打ち消すように信号変換する信号変換部を設けたので、ドットの形成位置の経時的誤差に起因する筋むらの発生が抑制された画像を形成できる。
【0016】
また、前記信号変換部は、前記画像信号を前記経時的誤差の程度に応じた複数の画素グループに分類するグループ分類部と、前記グループ分類部により分類された少なくとも1つの画素グループに属するドットの前記画像列に対する濃度寄与度が、残余の各画素グループに属するドットの前記画像列に対する濃度寄与度よりも高くなるようにドットを分配するドット数分配部と、を備えることが好ましい。
【0017】
さらに、前記グループ分類部は、前記画像信号を前記複数のタイミングに対応する複数の画素グループに分類することが好ましい。
【0018】
また、前記濃度寄与度は、単一のサイズのドットの分配比であり、前記ドット数分配部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比よりも高くなるようにドットを分配することが好ましい。
【0019】
また、前記濃度寄与度は、単一のサイズのドットの分配比であり、前記ドット数分配部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比よりも低くなるようにドットを分配することが好ましい。
【0020】
また、前記複数のドット形成素子は、複数のサイズのドットを形成可能であり、前記濃度寄与度は、前記サイズ毎のドットの分配比であり、前記信号変換部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比と異なるようにドットを割り付けるドットサイズ割付部をさらに備えることが好ましい。
【0021】
また、前記グループ分類部は、前記経時的誤差の時間特性を時分割することで前記画像信号を前記複数の画素グループに分類することが好ましい。
【0022】
また、前記グループ分類部は、前記配列方向における前記濃度変動の位置特性を空間分割することで前記画像信号を前記複数の画素グループに分類することが好ましい。
【0023】
さらに、前記信号変換部は、閾値マトリクスを用いた組織的ディザ法により、前記画像信号を前記制御信号に変換するハーフトーン処理部をさらに備えることが好ましい。
【0024】
さらに、前記ハーフトーン処理部は、前記経時的誤差の発生周期に応じて前記閾値マトリクスのサイズを変更することが好ましい。
【0025】
さらに、前記閾値マトリクスの前記搬送方向でのサイズは、前記経時的誤差の発生周期に相当する画像列数の整数倍であることが好ましい。
【0026】
また、前記信号変換部は、前記画像信号を前記経時的誤差の程度に応じた複数の画素グループに分類し、前記複数の画素グループのうちの少なくとも1つの画素グループの前記画像信号を補正する信号補正部と、ハーフトーン処理を用いて、前記信号補正部により補正された前記画像信号を前記制御信号に変換するハーフトーン処理部と、を備えることが好ましい。
【0027】
さらに、前記経時的誤差は、複数の前記画像列で構成される全体画像を生成する際に発生する短周期の誤差であることが好ましい。
【0028】
さらに、前記短周期の誤差は、前記全体画像を生成する際、前記搬送部又は前記ドット形成部の振動に起因する誤差であることが好ましい。
【0029】
本発明に係る画像形成方法は、配列方向に沿って配列された複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成ステップと、複数のタイミングで各ドットを順次形成させて前記配列方向の画像列を生成する生成ステップとを含む方法であって、画像信号を入力する入力ステップと、前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を制御信号に変換する信号変換ステップと、変換された前記制御信号に基づいて前記複数のドット形成素子を制御する制御ステップとを備えることを特徴とする。
【0030】
本発明に係る閾値マトリクス作成装置は、画像形成装置に応じたハーフトーン処理のための閾値マトリクスを作成する装置であって、前記画像形成装置は、配列方向に沿って配列された複数のドット形成素子を備え、該複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成部と、前記ドット形成部及び前記記録媒体のうち少なくとも一方を所定の搬送方向に搬送することで前記ドット形成部と前記記録媒体とを相対移動させる搬送部と、前記搬送部による前記相対移動の下、複数のタイミングで各ドットを順次形成させて前記配列方向の各画像列を生成するように、前記ドット形成部を制御信号に基づいて制御するドット形成制御部とを備えている場合、前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を前記ドット形成制御部に供される前記制御信号に変換する閾値マトリクスを作成する閾値マトリクス作成部を有することを特徴とする。
【発明の効果】
【0031】
本発明に係る画像形成装置、画像形成方法及び閾値マトリクス作成装置によれば、複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、記録媒体上における配列方向での濃度変動を打ち消すように信号変換するようにしたので、ドットの形成位置の経時的誤差に起因する筋むらの発生が抑制された画像を形成できる。
【図面の簡単な説明】
【0032】
【図1】本実施の形態に係る画像形成装置の構成を表す断面側面図である。
【図2】図1に示す画像形成装置のシステム構成を表すブロック図である。
【図3】図1に示すラインヘッドの構成例を表す平面透視図である。
【図4】図3のIV−IV線に沿った概略断面図である。
【図5】ラインヘッドが備える複数のノズルの配置例と、用紙上への吐出順番との対応関係を表す概略説明図である。
【図6】図2に示す画像処理部における画像処理の流れを表す概略説明図である。
【図7】組織的ディザ法によるハーフトーン処理の概略説明図である。
【図8】図2に示す閾値マトリクス作成部の機能ブロック図である。
【図9】図8に示す閾値マトリクス作成部の動作説明に供されるフローチャートである。
【図10】図10Aは、形成されるドットの位置ずれ量を表す概略説明図である。図10Bは、図5に示す第1ノズル102aから吐出形成されるドットの位置ずれ量の変動特性を表すグラフである。図10Cは、図5に示す第2ノズル102bから吐出形成されるドットの位置ずれ量の変動特性を表すグラフである。
【図11】図11Aは、図5に示すラインヘッドの構成例における、各画像位置に対応するインクの吐出順番を表す概略説明図である。図11Bは、図11Aに示すインクの吐出順番に対応する位相を表す概略説明図である。
【図12】閾値マトリクスの各セルを分類した結果を表す概略説明図である。
【図13】各位相グループへのドット分配比の決定例を表すグラフである。
【図14】図9のステップS6における詳細フローチャートである。
【図15】図14のステップS67における詳細フローチャートである。
【図16】第1変形例に係る画像処理部における画像処理の流れを表す概略説明図である。
【図17】図16に示すドットサイズ割付部における複数のドットサイズの割付例を表すグラフである。
【図18】第2変形例に係る画像処理部における画像処理の流れを表す概略説明図である。
【図19】図18に示す信号補正部における位相グループ毎の補正例を表すグラフである。
【図20】第3変形例に係る画像形成装置のシステムの構成を表すブロック図である。
【図21】図5に示す第1ノズル及び第3ノズルを含む複数のノズルから吐出形成された画像列での濃度変動の位置特性を表すグラフである。
【図22】図22Aは、図5に示すラインヘッドの構成例における、各画像位置に対応するインクの吐出順番を表す概略説明図である。図22B及び図22Cは、図22Aに示すインク吐出順番に対応する位相を表す概略説明図である。
【図23】図23A〜図23Cは、第4変形例に係る位相グループの分類に従って作成されたドットパターンの概略説明図である。
【発明を実施するための形態】
【0033】
以下、本実施の形態に係る画像形成方法についてそれを実施する画像形成装置及び閾値マトリクス作成装置との関係において好適な実施形態を挙げ、添付の図面を参照しながら詳細に説明する。
【0034】
図1に示すように、本実施の形態に係る画像形成装置10には、記録媒体としての枚葉紙(以下、「用紙12」という)の搬送方向上流側に、用紙12を給紙搬送する給紙搬送部14が設けられている。この給紙搬送部14の下流側には、用紙12の搬送方向に沿って、用紙12の記録面(以下、画像形成面という。)に処理液を塗布する処理液塗布部16と、前記画像形成面にインクを付着することで画像を形成する画像形成部18と、用紙12上に形成された処理液層のインクを乾燥させるインク乾燥部20と、処理液層の画像を用紙12に定着させる画像定着部22と、画像が定着した用紙12を排出する排出部24とが設けられている。
【0035】
給紙搬送部14は、用紙12を積載可能に設けられた積載部26と、該積載部26に積載された用紙12を一枚ずつ給紙する給紙部28と、該給紙部28により給紙された用紙12を処理液塗布部16に搬送する搬送部30とを備える。
【0036】
処理液塗布部16は、回転可能に設けられた処理液塗布ドラム32と、用紙12の画像形成面に処理液を塗布する処理液塗布装置34と、前記処理液を乾燥する処理液乾燥装置36とを備える。これにより、用紙12の画像形成面上に薄膜の処理液層が塗布される。
【0037】
処理液塗布部16と画像形成部18との間には、回転可能に設けられた第1中間搬送ドラム38が配置されている。第1中間搬送ドラム38の表面に用紙12を保持した状態で該第1中間搬送ドラム38を回転させることにより、処理液塗布部16側から供給された用紙12は、画像形成部18側へ搬送される。
【0038】
画像形成部18は、回転可能に設けられた画像形成ドラム40(搬送部)と、該画像形成ドラム40により搬送される用紙12にインク滴(液滴)を吐出するヘッドユニット42とを備えている。ヘッドユニット42は、少なくとも基本色であるY(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)のラインヘッド44(ドット形成部)を備えている。そして、各ラインヘッド44は、画像形成ドラム40の周方向に沿って配列されている。これにより、用紙12の画像形成面上に塗布された処理液層上に、各色の画像を順次形成させる。なお、この処理液には、インクの溶媒中に分散した色材(顔料)及びラテックス粒子を凝集させる効果を持たせているので、用紙12上での色材流れ等を防止可能である。
【0039】
画像形成部18とインク乾燥部20との間には、回転可能に設けられた第2中間搬送ドラム46が配置されている。第2中間搬送ドラム46の表面に用紙12を保持した状態で該第2中間搬送ドラム46を回転させることにより、画像形成部18側から供給された用紙12は、インク乾燥部20側へ搬送される。
【0040】
インク乾燥部20は、回転可能に設けられたインク乾燥ドラム48と、用紙12の処理液層を乾燥する複数の熱風ノズル50と、複数の赤外線ヒータ(ヒータ52)とを備える。これにより、用紙12の処理液層に滞留するインクの溶媒を乾燥させる。
【0041】
インク乾燥部20と画像定着部22との間には、回転可能に設けられた第3中間搬送ドラム54が配置されている。第3中間搬送ドラム54の表面に用紙12を保持した状態で該第3中間搬送ドラム54を回転させることにより、インク乾燥部20側から供給された用紙12は、画像定着部22側へ搬送される。
【0042】
画像定着部22には、回転可能に設けられた画像定着ドラム56と、画像定着ドラム56の表面に近接して配置された加熱ローラ58と、該画像定着ドラム56の表面に圧接した状態で配置された定着ローラ60とを備える。これにより、処理液層で凝集するラテックス粒子が加熱・加圧されて溶融し、用紙12上に画像として固定・定着される。
【0043】
上記した各工程を経て、画像形成面の画像が定着した用紙12は、画像定着ドラム56の回転により、画像定着部22の下流側に設けられた排出部24側へ搬送される。
【0044】
図2は、図1に示す画像形成装置10のシステム構成を表すブロック図である。画像形成装置10は、ヘッドユニット42及びヒータ52(図1参照)の他、通信インタフェース62と、システムコントローラ64と、画像メモリ66と、ROM68と、モータドライバ70と、モータ72と、ヒータドライバ74と、プリント制御部76と、画像バッファメモリ78と、画像処理部80(信号変換部)と、閾値マトリクス作成部82と、ROM84と、ヘッドドライバ86(ドット形成制御部)とを備える。
【0045】
通信インタフェース62は、ユーザが画像形成装置10に対して画像形成の指示等を行うため等に用いられるホスト装置90とのインタフェース部である。通信インタフェース62にはUSB(Universal Serial Bus)、IEEE1394、イーサネット(登録商標)、無線ネットワーク等のシリアルインタフェースやセントロニクス等のパラレルインタフェースを適用することができる。この部分には、通信を高速化するための図示しないバッファメモリを搭載してもよい。
【0046】
ホスト装置90から送出された画像信号は、通信インタフェース62を介して画像形成装置10に取り込まれ、一旦画像メモリ66に記憶される。画像メモリ66は、通信インタフェース62を介して入力された画像信号を記憶する記憶手段であり、システムコントローラ64を通じて情報の読み書きが行われる。画像メモリ66は、半導体素子からなるメモリに限らず、ハードディスク等の磁気媒体を用いてもよい。
【0047】
システムコントローラ64は、中央演算処理装置(CPU)及びその周辺回路等から構成され、所定のプログラムに従って画像形成装置10の全体を制御する制御装置として機能すると共に、各種演算を行う演算装置として機能する。すなわち、システムコントローラ64は、通信インタフェース62、画像メモリ66、モータドライバ70、ヒータドライバ74等の各部を制御する。また、システムコントローラ64は、ホスト装置90との間の通信制御、画像メモリ66及びROM68の読み書き制御等を行う。さらに、システムコントローラ64は、用紙搬送系のモータ72、ヒータ52を制御する制御信号を生成する。なお、プリント制御部76に対しては、制御信号の他に、画像メモリ66に記憶された画像信号を送信する。
【0048】
ROM68には、システムコントローラ64のCPUが実行するプログラム及び制御に必要な各種データ等が格納されている。画像メモリ66は、画像信号の一時記憶領域として利用されると共に、プログラムの展開領域及びCPUの演算作業領域としても利用される。
【0049】
モータドライバ70は、システムコントローラ64からの指示に従って用紙搬送系のモータ72を駆動するドライバ(駆動回路)である。ヒータドライバ74は、システムコントローラ64からの指示に従ってヒータ52を駆動するドライバである。
【0050】
一方、プリント制御部76は、CPU及びその周辺回路等から構成され、システムコントローラ64の制御に従い、画像処理部80と協働して画像メモリ66内の画像信号から吐出制御用の信号を生成するための各種加工、補正等の処理を行うと共に、生成したインク吐出データ(制御信号)をヘッドドライバ86に供給してヘッドユニット42の吐出駆動を制御する。
【0051】
プリント制御部76には、プリント制御部76のCPUが実行するプログラム及び制御に必要な各種データ等が格納されているROM84が接続されている。ROM84は、書き換え不能な記憶手段であってもよいが、各種のデータを必要に応じて更新する場合は、EEPROMのような書き換え可能な記憶手段を用いることが好ましい。
【0052】
画像処理部80は、入力された画像信号(以下、入力画像信号という。)からインク色別のドット配置データを生成する。すなわち、入力画像信号に対してハーフトーン処理を行うことで、ドットの形成位置(インクの吐出タイミング)を決定する。このハーフトーン処理には、組織的ディザ法、誤差拡散法、濃度パターン法、ランダムドット法等を適用することができる。本実施の形態では、組織的ディザ法を用いたハーフトーン処理を中心に説明する。
【0053】
閾値マトリクス作成部82は、画像処理部80によるハーフトーン処理に供される閾値マトリクスMtを作成する。作成される閾値マトリクスMtは、後述するように、複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、用紙12上における配列方向での濃度変動を打ち消すドット分散特性を有する。閾値マトリクス作成部82は、画像形成の指示があった都度に閾値マトリクスMtを作成してもよいし、作成した閾値マトリクスMtを読出可能なメモリに予め記憶させておいてもよい。
【0054】
なお、図2では、画像処理部80及び閾値マトリクス作成部82は、システムコントローラ64やプリント制御部76とは別個のものとして図示している。例えば、画像処理部80及び/又は閾値マトリクス作成部82は、システムコントローラ64或いはプリント制御部76に含まれて、その一部を構成するようにしてもよい。
【0055】
また、プリント制御部76は、画像処理部80で生成されたドット配置データに基づいてインクの吐出データ(ラインヘッド44のノズルに対応するアクチュエータの制御信号)を生成するインク吐出データ生成機能と、駆動波形生成機能とを有している。
【0056】
インク吐出データ生成機能にて生成されたインク吐出データはヘッドドライバ86に与えられ、ヘッドユニット42のインク吐出動作が制御される。
【0057】
駆動波形生成機能は、ラインヘッド44の各ノズルに対応したアクチュエータを駆動するための駆動信号波形を生成する機能である。当該駆動波形生成機能にて生成された信号(駆動波形)は、ヘッドドライバ86に供給される。
【0058】
プリント制御部76には画像バッファメモリ78が備えられており、プリント制御部76における画像信号の処理時に画像信号やパラメータ等のデータが画像バッファメモリ78に一時的に格納される。
【0059】
図3は、図1に示すラインヘッド44の構造例を表す平面透視図である。図4は、図3のIV−IV線に沿った概略断面図である。
【0060】
図3に示すように、ラインヘッド44は、千鳥でマトリクス状に配列された複数のインク室ユニット100(ドット形成素子)を備える。各インク室ユニット100は、ノズル102と、圧力室104と、供給口106とをそれぞれ備える。平面形状が概略正方形である圧力室104には、その対角線上の両隅部の一方にノズル102側への流出口が設けられ、他方に共通流路108からの流入口(供給口106)が設けられている。
【0061】
図4に示すように、各圧力室104は、供給口106を介して共通流路108とそれぞれ連通する。そして、共通流路108は、インクの供給源である図示しないインクタンクと連通する。これにより、前記インクタンクから供給されるインクは、共通流路108を介して各圧力室104に分配・供給される。
【0062】
圧力室104の一面(図4例では、天面に相当する。)は加圧板110で構成されており、該加圧板110は共通電極を兼ねている。加圧板110の上部には、圧力を付与して該加圧板110を変形させるアクチュエータとしての圧電素子112が接合されている。そして、圧電素子112の上面には、個別電極114が形成されている。
【0063】
2つの電極、すなわち、共通電極としての加圧板110と個別電極114との間に駆動電圧を印加すると、前記2つの電極に挟設された圧電素子112は、変形させられる。この物理的変形により、圧力室104の容積が変化することで、インクがノズル102から外部に押し出され、インク滴として吐出される。そして、インク滴が吐出された後は、圧電素子112の変位が元に戻る際に、共通流路108から供給口106を通って圧力室104にインクが再び充填される。
【0064】
図3に戻って、ノズル102の配置の特徴について説明する。本図において、ラインヘッド44の長手方向及び短手方向をそれぞれ矢印X方向、矢印Y方向と定義する。このとき、用紙12の搬送方向(図1参照)は、矢印X方向に直交するとともに、矢印Y方向に平行する。
【0065】
第L1列における各ノズル102は、矢印X方向に沿って所定間隔(4単位長に相当する。)おきに等間隔に配置されている。第L2〜第L4列における各ノズルについても、第L1列と同様に配置されている。以下、矢印X方向を、ノズル102(インク室ユニット100)の「配列方向」という場合がある。
【0066】
第L2列の各ノズル102は、第L1列の各ノズル102の位置を基準として、矢印Xの左方向に1単位長だけシフトした位置に配置されている。第L3列の各ノズル102は、第L2列の各ノズル102の位置を基準として、矢印Xの左方向に1単位長だけシフトした位置に配置されている。第L4列の各ノズル102は、第L3列の各ノズル102の位置を基準として、矢印Xの左方向に1単位長だけシフトした位置に配置されている。これにより、ラインヘッド44の長手方向に沿って並ぶように投影される実質的なノズル102の間隔(投影ノズルピッチ)の高密度化を達成している。
【0067】
なお、ラインヘッド44によるインク滴の吐出機構として、種々の方式を採り得る。図3及び図4に示したように、ピエゾ素子(圧電素子)等で構成されるアクチュエータの変形によってインク滴を吐出する方式を適用してもよい。また、ヒータ等の発熱体を介してインクを加熱することで気泡を発生させ、その圧力でインク滴を吐出するサーマルジェット方式を適用してもよい。また、ラインヘッド44に限定されることなく、用紙12の幅手方向に往復走査しながら画像を形成させるマルチパス方式であってもよい。
【0068】
図5は、ラインヘッド44が備える複数のノズル102の配置例と、用紙12上への吐出順番との対応関係を表す概略説明図である。説明の便宜のため、20個のノズル102(第1ノズル102a、第2ノズル102b、第3ノズル102cを含む。)を用いた場合を例に説明する。
【0069】
本図に示す矩形格子内の各セルは、形成される画像のうち1画素分の領域を表す。余白のセルは、各吐出時点(t)において、インク滴が未だ吐出(着弾)していない画像位置を表す。また、セル内に表記された算用数字は、その画像位置にインク滴が吐出(着弾)した時点(吐出時点t=1〜7)に対応する。
【0070】
例えば、吐出時点t=1〜4の間に吐出されたインク滴により、複数のドットが順次形成され、第1番目の画像列が生成される。また、吐出時点t=4〜7の間に吐出されたインク滴により、複数のドットが順次形成され、第4番目の画像列が生成される。換言すれば、複数(本図では4つ)のタイミングでドットを順次形成させることで、各画像列が生成(完成)される。
【0071】
なお、各ノズル102の配置は、図5例に限定されず、画像列を生成可能であれば、配置の形態(個数及び位置)は問わない。
【0072】
図6は、図2に示す画像処理部80における画像処理の流れを表す概略説明図である。画像処理部80は、解像度変換部120と、CMYK色変換部122と、ハーフトーン処理部124とを基本的に備える。
【0073】
画像処理部80に入力される画像信号(入力画像信号)は、複数のカラーチャンネルからなる多階調データである。例えば、8ビット(1画素当り256階調)RGBのTIFF形式データであってもよい。
【0074】
解像度変換部120は、画像サイズを拡大又は縮小する画像拡縮処理を用いて、入力画像信号の解像度を、画像形成装置10に応じた解像度に変換する。ここで得られる第1中間画像信号は、入力画像信号とデータ定義は同一であるが、データサイズが異なっている。この画像拡縮処理には、補間演算を含む公知のアルゴリズムを種々適用してもよい。
【0075】
CMYK色変換部122は、公知のカラーマッチング手法を用いて、解像度変換部120から取得した第1中間画像信号を、画像形成装置10で取り扱うデバイス色信号(CMYK色信号)に変換する。ここで得られる第2中間画像信号は、多階調のCMYK色信号に相当する。
【0076】
ハーフトーン処理部124は、CMYK色変換部122から取得した第2中間画像信号を、インクを適切に吐出制御するための制御信号(ヘッドユニット42の制御に供される信号)に変換する。ここで得られる制御信号は、各ラインヘッド44に対してインク吐出動作の有無(オン・オフ)を時系列的に制御するCMYK毎の2値データ(あるいは多値データ)である。本実施の形態では、閾値マトリクスMtを用いた組織的ディザ法の適用例について説明する。
【0077】
図7は、組織的ディザ法によるハーフトーン処理の概略説明図である。一例として、ベイヤー型の閾値マトリクスMtを用いた2値化の概念を示す。先ず、多値CMYK色信号の各アドレスと、閾値マトリクスMtの各行列要素とを対応付ける。そして、着目する画素での画素値と、着目する行列要素での閾値との大小関係をそれぞれ比較し、画素値の方が大きい場合には「1(オン)」を割り当て、それ以外の場合には「0(オフ)」を割り当てる。このようにして、画像信号の階調数を多値から2値に変換することができる。
【0078】
以下、閾値マトリクス作成部82による閾値マトリクスMtの作成方法について、図8〜図15を参照しながら詳細に説明する。
【0079】
図8は、図2に示す閾値マトリクス作成部82の機能ブロック図である。
【0080】
閾値マトリクス作成部82は、未だ設定していない階調レベル(後述する指定レベルlv)を順次指定する階調レベル指定部130と、該階調レベル指定部130により指定された階調レベルでのドットパターンDPTにおける制約条件を設定する制約条件設定部132と、指定された前記階調レベルに応じたドットパターンDPTfixを決定するドットパターン決定部134と、該ドットパターン決定部134により決定されたドットパターンDPTfixを格納するドットパターン格納部136と、該ドットパターン格納部136により格納されたドットパターンDPTfixに基づいて閾値マトリクスMtを作成する閾値変換部138(閾値決定部)と、前記ドットパターン決定部134での演算過程で生じる各種中間データを適宜格納する中間データ格納部140と、後述する濃度変動情報を格納する濃度変動情報格納部142と、閾値マトリクスMtを作成する各種条件を決定するマトリクス条件決定部144とを備えている。
【0081】
ドットパターン決定部134は、グループ分類部146と、ドット数分配部148と、初期パターン作成部150と、ドット位置移動部152と、評価値マップ算出部154と、全体評価値算出部156と、更新可否判別部158とを備える。ここで、初期パターン作成部150、ドット位置移動部152、評価値マップ算出部154、全体評価値算出部156及び更新可否判別部158は、所定の評価条件に基づいてドットの配置を最適化するドットパターン作成部160として機能する。
【0082】
マトリクス条件決定部144は、閾値マトリクスMtのサイズを決定するマトリクスサイズ決定部162と、階調レベルに応じたドット記録率を決定するドット記録率決定部164とを備えている。
【0083】
以下、閾値マトリクス作成部82の動作の概略について、図9及び図14のフローチャート、並びに図8の機能ブロック図を参照しながら説明する。閾値マトリクスMtは、色版(例えばCMYK)によらず同一であってもよいし、色版毎に異ならせてもよい。
【0084】
ここで、図5に示すラインヘッド44の構成例において画像を形成することを前提として、閾値マトリクスMtを作成する。なお、マトリクスの行方向は、用紙12の搬送方向に相当する。マトリクスの列方向は、ノズル102(インク室ユニット100)の配列方向に相当する。
【0085】
本実施の形態では、各行列要素の閾値を算出するために、ドットのオン・オフ状態(図7参照)を模式化した仮想的な矩形格子を用意する。その後、矩形格子上に配置するドット数を階調レベルに応じて決定し、ドットの配置とその評価を順次繰り返すことで、ドットの配置順を最適化する。そして、最適化された前記ドットの配置順に基づいて、閾値マトリクスMtの各行列要素での閾値を決定する。
【0086】
以下、説明の便宜のため、前記矩形格子の各領域のことを「セル」という。また、用紙12上に形成されるドットとそれぞれ対応する、各セル上に配置された仮想的なドット(オン状態)についても、単に「ドット」という場合がある。
【0087】
図9において、先ず、マトリクスサイズ決定部162は、閾値マトリクスMtのサイズを決定する(ステップS1)。本ステップの実行に先立ち、濃度変動情報格納部142に、ドットの形成位置の経時的誤差に伴う濃度変動に関する情報(以下、濃度変動情報という。)を予め格納しておく。なお、本明細書における「濃度」に関する用語は、用紙12に形成された画像の光学濃度を意味する。
【0088】
画像形成装置10の印刷動作の際、複数の画像列で構成される全体画像を生成するために、構成部位の繰り返し駆動によって装置全体が振動する場合がある。その振動がヘッドユニット42(又は画像形成ドラム40)に伝達することで、インク滴の着弾位置が経時的にずれてしまう。すなわち、上記濃度変動は、用紙12の搬送方向(矢印Y方向)に沿った波線状の筋むらとして出現する。
【0089】
なお、この振動は、ヘッドユニット42又は画像形成ドラム40自身が駆動することで生じる場合であっても、他の構成部位の駆動に伴ってヘッドユニット42又は画像形成ドラム40に伝達される場合であってもよい。また、経時的変動の要因は振動に限ることなく、全体画像を生成する際に発生する短周期の誤差であってもよい。
【0090】
図10Aは、形成されるドットの位置ずれ量を表す概略説明図である。着弾位置の目標位置O(すなわち、ドットが形成される中心位置)に対し、実際の着弾位置をO’とする。このとき、着弾位置O’と目標位置Oとの矢印X方向差分を、位置ずれ量δXと定義する。すなわち、位置ずれ量δXが正値の場合は目標位置Oに対して右方(矢印Xの正方向)に着弾したことを意味し、位置ずれ量δXが負値の場合は目標位置Oに対して左方(矢印Xの負方向)に着弾したことを意味する。
【0091】
図10Bは、図5に示す第1ノズル102aから吐出形成されるドットの位置ずれ量δXの変動特性を表すグラフである。グラフの横軸は矢印Y方向(搬送方向)の位置であり、縦軸は位置ずれ量δXである。
【0092】
各プロットは、図5に示す最も左側の画像列上の各位置に対応する。本図から諒解されるように、このプロットは、δX=0を基準として、6つの画素(セル)を1周期とする周期性を有している。なお、プロットP1〜P3は、それぞれ同じ位相である。
【0093】
図10Cは、図5に示す第2ノズル102bから吐出形成されるドットの位置ずれ量δXの変動特性を表すグラフである。グラフの横軸は矢印Y方向(搬送方向)の位置であり、縦軸は位置ずれ量δXである。
【0094】
各プロットは、図5に示す左側から2番目の画像列上の各位置に対応する。このプロットは、図10Bと同様に、δX=0を基準として、6つの画素(セル)を1周期とする周期性を有している。ここで、プロットP4はプロットP2(図10B参照)と同じ位相であり、プロットP5はプロットP3(図10B参照)と同じ位相である。すなわち、図10Cのプロットは、図10Bと比較して、1回分の吐出タイミング(Δt=1)だけ全体的にシフト(進行)している。
【0095】
濃度変動情報格納部142から濃度変動情報として発生周期(画素数)を取得した場合、マトリクスサイズ決定部162は、前記発生周期に相当する画像列数の整数倍の値を、閾値マトリクスMtの行方向(矢印Y方向)でのサイズとして決定する。図10B例では、6、12、18等が該当する。
【0096】
なお、濃度変動情報として、発生周期のみならず、位置ずれ量δXの実測データ、前記発生周期を試算するための各種情報を用いてもよい。矢印Y方向に対する用紙12の搬送速度をV[mm/s]、サンプル間隔(出力解像度)をSp[mm/画素]とする。画像形成装置10の振動周波数がF[Hz]である場合、閾値マトリクスMtの行方向でのサイズをV/(Sp・F)に最も近い整数に決定すればよい。
【0097】
以上のように、マトリクスサイズ決定部162は、閾値マトリクスMtのサイズを6×8(行数が6行、列数が8列)に決定したとする。
【0098】
次いで、グループ分類部146は、閾値マトリクスMtに対応する各セルを複数の位相グループに分類する(ステップS2)。
【0099】
図11Aは、図5に示すラインヘッド44の構成例における、各画像位置に対応するインクの吐出順番を表す概略説明図である。各セルの行番号を特定するため、矩形格子の左方に添字「A〜F」を付記している。また、各セルの列番号を特定するため、矩形格子の上方に添字「a〜h」を付記している。以下、この種の矩形格子を説明する各図面(図11B及び図12A)には、同様の表記を行うものとする。また、説明の便宜上、例えば矩形格子の左上隅にあるセルを(A,a)と表記してその位置を特定する場合がある。
【0100】
本図において、各セルに表記された算用数字は、画像全体でのインクの吐出順番を表す。例えば、最小値である「1」が表記されたセルに対応する画像位置には、最も早いタイミングで吐出される。また、最大値である「9」が表記されたセルに対応する画像位置には、最も遅いタイミングで吐出される。
【0101】
図11Bは、図11Aに示すインクの吐出順番に対応する位相を表す概略説明図である。本図において、各セルに表記された算用数字は、図10B及び図10Cに示した位置ずれ量δXの変動特性の位相を表す。例えば、A行目のセル(8個)に関し、「1」から「4」までの4種類の位相の集合に分類される。また、a列目のセル(6個)に関し、「1」から「6」までの全種類の位相の集合に分類される。以下、位置ずれ量δXの時間特性を時分割し、各位相に応じてグループ化したセルの集合を「位相グループ」と定義する。ここで、ハーフトーン処理の際に、画像信号の各画素は、閾値マトリクスMtの各セルにそれぞれ対応付けられる。換言すれば、各セルを位相グループに分類することは、各画素を画素グループに分類することと等価である。
【0102】
図12に示すように、図11Bにおいて「1」と表記された8つのセルを「第1位相グループ」に分類する。「2」と表記された8つのセルを「第2位相グループ」に分類する。「3」と表記された8つのセルを「第3位相グループ」に分類する。以下、同様にして、第1〜第6位相グループ(位相数N=6)に分類する。
【0103】
なお、プロットP1〜P3(図10B参照)並びにプロットP4及びP5(図10C参照)は、第1位相グループに属するセル(位置)にそれぞれ対応する。すなわち、プロットP1〜P3は、入力画像信号に対して組織的ディザ法を用いてハーフトーン処理を実行する場合、閾値マトリクスMtの第A行・第a列(A,a)のセルに対応する位置である。同様に、プロットP4及びP5は、閾値マトリクスMtの第F行・第b列(F,b)のセルに対応する位置である。
【0104】
このようにして、グループ分類部146は、入力画像信号を、ドットの位置ずれ量δX(経時的誤差)の程度に応じた複数の位相グループに分類する(ステップS2)。
【0105】
次いで、図9に戻って、ドット記録率決定部164は、階調レベル毎・位相グループ毎に応じたドット記録率を決定する(ステップS3)。ここで、ドット記録率とは、CMYK各色における、ドットを形成可能である最大ドット数に対するドットの記録比率(0〜100%)を意味する。
【0106】
ドット記録率決定部164は、階調レベルに応じたドット記録率を予め決定するとともに、各階調レベルに対して第1〜第6位相グループに分配するドット数を決定する。このとき、ドット記録率決定部164は、用紙12上における矢印X方向での濃度変動を打ち消すようにドットを分配する。
【0107】
用紙12上に形成された画像(印刷物)において、ドットの分布が疎である画像領域では印刷濃度が低くなり、ドットの分布が密である画像領域では印刷濃度が高くなる。図10B及び図10Cの例では、位置ずれ量δXの変動特性の傾きが正であって絶対値が大きいほど、その位置での印刷濃度が低くなる。一方、δXの変動特性の傾きが負であって絶対値が大きいほど、その位置での印刷濃度が高くなる。
【0108】
図13は、各位相グループへのドット分配比の決定例を表すグラフである。ここで、各位相グループへの「ドット分配比」(分配比)とは、ドット記録率に応じたドット総数に対する各位相グループに属するドットの分配数の比率をいう。すなわち、第1〜第6位相グループへのドット分配比の総和は常に100%である。各位相グループに均等にドットを分配する場合、各位相グループへのドット分配比はいずれも約16.7%となる。
【0109】
本図のように、ドットのサイズが単一である場合、第1位相グループへのドット分配比を、残余の各位相グループへのドット分配比よりも高くするとよい。すなわち、第1位相グループに属するドットの数を相対的に多くし、各画像列に対する濃度寄与度を高くすることで、予想される印刷濃度の低下を打ち消すことができる。
【0110】
同様にして、ドットのサイズが単一である場合、第4位相グループへのドット分配比を、残余の各位相グループへのドット分配比よりも低くするとよい。すなわち、第4位相グループに属するドットの数を相対的に少なくし、各画像列に対する濃度寄与度を低くすることで、予想される印刷濃度の上昇を打ち消すことができる。
【0111】
なお、ドット分配比を相対的に高く(及び/又は低く)する位相グループの数は1つに限られず、複数の位相グループに対してドット分配比を相対的に高く(及び/又は低く)してもよいことはいうまでもない。
【0112】
次いで、図9に戻って、階調レベル指定部130は、未だ設定していない階調レベルを1つ指定する(ステップS4)。以下、この指定された階調レベルを「指定レベルlv」という場合がある。本実施の形態では、閾値マトリクスMtのセル(行列要素)の総数は48個であるから、48階調(lv=0〜47)に相当する。この指定は、階調レベルの順番(昇順又は降順)に従ってもよいし、ランダムに順次指定してもよい。
【0113】
次いで、制約条件設定部132は、指定レベルlvでのドットパターンDPT(後述するDPTfix、DPTtmpも含まれる。)における制約条件を設定する(ステップS5)。ここで、制約条件とは、閾値マトリクスMtの各セルにおける閾値を矛盾なく決定するため、各階調レベルでのドットの配置を制約する条件である。具体的には、指定レベルlvよりも低い階調レベルで既に決定したドットの配置及び順番を、該指定レベルlvでも継承する必要がある。また、指定レベルlvよりも高い階調レベルで既に決定したドットの配置の中から、ドットの位置を選択する必要がある。このような制約条件を全て満たすように、既に確定した各階調レベルのドットパターンDPTfixを読み出し、参照してもよい。
【0114】
次いで、ドットパターン決定部134は、指定レベルlvに応じたドットパターンDPTfix[lv]を決定する(ステップS6)。具体的な決定方法に関しては後述する。なお、ドットパターン格納部136は、ドットパターン決定部134で決定されたドットパターンDPTfix[lv]を取得し、一時的に格納する。
【0115】
次いで、階調レベル指定部130は、すべての階調レベルでドットパターンDPTfix[lv]が確定したか否かを判別する(ステップS7)。確定していないと判別された場合、ステップS4に戻って、以下、確定するまでステップS4〜S6を繰り返す。
【0116】
一方、確定したと判別された場合、閾値変換部138は、ドットパターン格納部136から取得したドットパターンDPTfixを用いて、閾値マトリクスMtを作成する(ステップS8)。具体的には、指定レベルlvにおいて、ドットパターンDPTfix[lv+1]と、ドットパターンDPTfix[lv]との差分を算出し、新たにドットが発生した1つのセルに対し、閾値(=lv)を割り当てる。
【0117】
このようにして、閾値マトリクス作成部82は、閾値マトリクスMtを作成する。
【0118】
続いて、図9のステップS6における、指定レベルlvに応じたドットパターンDPTfix[lv]を決定する具体的方法について、図14のフローチャート及び図8の機能ブロック図を参照しながら詳細に説明する。
【0119】
本実施の形態では、ドットの配置を種々変化させたドットパターンDPTの作成と、評価値(後述する全体評価値EVA及び評価値マップEV_MAP)による評価とを順次繰り返す方法を用いる。この場合、ドットパターンDPTを決定する最適化問題として、構成的アルゴリズムや逐次改善アルゴリズム等の種々の探索アルゴリズムを用いることができる。
【0120】
ここでは、ボイドアンドクラスター法(Void-and-Cluster Method;以下、VC法という。)によるドットパターンDPTの最適化方法について説明する。
【0121】
先ず、ドット数分配部148は、指定レベルlvに応じて、セルに配置する予定であるドットの個数を位相グループ毎に決定する(ステップS61)。ここでは、ドット数分配部148は、ドット記録率決定部164から取得したドット記録率及びドット分配比(図13参照)に従って、指定レベルlvでの第1〜第6位相グループに配置するドット数を決定する。
【0122】
次いで、初期パターン作成部150は、初期データとしてのドットパターンDPTiniを作成する(ステップS62)。初期パターン作成部150は、ステップS1で決定したサイズを有する矩形格子内のセル上に、ステップS61で決定した個数のドットを配置することで、ドットパターンDPTiniを得る。
【0123】
ドットの配置は、例えば、擬似乱数の発生アルゴリズムを用いて乱数値を発生させ、該乱数値に基づいてランダムに決定してもよい。擬似乱数の発生アルゴリズムとして、メルセンヌ・ツイスタ(Mersenne Twister)、SFMT(SIMD-oriented Fast Mersenne Twister)やXorshift法等の種々のアルゴリズムを用いてもよい。
【0124】
次いで、評価値マップ算出部154は、ステップS62で作成したドットパターンDPTiniから、一時データとしての評価値マップEV_MAPtmpを算出する(ステップS63)。評価値マップEV_MAPtmpは、所定の評価関数に基づいてセル毎に算出された各評価値で構成されている。この評価値が大きいほど、良好な各種性能が得られるように設計されている。前記評価関数には、粒状度、鮮鋭度等の画質項目やインク使用量等を含む種々の評価項目を定量化した関数を適用してもよい。特に、人間の視覚応答特性{例えば、ドゥーリー・ショー(Dooley-Shaw)関数}に応じた粒状度を定量化した評価値を用いることで、視認性を考慮したドットパターンDPTを決定できる。
【0125】
次いで、全体評価値算出部156は、ステップS63で作成した評価値マップEV_MAPtmpから、一時データとしての全体評価値EVAtmpを算出する(ステップS64)。評価値マップEV_MAP(EV_MAPtmp)は、各セルでの個別の評価値であるのに対し、全体評価値EVA(EVAtmp)は、ドットの全体配列に対する評価値である。全体評価値EVAの算出方法は、種々の方法を取り得る。例えば、評価値マップEV_MAPのセル毎の総和であってもよい。
【0126】
次いで、ドットパターンDPTtmp等の一時データを格納する(ステップS65)。このとき、中間データ格納部140は、初期化されたドットパターンDPTに対し、ステップS62で求めたドットパターンDPTiniを上書き更新する。また、中間データ格納部140は、初期化された全体評価値EVAに対し、ステップS64で求めた全体評価値EVAtmpを上書き更新する。さらに、中間データ格納部140は、現在記憶している評価値マップEV_MAPに対し、ステップS63で求めた評価値マップEV_MAPtmpを上書き更新する。
【0127】
次いで、更新可否判別部158は、整数である変数Kに0を代入し、Kを初期化する(ステップS66)。ここで、Kは、ドットパターンDPTの更新要否の判別回数を表すカウンタである。
【0128】
次いで、ドット位置移動部152は、制約条件を満たすようにドットの位置を移動することで、ドットパターンDPTtmpを取得する(ステップS67)。この取得方法について、図15のフローチャートを参照しながらさらに詳細に説明する。
【0129】
先ず、ドット位置移動部152は、評価値マップEV_MAPが最大となるセルが属する位相グループを1つ選択する(ステップS671)。以下、選択された位相グループのことを「候補グループ」という。また、別の方法として、評価値マップEV_MAPが最小となるセルが属する位相グループを1つ選択してもよい。
【0130】
次いで、ドット位置移動部152は、候補グループ内でのすべての交換組合せを有効にする(ステップS672)。交換組合せとは、2個のセル間におけるドットのオン・オフ状態を交換する組合せである。図12例では、1つの位相グループに属する8個のセルのうちから2個の組合せを選択することから、28通りの組合せを有効にする。
【0131】
次いで、ドット位置移動部152は、候補グループの中から、評価値マップEVA_MAPの差分値が最大となる一対のセル(セル対)を決定する(ステップS673)。すなわち、評価値マップEVA_MAPの値が最大であるセルと、最小であるセルとを1個ずつ抽出する。
【0132】
次いで、ドット位置移動部152は、ステップS673で選択したセル対を交換することで、現時点でのドットパターンDPTが変化するか否かを判別する(ステップS674)。具体的には、選択されたセル対のうちドット(オン状態)が0個又は2個である場合、ドットパターンDPTは変化しない。また、選択されたセル対のうちドット(オン状態)が1個である場合、ドットパターンDPTは変化する。
【0133】
変化しないと判別された場合、ステップS673で選択されたセル対による交換組合せを除外し(ステップS676)、評価値マップEVA_MAPの差分値が次に最大となる他のセル対を順次選択する(ステップS673)。
【0134】
一方、変化すると判別された場合、ドット位置移動部152は、指定レベルlvでの制約条件を満たすか否かをさらに判別する(ステップS675)。制約条件を満たさないと判別された場合、ステップS673で決定されたセル対による交換組合せを除外し(ステップS676)、評価値マップEVA_MAPの差分値が次に最大となる他のセル対を順次選択する(ステップS673)。
【0135】
制約条件を満たすと判別された場合、ドット位置移動部152は、ドットパターンDPTに対してセル対のオン・オフ状態を交換し、新たなドットパターンDPTtmpを取得する(ステップS677)。
【0136】
このようにして、ドット位置移動部152は、制約条件を満たすようにドットの位置を移動することで、ドットパターンDPTtmpを取得する(ステップS67)。
【0137】
次いで、図14に戻って、評価値マップ算出部154は、ドットパターンDPTtmpから評価値マップEV_MAPtmpを算出する(ステップS68)。そして、全体評価値算出部156は、評価値マップEV_MAPtmpから全体評価値EVAtmpを算出する(ステップS68)。これらの算出方法は、ステップS63及びS64での算出方法と同一である。
【0138】
次いで、更新可否判別部158は、ドットパターンDPTtmpの全体評価値EVAtmpと、現時点での最大値である全体評価値EVAとの大小関係を比較する(ステップS69)。EVAtmp>EVAを満たさない(すなわち、EVAtmp≦EVAである)場合は、ステップS70を行うことなく、次のステップS71に進む。
【0139】
一方、EVAtmp>EVAを満たす場合、ステップS67で求めたドットパターンDPTtmpを、現時点での最適なドットパターンであると判別する。このとき、中間データ格納部140は、現在記憶しているドットパターンDPTに対し、ステップS67で求めたドットパターンDPTtmpを上書き更新する(ステップS70)。また、中間データ格納部140は、現在記憶している全体評価値EVAに対し、ステップS68で求めた全体評価値EVAtmpを上書き更新する(ステップS70)。さらに、中間データ格納部140は、現在記憶している評価値マップEV_MAPに対し、ステップS68で求めた評価値マップEV_MAPtmpを上書き更新する(ステップS70)。その後、次のステップS71に進む。
【0140】
次いで、更新可否判別部158は、現時点でのKの値を1だけ加算する(ステップS71)。
【0141】
次いで、更新可否判別部158は、現時点でのKの値と予め定められたKmaxの値との大小関係を比較する(ステップS72)。Kの値の方が小さい場合は、更新可否判別部158は、現時点での全体評価値EVAと、予め定められた許容値EVA_OKとの大小関係をさらに比較する(ステップS73)。EVA>EVA_OKを満たさない(すなわち、EVA≦EVA_OKである)場合、ステップS67まで戻り、以下ステップS67〜S71を順次繰り返す。なお、この最適化演算における収束性を十分確保するため、例えば、Kmax=10000と定めることができる。
【0142】
第1の終了条件(K>Kmax)又は第2の終了条件(EVA>EVA_OK)の少なくとも一方を満たす場合、更新可否判別部158は、現時点でのドットパターンDPTを、暫定的に確定したドットパターンDPTとして決定する(ステップS74)。
【0143】
このようにして、ドットパターン決定部134は、最後に更新されたドットパターンDPTを、ドットパターンDPTfix[lv]として確定する(図9のステップS6参照)。
【0144】
以上のように、複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、用紙12上における配列方向(矢印X方向)での濃度変動を打ち消すように信号変換するので、ドットの形成位置の経時的誤差に起因する筋むらの発生が抑制された画像を形成できる。
【0145】
本実施の形態は、以下の第1〜3変形例のように構成してもよい。なお、本実施の形態に係る画像形成装置10(図1〜図15参照)と同じ構成要素については、同じ参照符号を付して、その詳細な説明を省略する。
【0146】
<第1変形例>
第1変形例に係る画像処理部80Aは、ラインヘッド44が複数のサイズのドット(いわゆるマルチサイズドット)を形成可能である場合において好適な構成である。
【0147】
図16は、第1変形例に係る画像処理部80Aにおける画像処理の流れを表す概略説明図である。
【0148】
画像処理部80Aは、上述した解像度変換部120、CMYK色変換部122及びハーフトーン処理部124の他、ドットサイズ割付部200をさらに備える点で、本実施の形態(図6の画像処理部80)と異なる。ドットサイズ割付部200は、階調レベルに応じて、複数のサイズでのドットの記録率を予め決定しておく。第1変形例では、「大サイズ」、「中サイズ」及び「小サイズ」の3種類のドットを形成可能であるとする。なお、形成可能なドットのサイズは3種類に限定されず、2種類であっても4種類以上であってもよい。
【0149】
以下、画像処理部80Aの動作について説明する。画像処理部80Aは、入力画像信号に対し、解像度変換、CMYK色変換及びハーフトーン処理を順次施すことで、2値データであるハーフトーン信号を取得する。その後、ドットサイズ割付部200は、前記ハーフトーン信号に対し、「大サイズ」、「中サイズ」及び「小サイズ」を適切に割り付けることで制御信号を生成する。図17は、ドットサイズ割付部200における複数のドットサイズの割付例を表すグラフである。
【0150】
そして、ドット記録率決定部164は、図17に示すドット記録率に応じて、少なくとも1つの位相グループでのサイズ毎のドット分配比が、残余の各位相グループでのサイズ毎のドット分配比と異なるように分配する。
【0151】
本図のように、確定したドットパターンDPTfixに対し、第1位相グループに属するセルには、大きいサイズのドットを多く割り付けるとよい。すなわち、第1位相グループに属するドットのうち大きいサイズのドットの割付比率を相対的に多くし、各画像列に対する濃度寄与度を高くすることで、予想される印刷濃度の低下を打ち消すことができる。
【0152】
同様にして、確定したドットパターンDPTfixに対し、第4位相グループに属するセルには、小さいサイズのドットを多く割り付けるとよい。すなわち、第4位相グループに属するドットのうち小サイズの割付比率を相対的に多くし、各画像列に対する濃度寄与度を低くすることで、予想される印刷濃度の上昇を打ち消すことができる。
【0153】
このように構成しても、本実施の形態(図13参照)と同様の作用効果を得ることができる。なお、ドット分配比を相対的に高く(及び/又は低く)する位相グループの数は1つに限られず、複数の位相グループに対してドット分配比を相対的に高く(及び/又は低く)してもよいことはいうまでもない。
【0154】
なお、第1変形例のように、ドットのサイズの割り付け処理とハーフトーン処理とを独立に順次行ってもよいし、ハーフトーン処理(閾値マトリクスMtを用いた組織的ディザ法による演算処理)と同時に行ってもよい。
【0155】
<第2変形例>
第2変形例に係る画像処理部80Bは、組織的ディザ法以外のハーフトーン処理(例えば、誤差拡散法、濃度パターン法、ランダムドット法)に対しても本発明が適用できる点において好適な構成である。
【0156】
図18は、第2変形例に係る画像処理部80Bにおける画像処理の流れを表す概略説明図である。画像処理部80Bは、上述した解像度変換部120、CMYK色変換部122の他、信号補正部202及びハーフトーン処理部204をさらに備える点で、本実施の形態(図6の画像処理部80)と異なる。信号補正部202は、入力画像信号を複数の画素グループに分類し、該複数の画素グループのうちの少なくとも1つの画素グループの画像信号を補正する。なお、この画素グループの分類は、上記した位相グループの分類と同様であるので、以下は「位相グループ」として説明する。
【0157】
以下、画像処理部80Bの動作について説明する。画像処理部80Bは、入力画像信号に対し、解像度変換及びCMYK色変換を順次施すことで、多値データであるCMYK色信号を取得する。その後、信号補正部202は、所定の画素に対して階調変換処理を施すことで前記CMYK色信号を補正する。
【0158】
図19は、図18に示す信号補正部202における位相グループ毎の補正例を表すグラフである。このように、信号補正部202は、少なくとも1つの位相グループに属する画素の階調レベル(色信号値)が、残余の各位相グループに属する画素の階調レベル(色信号値)と異なるように補正してもよい。
【0159】
本図のように、第1位相グループに属する画素に対して、補正前よりも階調レベルを高くするとよい。すなわち、第1位相グループに属する画素の階調レベルを相対的に高くし、各画像列に対する濃度寄与度を高くすることで、予想される印刷濃度の低下を打ち消すことができる。
【0160】
同様にして、第4位相グループに属する画素に対して、補正前よりも階調レベルを低くするとよい。すなわち、第4位相グループに属する画素の階調レベルを相対的に低くし、各画像列に対する濃度寄与度を低くすることで、予想される印刷濃度の上昇を打ち消すことができる。
【0161】
その後、ハーフトーン処理部204は、補正されたCMYK色信号に対して、各種のハーフトーン処理を施すことで、制御信号を得る。このように構成しても、本実施の形態(図13参照)と同様の作用効果を得ることができる。
【0162】
<第3変形例>
第3変形例に係る画像形成システム210は、閾値マトリクスMtの作成処理を他の装置に実行させる点で、本実施の形態(図1の画像形成装置10)と異なる。
【0163】
図20は、第3変形例に係る画像形成システム210の構成を表すブロック図である。画像形成システム210は、画像を形成する画像形成装置212と、該画像形成装置212に応じたハーフトーン処理のための閾値マトリクスMtを作成する閾値マトリクス作成装置214とから構成される。
【0164】
画像形成装置212と独立した装置である閾値マトリクス作成装置214は、閾値マトリクス作成部216を備えている。閾値マトリクス作成部216は、本実施の形態に係る閾値マトリクス作成部82(図2、図6及び図8参照)と同等の機能を有している。
【0165】
画像形成装置212は、基本的には、本実施の形態に係る画像形成装置10(図2参照)と同様の構成であるが、閾値マトリクス作成部82を備えておらず、且つ、ROM84に代替してEEPROM218を備える。
【0166】
例えば、閾値マトリクス作成装置214(閾値マトリクス作成部216)は、画像形成装置212における上述した濃度変動情報に基づいて、閾値マトリクスMtを予め作成する。その後、閾値マトリクス作成装置214により作成された閾値データ220をEEPROM218に記録しておく。
【0167】
このEEPROM218を画像形成装置212にデータ読取可能に組み込むことで、別異の演算部(図2の閾値マトリクス作成部82)が不要となる。
【0168】
<第4変形例>
第4変形例に係るグループ分類部146D(図8参照)は、位相グループの定義方法が異なる点で、本実施の形態とは異なる。本実施の形態では、位置ずれ量δX(図10A〜図10C参照)の時間特性を時分割してグループ化した。この分類方法を用いた閾値マトリクスMtは、ドットの形成位置の経時的誤差に追随して、濃度変動を積極的に打ち消す性質を有する。すなわち、前記経時的誤差の再現性が高い(周期性が強い)場合において特に効果的である。
【0169】
一方、第4変形例では、配列方向(矢印X方向)における濃度変動の位置特性を空間分割してグループ化する。この分類方法を用いた閾値マトリクスMtは、所定のブロック範囲内における濃度変動を相対的に打ち消す性質を有する。すなわち、前記経時的誤差の再現性がそれほど高くない場合であっても、二次元位置での濃度変動の再現性が高い場合において頑健性を発揮するので、特に効果的である。
【0170】
図21は、図5に示す第1ノズル102a及び第3ノズル102cを含む複数のノズルから吐出形成された画像列での濃度変動の位置特性を表すグラフである。グラフの横軸は矢印X方向(配列方向)の位置であり、縦軸は光学濃度である。
【0171】
本図から諒解されるように、各プロットは、平均光学濃度Doを基準として、4つの画素(セル)を1周期とする周期性を有している。プロットP11、P12は同じタイミングで形成されたドットの位置に相当する。すなわち、この周期は、第1ノズル102aと第3ノズル102cとの間隔に対応している。
【0172】
図22Aは、図5に示すラインヘッド44の構成例における、各画像位置に対応するインクの吐出順番を表す概略説明図である。本図は、図11Aと基本的には同様であり、行番号を(A〜J)、列番号を(a〜p)に拡張して表記したものである。この場合、第1〜第13のタイミングでインクの液滴を吐出することで、画像が生成される。
【0173】
図22Bは、図22Aに示すインク吐出順番に対応する位相を表す概略説明図である。本図において、各セルに表記された算用数字は、図21に示した光学濃度の位置特性の位相を表す。
【0174】
例えば、A列目のセル(16個)に関し、「1」から「4」までの4種類の位相の集合に分類される。なお、本特徴の理解を容易にするため、「1」の位相に対応する各セルについては、数字「1」を付する代わりに、ハッチングを付している。例えば、4列分のセル(総数40個)に対し、「1」の位相に分類される。このように、矩形格子内の各セル{(A、a)〜(J、p)}を、第1〜第4位相グループに分類してもよく、経時的誤差に起因する矢印X方向(配列方向)での濃度変動をキャンセルする効果を奏する。
【0175】
また、位相グループの分類形態は、万線(規則的に密に並んだ平行線)状に限られず、図22Cに示すように複数の線分に分割してもよい。このように、周期単位を短くすることで、配列方向での周期性を緩和可能であり、画像のノイズ・粒状感を抑制できる。なお、線分の長さや分割数は種々変更してもよい。
【0176】
図23A〜図23Cは、第4変形例に係る位相グループの分類に従って作成されたドットパターンDPT1〜DPT3の概略説明図である。ここでは、図22Bで示す第1〜第4位相グループに分類した上で、ドットパターンDPT1〜DPT3をそれぞれ作成した。
【0177】
ドットパターンDPT1(図23A参照)に関し、第1〜第4位相グループでのドット分配比(濃度寄与度)をすべて25%とした。ドットパターンDPT2(図23B参照)に関し、第1〜第4位相グループでのドット分配比をそれぞれ40%、30%、20%、10%とした。ドットパターンDPT3(図23C参照)に関し、第1〜第4位相グループでのドット分配比をそれぞれ50%、30%、10%、10%とした。
【0178】
このように、配列方向(矢印X方向)における濃度変動の位置特性を空間分割してグループ化しても、本実施の形態と同様の作用効果が得られる。
【0179】
なお、この発明は、上述した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
【0180】
例えば、本実施の形態では主にCMYK(4つの色版)を中心に説明したが、これに限定されることなく、任意の色版の種類及び版数に設計変更できる。例えば、CMYKの標準インクと、LC、LM等の淡色やW(白色)等のオプションインクとを組み合わせてもよい。
【0181】
また、本実施の形態では、画像形成ドラム40の回転により用紙12のみを搬送させているが、ヘッドユニット42及び用紙12のうち少なくとも一方を搬送させればよい。両者を相対移動させる構成であれば、本発明を適用できるからである。
【0182】
さらに、閾値マトリクスMtの行方向若しくは列方向のサイズ、又は閾値のレベル数は、本実施の形態に限定されず、適宜変更してもよいことは言うまでもない。
【0183】
10、212…画像形成装置 40…画像形成ドラム
42…ヘッドユニット 44…ラインヘッド
80(A、B)…画像処理部 82、216…閾値マトリクス作成部
86…ヘッドドライバ 100…インク室ユニット
102…ノズル 104…圧力室
106…供給口 124、204…ハーフトーン処理部
134…ドットパターン決定部 138…閾値変換部
142…濃度変動情報格納部 144…マトリクス条件設定部
146(D)…グループ分類部 148…ドット数分配部
150…初期パターン作成部 152…ドット位置移動部
154…評価値マップ算出部 156…全体評価値算出部
158…更新可否判別部 160…ドットパターン作成部
162…マトリクスサイズ決定部 164…ドット記録率決定部
200…ドットサイズ割付部 202…信号補正部
210…画像形成システム 214…閾値マトリクス作成装置

【特許請求の範囲】
【請求項1】
配列方向に沿って配列された複数のドット形成素子を備え、該複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成部と、
前記ドット形成部及び前記記録媒体のうち少なくとも一方を所定の搬送方向に搬送することで前記ドット形成部と前記記録媒体とを相対移動させる搬送部と、
前記搬送部による前記相対移動の下、複数のタイミングで各ドットを順次形成させて前記配列方向の画像列を生成するように、前記ドット形成部を制御信号に基づいて制御するドット形成制御部と、
前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を前記ドット形成制御部に供される前記制御信号に変換する信号変換部と
を有することを特徴とする画像形成装置。
【請求項2】
請求項1記載の画像形成装置において、
前記信号変換部は、
前記画像信号を前記経時的誤差の程度に応じた複数の画素グループに分類するグループ分類部と、
前記グループ分類部により分類された少なくとも1つの画素グループに属するドットの前記画像列に対する濃度寄与度が、残余の各画素グループに属するドットの前記画像列に対する濃度寄与度よりも高くなるようにドットを分配するドット数分配部と、を備える
ことを特徴とする画像形成装置。
【請求項3】
請求項2記載の画像形成装置において、
前記グループ分類部は、前記画像信号を前記複数のタイミングに対応する複数の画素グループに分類することを特徴とする画像形成装置。
【請求項4】
請求項2又は3に記載の画像形成装置において、
前記濃度寄与度は、単一のサイズのドットの分配比であり、
前記ドット数分配部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比よりも高くなるようにドットを分配することを特徴とする画像形成装置。
【請求項5】
請求項2又は3に記載の画像形成装置において、
前記濃度寄与度は、単一のサイズのドットの分配比であり、
前記ドット数分配部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比よりも低くなるようにドットを分配することを特徴とする画像形成装置。
【請求項6】
請求項2又は3記載の画像形成装置において、
前記複数のドット形成素子は、複数のサイズのドットを形成可能であり、
前記濃度寄与度は、前記サイズ毎のドットの分配比であり、
前記信号変換部は、前記少なくとも1つの画素グループへの前記分配比が、前記残余の各画素グループへの前記分配比と異なるようにドットを割り付けるドットサイズ割付部をさらに備える
ことを特徴とする画像形成装置。
【請求項7】
請求項3〜6のいずれか1項に記載の画像形成装置において、
前記グループ分類部は、前記経時的誤差の時間特性を時分割することで前記画像信号を前記複数の画素グループに分類することを特徴とする画像形成装置。
【請求項8】
請求項3〜6のいずれか1項に記載の画像形成装置において、
前記グループ分類部は、前記配列方向における前記濃度変動の位置特性を空間分割することで前記画像信号を前記複数の画素グループに分類することを特徴とする画像形成装置。
【請求項9】
請求項1〜8のいずれか1項に記載の画像形成装置において、
前記信号変換部は、閾値マトリクスを用いた組織的ディザ法により、前記画像信号を前記制御信号に変換するハーフトーン処理部をさらに備えることを特徴とする画像形成装置。
【請求項10】
請求項9記載の画像形成装置において、
前記ハーフトーン処理部は、前記経時的誤差の発生周期に応じて前記閾値マトリクスのサイズを変更することを特徴とする画像形成装置。
【請求項11】
請求項10記載の画像形成装置において、
前記閾値マトリクスの前記搬送方向でのサイズは、前記経時的誤差の発生周期に相当する画像列数の整数倍であることを特徴とする画像形成装置。
【請求項12】
請求項1記載の画像形成装置において、
前記信号変換部は、
前記画像信号を前記経時的誤差の程度に応じた複数の画素グループに分類し、前記複数の画素グループのうちの少なくとも1つの画素グループの前記画像信号を補正する信号補正部と、
ハーフトーン処理を用いて、前記信号補正部により補正された前記画像信号を前記制御信号に変換するハーフトーン処理部と、を備える
ことを特徴とする画像形成装置。
【請求項13】
請求項1〜12のいずれか1項に記載の画像形成装置において、
前記経時的誤差は、複数の前記画像列で構成される全体画像を生成する際に発生する短周期の誤差であることを特徴とする画像形成装置。
【請求項14】
請求項13記載の画像形成装置において、
前記短周期の誤差は、前記全体画像を生成する際、前記搬送部又は前記ドット形成部の振動に起因する誤差であることを特徴とする画像形成装置。
【請求項15】
配列方向に沿って配列された複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成ステップと、複数のタイミングで各ドットを順次形成させて前記配列方向の画像列を生成する生成ステップとを含む画像形成方法であって、
画像信号を入力する入力ステップと、
前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を制御信号に変換する信号変換ステップと、
変換された前記制御信号に基づいて前記複数のドット形成素子を制御する制御ステップと
を備えることを特徴とする画像形成方法。
【請求項16】
画像形成装置に応じたハーフトーン処理のための閾値マトリクスを作成する閾値マトリクス作成装置であって、
前記画像形成装置は、配列方向に沿って配列された複数のドット形成素子を備え、該複数のドット形成素子を用いて複数のドットを記録媒体上に形成するドット形成部と、前記ドット形成部及び前記記録媒体のうち少なくとも一方を所定の搬送方向に搬送することで前記ドット形成部と前記記録媒体とを相対移動させる搬送部と、前記搬送部による前記相対移動の下、複数のタイミングで各ドットを順次形成させて前記配列方向の各画像列を生成するように、前記ドット形成部を制御信号に基づいて制御するドット形成制御部とを備えている場合、
前記複数のタイミングに応じたドットの形成位置の経時的誤差に伴う、前記記録媒体上における前記配列方向での濃度変動を打ち消すように、入力された画像信号を前記ドット形成制御部に供される前記制御信号に変換する閾値マトリクスを作成する閾値マトリクス作成部を有する
ことを特徴とする閾値マトリクス作成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2012−201048(P2012−201048A)
【公開日】平成24年10月22日(2012.10.22)
【国際特許分類】
【出願番号】特願2011−69272(P2011−69272)
【出願日】平成23年3月28日(2011.3.28)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】