説明

発光素子及びその製造方法及び発光装置

【課題】取り扱い容易なドーパントを有する有機化合物層を陰極に接して設ける。
【解決手段】陽極及び陰極からなる一対の電極と、前記一対の電極間に備えられている有機化合物層とから少なくとも構成されている発光素子であって、上記陰極電極と電気的に実質接している前記有機化合物層が少なくとも有機化合物と炭酸塩とから構成されていることを特徴とする発光素子取り扱い容易なドーパントを有する有機化合物層を陰極に接して設け、その発光素子を有する発光装置及びその発光素子の製造方法を提供する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、陽極と陰極間に少なくとも一層の有機化合物層を備える発光素子、およびその製造方法、およびその発光素子を有する発光装置に関する。
【背景技術】
【0002】
発光素子とは、陰極と陽極との間に流れる電流によって、両電極間に在る有機化合物が発光する、いわゆる有機エレクトロルミネッセンス素子のことである。
【0003】
発光素子の一般的な断面構造を、図1に示す。図中、1は透明基板、2は透明電極(陽極)、3は正孔輸送層、4は発光層、5は電子輸送層、6は電子注入層、7は陰極をそれぞれ表している。
【0004】
この発光素子においては、陰極7から、電子注入・輸送層5、6、を通して、発光層4に注入された電子と、透明電極2から正孔輸送層3を通して発光層4へ注入された正孔との再結合によって励起子が生成される。この励起子が基底状態にもどる際に放射される光を利用する素子である。
【0005】
このような発光素子の陰極7には、比較的仕事関数が小さく、電子注入特性が良好な材料、例えば、マグネシウム(Mg)のような単体金属や、Ag−Mg、Al−Li等の金属合金が用いられる。
【0006】
また、特許文献1では、ドナー(電子供与性)ドーパントとして機能する金属を有する有機層が、陰極に接して設けられている構成が開示されている。そしてこのドナー(電子供与性)ドーパントとして用いられる金属としては、アルカリ金属、アルカリ土類金属、希土類を含む遷移金属等が該特許文献1に開示されている。
【0007】
また、特許文献2では、金属酸化物あるいは金属塩をドーパントとして有する有機層が、陰極に接して設けられている構成が開示されている。
【特許文献1】特開平10−270171号公報(2頁、9−13行、第1図)
【特許文献2】特開平10−270172号公報(2頁、2−7行、第1図)
【0008】
これらドーパントとしては、出来る限り仕事関数が小さい金属や、それら金属を含む、酸化物、金属塩が望ましい。そのような金属は、一般に反応性が高く、その取り扱いが大変困難である。また、そのような金属を含む金属酸化物や、金属塩をドーパントとして用いる場合では、金属単体を取り扱う場合に比較して、その安定性は高まるが、それでも尚一部の金属酸化物、金属塩では不安定であり、通常の大気環境下で取り扱うことが難しい物がある。また、一部に大気中で取り扱うことが可能な金属酸化物や、金属塩もあるが、それでもまだ不安定な為、陰極に接して設けられる有機層中へドーパントとして導入することが難しい場合がある。そのためこれらドーパントとしての取り扱いの難しさが、発光素子の製造にあたり、歩留まりが低く製造コストを上げる原因になりうる。
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、取り扱いが容易なドーパントを有する発光素子およびその製造方法を提供する。
【0010】
具体的に本発明は、陽極及び陰極からなる一対の電極と、前記一対の電極間に備えられている有機化合物層とから少なくとも構成されている発光素子であって、上記陰極電極と電気的に実質接している前記有機化合物層が少なくとも有機化合物と炭酸塩とから構成されており、前記有機化合物層における前記有機化合物と前記炭酸塩とのモル比が1:0.01〜1:100の範囲であることを特徴とする発光素子を提供する。
【0011】
また、本発明は、陽極と陰極とからなる一対の電極と、前記一対の電極間に備えられる有機化合物層とを有する発光素子の製造方法であって、陰極側に、前記有機化合物層を構成する少なくとも有機化合物と炭酸塩とを設ける有機化合物層形成工程と、前記有機化合物層と電気的に実質接して陰極を設ける工程とを少なくとも有し、前記有機化合物層形成工程は、前記有機化合物と前記炭酸塩とのモル比が1:0.01〜1:100の範囲である前記有機化合物層を形成する工程であることを特徴とする発光素子の製造方法を提供する。
【発明を実施するための最良の形態】
【0012】
(第一の実施の形態)
本発明の第1の実施の形態に係る発光素子は、一対の電極(陽極、陰極)と一対の電極の間に配置された発光層とを少なくとも有する発光素子において、陰極に接する有機化合物層中のドーパントが炭酸塩である。つまり、塩のアニオンに注目した訳である。炭酸塩は取り扱いが容易である。中でもアルカリ金属、あるいはアルカリ土類金属の炭酸塩であることが、その取り扱いの容易さから好ましい。もちろんこの有機化合物層中には、それぞれの炭酸塩(アルカリ金属、アルカリ土類金属)を共に存在させてもよく、あるいは電子注入あるいは輸送を容易とするこの有機化合物と上記炭酸塩の他に別の添加物が混在されていてもよい。
また炭酸塩が好ましい理由として、得られる素子の耐久性が向上するということを挙げてもよい。耐久性とは素子寿命のことである。炭酸塩は、分子量が比較的大きいため、素子駆動時に有機化合物層中を移動し難いと考えられるからである。更に、有機化合物層を構成する有機化合物との親和性がよいことも炭酸塩を好ましく用いる理由としてよいかもしれない。
【0013】
この有機化合物層により、陰極から発光層へ電子が効率よく供給される。その結果、本実施形態では、陰極に用いる金属材料を選択する場合、材料の仕事関数を考慮して制限されることなく、すなわち比較的仕事関数が高い電極材料である、ITO、金、銀や、それら合金を選択した場合でも、発光層への良好な電子注入が可能となる。
【0014】
本実施形態において、特に好ましく用いることが出来る炭酸塩としては、炭酸セシウム(CsCO)あるいは、炭酸リチウム(LiCO)の少なくともいずれか一方である。中でも、陰極としてITOを、そしてドーパントとして炭酸セシウムあるいは、炭酸リチウムを用いた発光素子は、良好な光学透過率を備え、陰極から光を取り出すことが出来、いわゆるトップエミッション型発光素子に好適である。もちろん本発明の発光素子は、陽極から光を取り出す形態の発光素子であってもよい。
なお、有機化合物は公知のものでもよく、例えばアルミキレート(Alq3)等を挙げることができる。また陰極に接する有機化合物層の光学透過率は450nm〜700nm(450nm以上700nm以下という意味、以下同様)の波長領域において80%以上で更には95%以上である。
【0015】
また炭酸塩を含む有機化合物層の膜厚は、0.1〜10000nmの範囲、好ましくは1〜500nmの範囲である。なお発光層の膜厚はいくらでも良い。高い発光効率を得るためには、発光層に膜厚方向に十分な再結合領域があることが望ましく、発光層の膜厚は一般には15〜20nm程度である。本実施形態に係る発光素子もおよそその程度の発光層を有していて良い。
【0016】
本実施の形態の発光素子において、有機化合物層を構成する主たる有機化合物は、低分子化合物である。
低分子化合物とは、分子量が2000以下、好ましくは1000以下の有機化合物であると本発明では定義する。
有機化合物の具体的な種類については後述する。
この有機化合物はもちろん非絶縁体である。
【0017】
有機化合物と炭酸塩との量比に関して述べる。
有機化合物と炭酸塩との量比は、モル比で1:0.01〜1:100の範囲である。より好ましくは1:0.1〜1:10の範囲である。ここでいうモル比とは、有機化合物層として導入される有機化合物と炭酸塩とのモル数の比のことで、特に陽イオンをアルカリ金属とした炭酸塩を用いた場合、モル比1:0.5で、電子が効率よく陰極から発光層へ供給できる。
なお、上記1:0.5とは前後20%程度の差があってもよい、つまり特に好ましいモル比とは1:0.4〜1:0.6の範囲である。1:0.5であることにより効果が最良となる理由は現状はっきりしたことはいえないが、有機化合物と炭酸塩とが相互作用するのに好適な量比関係であると考える。
有機化合物層に炭酸セシウムのような炭酸塩を用いた場合、陰極がアルミニウムや、例えばITO等の透明導電性酸化物でも、陰極から前記有機化合物層へ良好な電子注入が実現し、その素子の発光効率は極めて良好な結果となる。中でも、ITOの場合、一対の対向電極のうち基板側ではない電極の方から光を素子外へ取り出すトップエミッション型の発光素子に好適に用いることができる。
つまり本発明は陰極としてITOやIZOのような透明導電性酸化物を用い、有機化合物層中に炭酸塩を含ませたことを特徴とする発光素子を提供することが出来る。そしてそのような特徴を有するトップエミッション型の発光素子を提供出来る。
他方、有機化合物層の代わりに、従来から広く一般に用いられているフッ化リチウム等材料を単層で備えた素子や有機化合物層中にフッ化リチウム等材料を含めた素子では、陰極がアルミニウム、透明導電性酸化物いずれの場合も、その電子注入が劣る。中でも、透明導電性酸化物を陰極とした場合は、電子注入がほとんどされず、そのような素子の電子注入は、極めて悪かった。
【0018】
また、陰極とこの有機化合物層との間に別な層を設けてもよい。この別な層とは有機層あるいは無機層あるいは有機・無機の混合層でもよい。更に具体的には、LiF層であってもよい。なお、そのような別の層を設けることで、電子注入が更に改善される。そしてこの別な層が設けられていても陰極とこの有機化合物層は、実質電気的に接していると言える。
【0019】
ところで、有機化合物と炭酸塩とからなる有機化合物層を形成する場合、両者を共蒸着することが好ましい。特に炭酸塩を加熱した状態で、有機化合物層が形成されることが好ましい。炭酸塩が加熱された状態で有機化合物層が形成されることで、発光素子の電流密度が実用に好ましいレベルに至る。加熱して用いる場合もやはり、炭酸セシウム、炭酸リチウムのような炭酸塩がおよそ150℃以上700℃以下で加熱できる。この温度範囲は比較的低温の温度範囲である。さらにこのような温度範囲なら有機化合物と共に加温下で取り扱うことができる。この温度領域(範囲)は、炭酸塩の融点、分解点、分解開始点のいずれかの温度領域であってもよい。例えば炭酸セシウムの分解開始点は610℃程度であるため好ましい。また炭酸リチウムの融点は615℃であるため好ましい。
炭酸塩を加熱することが好ましい理由は、今のところ断言できないが、上述の相互作用を得る上で好ましいと考える。
【0020】
あるいは炭酸塩は、加熱されると共に有機化合物を還元するのもよいかもしれない。そして、安定な金属である金(Au)、銀(Ag)や、透明電極ITOを用いても、陰極からの電子注入障壁を小さくさせることができ、素子の駆動電圧を下げることができるのかもしれない。
【0021】
また金属単体(例えばセシウム金属単体)に比べても炭酸塩(例えばCsCO)は好ましい。これは炭酸塩のほうが金属単体に比べ分子量が大きく(即ち重たく)、セシウム元素が移動しにくいからではないかと考える。
【0022】
有機化合物層の成膜は、いかなる薄膜形成方法で行ってよい。例えば蒸着法やスパッタ法が使用できる。これらの方法は炭酸塩を加熱できるので好ましい方法である。
【0023】
更に詳しく、より具体的に本実施形態を以下に説明する。
【0024】
本発明者らは、陰極に接する有機層中にドーピングする材料として、容易に入手可能で、また、取り扱いに大気や水分との接触を排除した特殊な作業環境を必要せず、さらに、抵抗加熱等の一般的な手法により成膜が可能な特定の材料を見出した。それが炭酸塩である。
【0025】
また、本実施形態の発光素子は、複数の発光素子を有する発光素子アレイ、ディスプレイ(モノカラーフルカラー問わず)等の表示素子、および電子写真方式(例えばレーザービームプリンタや複写機)の感光体への露光光源として適用できる。
【0026】
又、本発明の実施形態の発光素子において、陰極電極に用いる材料として、アルミニウム(Al)、銀(Ag)、金(Au)、インジウム錫酸化物(ITO)、あるいはそれら1種を少なくとも含む合金等を挙げることが出来る。他にもマグネシウム(Mg)、白金(Pt)、パラジウム(Pd)、セレン(Se)、イリジウム(Ir)、酸化錫、そしてヨウ化銅あるいはそれらを少なくとも1つ含む混合金属(例えば合金)を用いることが出来る。
【0027】
本発明の実施形態の発光素子は、陰極電極と、それに接する有機化合物層を成膜する順序に限定を受けず、該成膜順序を自在に選択できる。
【0028】
(第2の実施形態)
図2は、本発明の第2の実施形態を示す模式図である。本実施形態は第1の実施形態である発光素子の一部を陽極まで含めた層構成にまで説明を広げたものである。同図において、本発明の発光素子は、基板10上に、陽極となる電極11、正孔輸送性を有する正孔輸送層12、発光層13、有機化合物と炭酸塩から構成される有機化合物層14、陰極となる電極15を積層して構成されている。
【0029】
この他、上記有機化合物層の構成としては、電極(陽極)/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)等が挙げられるが、本発明による発光素子は、有機化合物層14を陰極15との界面に備える構成であれば、いかなる素子構成であっても良い。更に、具体的には層の構成が、陰極、有機化合物層、電子輸送層の順であることがよい(もちろん製造の順番から言えば電子輸送層の次に有機化合物層そしてそのあとに陰極といった順に各層を製造することもある)。特にこの層構成の場合、Alq3及びPBO等の金属錯体化合物、オキサゾール、キノキサリン、トリアジン、トリアゾール、シロール等のヘテロ環化合物、ヘテロ縮合環化合物の少なくともいずれか一つを電子輸送層として好ましく用いることが出来る。このような電子輸送層を更に設けることで、陰極から発光層へ電子を供給する効率が更に改善される。その場合電子輸送層の材料と有機化合物層を構成する主たる有機化合物は別々の化合物であってもよいが、同じ化合物であることが好ましい。
【0030】
正孔輸送層12及び正孔注入層として使用できる有機化合物としては、特に限定はないが、例えばトリフェニルジアミン誘導体、オキサジアゾール誘導体、ポリフィリル誘導体、スチルベン誘導体等を用いることができるが、これに限られるものではない。
【0031】
発光層13の材料として使用できる有機化合物としては、トリアリールアミン誘導体、スチルベン誘導体、ポリアリーレン、芳香族縮合多環化合物、芳香族複素環化合物、芳香族複素縮合環化合物、金属錯体化合物等及びこれらの単独オリゴ体あるいは複合オリゴ体等から採用できる。またこれらの発光材料の一種以上を正孔注入層や、正孔輸送層又は、電子電子輸送層にドーピングして用いることもできる。これら材料、構成は、いずれもこれに限定されない。
【0032】
陽極となる電極11としては、仕事関数の大きなものが望ましく、例えばインジウム錫酸化物(ITO)、酸化錫、金(Au)、白金(Pt)クロム(Cr)、パラジウム(Pd)、セレン(Se)、イリジウム(Ir)、ヨウ化銅等や、合金等を用いることができる。
【0033】
上記、正孔輸送層12、正孔注入層、発光層13、および電子輸送層は、いかなる薄膜形成方法であってもよく、例えば蒸着法やスパッタ法、CVD法、分子線蒸着法(MBE法)、ディッピング法、スピン塗布法、キャスティング法、バーコート法、ロールコート法、インクジェット法等が使用できる。
【0034】
また、本発明の本実施形態で述べた発光素子において、有機材料や無機材料からなる保護層を設け、素子を酸素や湿気から守る構成を取ることも可能であり、何ら本発明の特徴を阻害するものとはならない。また、不活性ガスで素子を封入する等により、素子の耐環境性の向上を図ることも可能である。
【0035】
(第3の実施の形態)
本発明の第3の実施の形態に係る発光素子は、有機化合物層と発光層との間に別の層を設ける形態である。それ以外は第2の実施の形態と同じである。本実施形態は、第2の実施の形態において説明した層構成のうち電極(陽極)/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)、電極(陽極)/正孔注入層/正孔輸送層/発光層/電子輸送層/有機化合物層/電極(陰極)等の層構成が本実施の形態にの範疇に含まれるが、その他に発光層と有機化合物層との間にブロック層、より具体的にはホールブロッキング層としての機能を有する層を設けても良い。なおこのホールブロッキング層は先の電子輸送能力あるいは電子注入能力を有していても良い。
このブロック層について箇条書きに説明すると、次のA〜Fの何れかであってよい。
A. ブロック層を構成する材料として、金属錯体化合物を挙げることが出来る。
B. ブロック層を構成する材料として、ヘテロ環化合物を挙げることが出来る。
C. ブロック層を構成する材料として、ヘテロ縮合環化合物を挙げることが出来る。
D. ブロック層を構成する材料として、アルミキレート錯体(Alq3)を挙げることが出来る。
E. ブロック層を構成する材料として、バソフェナントロリンを挙げることが出来る。
F. ブロック層を構成する材料として、バソクプロインを挙げることが出来る。
【実施例】
【0036】
以下に、本発明の好適な実施例を図面に基づいて、炭酸塩として炭酸セシウムを例示して説明するが、炭酸リチウムも適用可能であり即ち本発明は本実施形態に限られない。
【0037】
(実施例1)
図2、第一の実施例を示す。図中、10は陽極側の透明基板であり、11は正孔注入用の陽極電極としてのITO層を示し、12は正孔輸送層、13は発光層、14は有機化合物層、15は陰極電極である。
【0038】
透明基板10に酸化錫インジウム(ITO)をスパッタ法にて120nmの膜厚で成膜し、透明な陽極電極12を得た。その後、該基板をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。さらに、UV/オゾン洗浄した。
【0039】
次いで、真空蒸着装置[真空機工社製]を用いて、洗浄後の該基板を上に正孔輸送性を有する下記化学式1:
【化1】

で表されるαNPDを真空蒸着法により35nmの膜厚で成膜し正孔輸送層13を形成した。蒸着時の真空度は、1.0×10−6Torr、成膜速度は、成膜速度は0.2〜0.3nm/secの条件で成膜した。次に、前記正孔輸送層13の上に、下記化学式2:
【化2】

で表される、アルミキレート錯体(以下Alq3という)を真空着法により15nmの膜厚で成膜し発光層14を、正孔輸送層13を成膜するときと同じ条件で形成した。次に、前記発光層14の上に、有機化合物層15として、Alq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層におけるAlq3とCsCOとのモル比は1:0.57である。モル比はとは、有機化合物層を構成する材料の分子量と比重及び、膜厚重量比とから算出される比である。
【0040】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧15Vにて最高輝度41200cd/m、電流密度3200mA/cmを示した。また、印加電圧5Vにて最高効率0.91lm/Wを示した。この発光素子の、電圧−輝度特性を図3及び図4に示す。
【0041】
(比較例1)
本比較例は、実施例1に比べて炭酸塩を用いていない実施例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を50nmの膜厚で成膜した。最後に、陰極電極16として、アルミニウム(Al)を150nm蒸着した。
【0042】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧20Vにて最高輝度1926cd/mと電流密度350mA/cmを示した。また、印加電圧12Vにて、最高効率0.17lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。
【0043】
図1に示した実施例1および比較例1の電圧−輝度特性の比較より、実施例1で示した有機化合物層に炭酸セシウムを用いた発光素子は、比較例1の素子に比して、その駆動電圧が大きく低下していることがわかる。したがって、有機化合物層が、素子の駆動電圧の引き下げに有効であることがわかる。
【0044】
(比較例2)
本比較例は、取り扱い困難なセシウム金属を実施例1と同様の工程で成膜する試みをしたが成膜できなかったことを示す例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とセシウム(Cs)を膜厚比9:1の割合で混合されるように試みたが、反応性の高い金属セシウムを大気環境下で成膜装置へ投入することができず、成膜が行えなかった。そのため、有機化合物層15にセシウム(Cs)等のアルカリ金属を導入した素子を製作するためには、大気や水分と接触しない条件下でアルカリ金属を取り扱い、成膜するような特殊な作業環境が必要となる。そのような作業環境の構築には、コストがかかるとともに、素子作製にかかる時間は、通常環境下に比べ長く、素子作製のスループットは低くなる。
【0045】
(比較例3)
本比較例は、取り扱い困難なセシウム金属を用いるために特別な装置を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とセシウム(Cs)を35nm混合成膜されるように試みた。本比較例3では、有機化合物層15にセシウムを導入することを、真空下にて高純度のアルカリ金属蒸気を生成させることが可能なアルカリ金属ディスペンサ(SAES Getters社製)を利用して行った。有機化合物層15として、Alq3とセシウム(Cs)を膜厚比9:1の割合で混合されるように、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
【0046】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧12Vにて最高輝度11000cd/mと電流密度3085mA/cmを示した。また、印加電圧5Vにて、最高効率0.47lm/Wを示した。この発光素子の電圧−輝度特性を図3に示す。
【0047】
(比較例4)
本比較例は、炭酸塩以外の塩を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。 最後に、前記有機化合物層15の上に陰極電極16として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
【0048】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、アルミニウムを陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧18Vにて最高輝度23900cd/mと電流密度2450mA/cmを示した。また、印加電圧5Vにて、最高効率0.78lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。
【0049】
(比較例5)
本比較例は、実施例1の炭酸塩と有機化合物からなる有機化合物層の代わりにフッ化リチウム(LiF)を用いた例である。
実施例1と同様な条件にて、陽極電極であるITO上にまず正孔輸送層としてα−NPDを35nmの膜厚で構成し、その上に、発光層としてAlq3を50nm連続して成膜した。次にフッ化リチウム(LiF)を1nmの厚さに成膜した。最後に、陰極電極として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
このようにして、透明基板上に、陽極電極、正孔輸送層、発光層、フッ化リチウム(LiF)、および陰極電極を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極、アルミニウムを陰極電極として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧18Vにて最高輝度26790cd/m2、電流密度2188mA/cm2を示した。また、印加電圧5Vにて最高効率0.861lm/Wを示した。この発光素子の電圧−輝度特性を図3及び図4に示す。
【0050】
(実施例2)
本実施例は、実施例1に比べて陰極として金を用いた例である。
実施例1と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、金(Au)を蒸着速度1nm/secの条件で150nm蒸着した。
【0051】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、金(Au)を陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧15Vにて最高輝度29700cd/mと電流密度3000mA/cmを示した。また、印加電圧6Vにて、最高効率0.79lm/Wを示した。この発光素子の電圧−輝度特性を図4に示す。
【0052】
(比較例6)
本比較例は、実施例2に比べて炭酸塩ではなくフッ化リチウム(LiF)をもちいた例である。
実施例2と同様な条件にて、陽極電極12であるITO上にまず正孔輸送層13としてα−NPDを35nmの膜厚で成膜し、その上に、発光層14としてAlq3を15nmの膜厚で成膜した。次に、有機化合物層15としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層15の上に陰極電極16として、金(Au)を蒸着速度1nm/secの条件で150nm蒸着した。
【0053】
このようにして、透明基板10上に、陽極電極11、正孔輸送層12、発光層13、有機化合物層14、および陰極電極15を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極11、金(Au)を陰極電極15として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧25Vにて最高輝度93cd/mと電流密度26mA/cmを示した。
また、印加電圧24Vにて、最高効率0.047lm/Wを示した。この発光素子の電圧−輝度特性を図4に示す。
有機化合物層中にフッ化リチウムを用いる場合、陰極がアルミニウムであれば電子注入特性は良好であるが陰極を金にしてしまうと電子注入特性が悪くなる。これに対して炭酸塩を用いた場合、陰極としてアルミニウムでも金でも用いても良好な電子注入特性が得られる。即ち陰極材料の選択の自由度が増す。
【0054】
(実施例3)
図5は、本発明の第三の実施例を示す。図5において、20は、基板であり、21は、下面電極、22は、有機化合物層、23は、上面電極をそれぞれ示している。
【0055】
基板20をアセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。次に、真空蒸着装置[真空機工社製]を用いて、洗浄後の該基板を上にアルミニウム(Al)を真空蒸着法により50nmの膜厚で成膜し下面電極21を形成した。蒸着時の真空度は、1.0×10−6Torr、蒸着速度1nm/secの条件で行った。次に有機化合物層22として、Alq3と炭酸セシウム(CsCO)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して50nmの厚さに成膜した。最後に、前記有機化合物層22の上に上面電極23として、下面電極と同一材料であるアルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層におけるAlq3とCsCOとのモル比は1:0.57である。
【0056】
このようにして、基板20上に、下面電極21、有機化合物層22、および上面電極23を設けた、素子を得た。この素子の下面電極21を陽極に、上面電極23を陰極としてまた、下面電極21を陰極に、上面電極23を陽極として、素子に直流電圧を印加し、その時の電圧−電流特性を調べた。その結果、印加電圧を10Vにて、その時の電流密度は、上面電極23を陰極とした場合、2250mA/cm、下面電極21を陰極とした場合、1960mA/cmをそれぞれ示した。
【0057】
(比較例7)
本比較例は、実施例3と比べて炭酸塩の代わりにフッ化リチウムを用いた例である。
実施例3と同様な条件にて、下面電極21としてアルミニウム(Al)を50nmの膜厚で成膜し、その上に、有機化合物層22としてAlq3とフッ化リチウム(LiF)を膜厚比9:1の割合で混合されるよう、各々の蒸着速度を調整して50nmの厚さに成膜した。最後に、前記有機化合物層22の上に上面電極23として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。
【0058】
このようにして、透明基板20上に、下面電極21、有機化合物層22、および上面電極23を設けた、素子を得た。この素子の下面電極21を陽極に、上面電極23を陰極としてまた、下面電極21を陰極に、上面電極23を陽極として、素子に直流電圧を印加し、その時の電圧−電流特性を調べた。その結果、印加電圧を10Vにて、その時の電流密度は、上面電極23を陰極とした場合、935mA/cm、下面電極21を陰極とした場合、11mA/cmをそれぞれ示した。
【0059】
比較例7の結果より、有機化合物層にフッ化リチウム(LiF)を用いた素子では、有機化合物層を形成後成膜した上面電極23側から電子を注入する場合電流が流れるが、あらかじめ形成しておいた下面電極21側からは、電子がほとんど注入されないことがわかる。塩を有する有機化合物層の上に電極が加熱された状態で形成された方が電流を良く流す。
【0060】
一方、本発明による有機化合物層22に炭酸セシウム(CsCO)を用いた素子では、有機化合物層22とそれに接する電極との成膜順序に特別な制限を受けることなく、陰極からの電子注入障壁を小さくし、素子の駆動電圧を低くすることが可能となる。
【0061】
(実施例4)
本実施例は有機化合物層と発光層との間に別の層(ブロック層)を設けた発光素子の例である。
図6に第4の実施例を示す。図中30は陽極側の透明基板であり、31は正孔注入用の陽極電極としてのITO層を示し、32は正孔輸送層、33は発光層、34はブロック層、35は有機化合物層、36は陰極電極である。
実施例1と同様な条件にて、陽極電極31であるITOの上にまず正孔輸送層32としてα−NPDを35nmの膜厚で成膜し、その上に、発光層33としてAlq3を15nmの膜厚で成膜した。次にブロック層34として下記化学式3:
【化3】

で表される、バソフェナントロリン(以下B-phenという)を10nmの膜厚で成膜した。続いて、前記ブロック層34の上に、有機化合物層35として、B-phenと炭酸セシウム(Cs2CO3)を膜厚比8.8:1.2の割合で混合されるよう、各々の蒸着速度を調整して25nmの厚さに成膜した。最後に前記有機化合物層35の上に陰極電極36として、アルミニウム(Al)を蒸着速度1nm/secの条件で150nm蒸着した。この有機化合物層35におけるB-phenとCs2CO3のモル比は、1:0.5である。
このようにして、透明基板30上に、陽極電極31、正孔輸送層32、発光層33、ブロック層34、有機化合物層35、および陰極電極36を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極31、アルミニウムを陰極電極36として、直流電圧を印加し、素子の発光特性を調べた。その結果この素子は、印加電圧9Vにて最高輝度44105cd/m2、電流密度1760mA/cm2を示した。また、印加電圧5Vにて最高効率2.3lm/Wを示した。この発光素子の電圧−輝度特性を図7に示す。
【0062】
(比較例8)
本比較例は、実施例4に比べてブロック層34を用いていない。
実施例4と同様な条件にて、陽極電極31であるITOの上にまず正孔輸送層32としてα−NPDを35nmの膜厚で成膜し、その上に、発光層33としてAlq3を15nmの膜厚で成膜した。続いて前記発光層33の上に、有機化合物層35としてB-phenと炭酸セシウム(Cs2CO3)を膜厚比8.8:1.2の割合で混合されるよう、各々の蒸着速度を調整して35nmの厚さに成膜した。最後に、前記有機化合物層35の上に陰極電極36として、アルミニウム(Al)を150nm蒸着した。
このようにして、透明基板30上に、陽極電極31、正孔輸送層32、発光層33、有機化合物層35、および陰極電極36を設け、発光素子を得た。続いて、この発光素子において、ITOを陽極電極31、アルミニウムを陰極電極36として、直流電圧を印加し、素子の発光特性を調べた。その結果、この素子は、印加電圧11Vにて輝度33751cd/m2、電流密度3223mA/cm2を示した。また、印加電圧5Vにて効率1.01lm/Wを示した。この発光素子の電圧−輝度特性を図7に示す。
【0063】
実施例4で示したブロック層及び有機化合物層に炭酸セシウムを用いた発光素子は、ブロック層を備えない比較例8に比して、発光効率が大幅に向上している。このブロック層は、陽極電極から注入された正孔が発光層を通過することを妨げる機能を有するとともに、ブロック層上の有機化合物層に含まれる炭酸塩が発光層へ入ることを防止するための層である。発光層に炭酸塩が入ると、その領域は発光しないため、発光効率が低下する。なお、有機化合物層に含まれる炭酸塩が、発光層に入る理由は定かではないが、本発明者らは、成膜時のエネルギーにより炭酸塩が発光層にもぐり込むためと推定している。
このような発光層と有機化合物層の間に設け、正孔の発光層からの通過を妨げるとともに、有機化合物層に用いられる炭酸塩が発光層に入り込むことを防止するブロック層は、発光効率の向上に有効であることがわかる。
【0064】
以上各実施形態および実施例を挙げて説明したように、本発明により、取り扱い容易な炭酸塩と有機化合物とからなる有機化合物層を、陰極に接した発光素子を提供できる。
【図面の簡単な説明】
【0065】
【図1】一般の発光素子の積層構造例を示す模式図である。
【図2】本実施形態の発光素子の積層構造例を示す模式図である。
【図3】本実施例の発光素子と比較例の発光素子との電圧−輝度特性を示す図である。
【図4】本実施例の発光素子と比較例の発光素子との電圧−輝度特性を示す図である。
【図5】第3の実施例を示す模式図である。
【図6】第4の実施例に係る発光素子の層構成を示す模式図である。
【図7】第4の実施例と第8の比較例の電圧−輝度特性を示す図である。

【特許請求の範囲】
【請求項1】
陽極及び陰極からなる一対の電極と、前記一対の電極間に備えられている有機化合物層とから少なくとも構成されている発光素子であって、上記陰極電極と電気的に実質接している前記有機化合物層が少なくとも有機化合物と炭酸塩とから構成されていることを特徴とする発光素子。
【請求項2】
前記炭酸塩は、陽イオンがアルカリ金属イオンあるいはアルカリ土類金属イオンであることを特徴とする請求項1に記載の発光素子。
【請求項3】
前記炭酸塩は、炭酸セシウムであることを特徴とする請求項1に記載の発光素子。
【請求項4】
前記炭酸塩は、炭酸リチウムであることを特徴とする請求項1に記載の発光素子。
【請求項5】
前記陰極は、可視光に透明であることを特徴とする請求項1に記載の発光素子。
【請求項6】
前記陰極は、ITO電極であることを特徴とする請求項1に記載の発光素子。
【請求項7】
前記陰極は、金あるいは銀あるいはアルミニウムの少なくともいずれかの電極であることを特徴とする請求項1に記載の発光素子。
【請求項8】
前記有機化合物層と前記陽極との間に、前記有機化合物層とは別の発光層を有することを特徴とする請求項1に記載の発光素子。
【請求項9】
前記有機化合物層と前記発光層の間に電子輸送層を有することを特徴とする請求項8に記載の発光素子。
【請求項10】
前記陰極から光を取り出すことを特徴とする請求項1に記載の発光素子。
【請求項11】
請求項1に記載の前記発光素子を面内に複数有することを特徴とする発光装置。
【請求項12】
前記発光装置は、ディスプレイの情報表示部に用いられることを特徴とする請求項11に記載の発光装置。
【請求項13】
前記発光装置は、電子写真方式の画像形成装置における感光体を露光する露光装置として用いられることを特徴とする請求項11に記載の発光装置。
【請求項14】
陽極と陰極とからなる一対の電極と、前記一対の電極間に備えられる有機化合物層とを有する発光素子の製造方法であって、陰極側に、前記有機化合物層を構成する少なくとも有機化合物と炭酸塩とを設ける有機化合物層形成工程と、前記有機化合物層に電気的に実質接して陰極を設ける工程とを少なくとも有することを特徴とする発光素子の製造方法。
【請求項15】
前記有機化合物層形成工程は、前記有機化合物層と炭酸塩とを共蒸着により形成する工程であることを特徴とする請求項14に記載の発光素子の製造方法。
【請求項16】
前記有機化合物層形成工程は、700℃以下の温度領域において前記炭酸塩を、前記有機化合物と共蒸着することを特徴とする請求項15に記載の発光素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−128717(P2006−128717A)
【公開日】平成18年5月18日(2006.5.18)
【国際特許分類】
【出願番号】特願2006−13288(P2006−13288)
【出願日】平成18年1月23日(2006.1.23)
【分割の表示】特願2003−546376(P2003−546376)の分割
【原出願日】平成14年11月19日(2002.11.19)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】