説明

発電装置の作動媒体に混入した空気を除去する装置

【課題】水よりも沸点が低い媒体を用いる装置の媒体流路に混入した空気を検出し、混入した空気を自動で除去する装置を提供する。
【解決手段】冷却器で冷却された液状の前記媒体を駆動媒体とするエダクターと、第1容器と、混合ガスの流路の気相部の圧力を測定する圧力計と、混合ガスの流路の温度を測定する温度計とを備え、温度計の温度と圧力計の圧力値に基づいて算出した媒体の飽和蒸気圧値と余裕値とを合計した圧力閾値を算出し、圧力閾値より圧力計の圧力値が大きい場合に、媒体に空気が混入していることを検知し、冷却器とポンプを作動させてエダクターにより混合ガスの流路から混合ガスを取り出して第1容器に移送し、第1容器で気液分離された液状の媒体を、第1弁を介して混合ガスの流路に戻す制御を行う制御部を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水よりも低沸点の媒体を作動媒体とする発電装置において、作動媒体に混入した空気を除去する装置に関する。
【背景技術】
【0002】
従来の蒸気タービンを用いた地熱発電で活用されてこなかった低温熱源から熱エネルギーを回収し発電する低沸点媒体を用いた発電装置は、最近エネルギー回収装置として特別に注目されている(特許文献1参照)。
【0003】
従来の低沸点媒体を用いた発電装置の基本的系統図を図5に示す。この発電装置は、蒸発器100で水よりも低沸点の媒体と熱源との間で熱交換を行いこの媒体を蒸発させ、この媒体蒸気でタービン101を回転させ、その回転力で発電機102を作動させて電力を得る。タービンを出た媒体は凝縮器103で凝縮され循環ポンプ104で予熱器105を経由して再び蒸発器100に送られ、上記のサイクルが繰り返される。
【0004】
一般に、蒸気圧が高い(すなわち、沸点が低い)媒体を使用すると蒸発器での気化は容易であるが、凝縮器での凝縮が難しくなり、逆に、蒸気圧が低い(すなわち、沸点が高い)媒体を使用すると気化が難しくなるが、凝縮が容易になる。こうした観点から、使用される媒体は、タービン入口と出口のエンタルピー差(熱落差)がなるべく大きくなる媒体が選定される。例えば、地熱熱源温度130〜140℃、冷却源温度15℃〜30℃の条件で使用される天然媒体としてはn−ペンタン(nC12)が主に利用されている。
【0005】
凝縮器の冷却源は一般に循環冷却水または大気であるので、冬と夏では冷却源の温度が大幅に異なる。そのため、凝縮器が夏季に必要とされる冷却能力に基づいてのみ設計された場合、冬季に冷却源温度が低下すると、凝縮器の冷却能力が一段と増強される。
【0006】
しかし、図3に示すように、n−ペンタンの蒸気圧は36℃以下になると101kPa以下になる為、冬季に凝縮器出口の温度が36℃以下になると媒体流路は大気圧以下になる場合がある。そうなると、凝縮器本体及びその接続配管の各種の継手またはタービンの軸のメカニカルシール部分などから媒体流路へ空気が混入する可能性がある。
そこで、発電に関係する装置において媒体に混入する空気を除去する装置として、下記特許文献2から6が知られている。
【0007】
特許文献2には、低沸点媒体の代わりに水を使用するバイナリー発電装置において、復水器の排出水から空気を抽出するための空気抽出装置を備えた装置が開示されている。
特許文献3には、高沸点媒体と低沸点媒体とを混合してなる作動流体が、当該作動流体の溶液を加熱して蒸気を発生する蒸気発生器と、蒸気発生器から供給された蒸気により駆動する蒸気タービンと、蒸気タービンから排出された蒸気を冷却して溶液に復水させる復水器と、復水器から供給された溶液を蒸気発生器に供給する供給ポンプとの順に夫々を循環する動力サイクル回路を備えた動力システムであって、動力サイクル回路における復水器で起り得る最低圧力が大気圧近傍圧力となるように、復水器での作動流体の低沸点媒体の濃度が決定されている動力システムが開示されている。
【0008】
特許文献4には、内部にピストンを備えたチャンバーを凝縮器の上部に備え、チャンバーのピストン下方の空間と凝縮器の間を接続するバルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。
【0009】
特許文献5,6には、凝縮器の上部に密閉されたチャンバーを備え、このチャンバーは、チャンバー内を上部と下部に分ける可動のダイアフラムを備え、凝縮器とチャンバー下部の間に直列に配置された2つの流量制御バルブと、壁を介してチャンバー下部を冷却材で冷却する冷却手段と、チャンバー下部に接続された排出バルブを備えている装置が開示されている。
【0010】
特許文献7には、復水器より数段のエダクター等を使って不凝結ガスを抽出し、復水器内の真空を保つ地熱発電プラントのガス抽出システムが開示されている。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開昭62−26304号公報
【特許文献2】特開2003−120513号公報
【特許文献3】特開2007−262909号公報
【特許文献4】米国特許5,119,635号公報
【特許文献5】米国特許5,113,927号公報
【特許文献6】米国特許5,487,765号公報
【特許文献7】昭60−132006号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
上記特許文献2は、媒体に水を用いているために、熱源が100℃以上でなければならず、より低温の熱源を用いることができないという課題があった。
上記特許文献3は、冬季に復水器で起こりうる最低圧力が大気圧近傍圧力になるように低沸点媒体の濃度が決定されているので、夏季の復水器の圧力が高くなり、発電効率が低下するという課題があった。
【0013】
上記特許文献4,5,6は、媒体から空気を除去する装置が開示されているが、その装置の作動タイミングは、20分毎に定期的に作動させる例を挙げているに過ぎないため、必要以上に空気除去動作が行われて媒体の流出量が多くなるという課題があった。
【0014】
上記特許文献7は、エダクターの駆動に蒸気を使用しているので、後段のクーラーで駆動蒸気と復水器から取り出したガスの両方を冷却しなければならないので、冷却負荷が大きいという課題があった。
【0015】
上記課題を鑑み、本発明は、自動で発電装置の媒体流路に混入した空気を検出し、混入した空気を装置外へ排出できる混入空気除去装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
前記目的を達成するために、水よりも沸点が低い媒体と空気との混合ガスから空気を除去する本発明の混入空気除去装置は、媒体を冷却する冷却器と、冷却された液状の前記媒体を駆動媒体とし前記混合ガスの流路から前記混合ガスを吸引するエダクターと、前記エダクターに液状媒体を供給するポンプと、前記エダクターの吐出部と接続され、大気と連通する配管を備えた前記第1容器と、前記第1容器の下部と前記混合ガスの流路とを接続する配管に設けられた第1弁と、前記混合ガスの流路の気相部の圧力を測定する圧力計と、前記混合ガスの流路の温度を測定する温度計と、前記温度計の温度と前記圧力計の圧力値に基づいて算出した前記媒体の飽和蒸気圧値と余裕値とを合計した圧力閾値を算出し、前記圧力閾値より前記圧力計の圧力値が大きい場合に、前記媒体に空気が混入していることを検知し、前記冷却器と前記ポンプを作動させて前記エダクターにより前記混合ガスの流路から前記混合ガスを取り出して前記第1容器に移送し、前記第1容器で気液分離された液状の媒体を、前記第1弁を介して前記混合ガスの流路に戻す制御を行う制御部を備えていることを特徴とする。
【0017】
このような構成によれば、冷却された媒体の圧力を駆動力として、前記混合ガスの流路から混合ガスをエダクターにより取り出すため、エダクターで容易に混合ガスが冷却され、空気に含まれる媒体濃度を低下させることができる。そのため、装置外に放出される媒体の量を低減できる。
【0018】
また、前記混入空気除去装置に前記第1容器の液面を検出する液面計をさらに備えることが望ましい。このような構成によれば、第1容器内が空にならないように第1弁の開閉を制御するので、第1容器内の空気が前記混合ガスの流路に流入することを防止できる。
【0019】
本発明の混入空気除去装置は、前記混合ガスに空気を供給する空気供給部と、前記空気供給部から供給する空気量を調節する第2弁と、前記第1容器から供給される混合ガスの流量を調整する第3弁と、前記第2弁と前記第3弁にそれぞれ接続され、前記第1容器から排出された前記媒体を燃焼する燃焼器を備え、前記制御部は、前記第2弁と、前記第3弁とを制御して、前記燃焼器で前記媒体を燃焼することとしても良い。このような態様によれば、可燃性の媒体を用いている場合は、本発明の混入空気除去装置外に安全に排出できる。
【0020】
前記混入空気除去装置を発電装置に備えると、自動で媒体中の空気を除去できるので、発電効率を向上できる。
なお、本発明に用いられる媒体としては、特にR245faなどの各種フロンやn−ペンタンなどの沸点が水より低い有機性低沸点媒体が用いられる。
【発明の効果】
【0021】
本発明によれば、媒体貯留部の液相部の温度に基づいて算出された前記媒体の飽和蒸気圧値に余裕値を加えた圧力閾値と、媒体貯留部の気相部の圧力値を比較して空気の混入を検知しているので、発電装置の媒体流路に空気が混入したことを自動で検出できる。また、装置外へ排出される作動媒体の量を低減できる。そして、凝縮器で凝縮されない空気が媒体に混入して凝縮器の凝縮能力が低下することによる発電効率の低下を防止できる。
【図面の簡単な説明】
【0022】
【図1】本発明の実施例に係る装置の構成を示す図である。
【図2】本発明の実施例に係る装置の作動シーケンス図である。
【図3】n−ペンタンの飽和蒸気圧線図である。
【図4】圧力101kPaにおいて、温度をパラメーターとして空気中に飽和するn−ペンタンの容積比率を表した図である。
【図5】従来の一般的な低沸点媒体を用いた発電装置の構成を示す図である。
【発明を実施するための形態】
【0023】
以下、この発明の実施の形態について図に基づいて説明する。図1は、この発明の実施例に係る混入空気除去装置の構成を示す図である。図1の凝縮器103は、図5の凝縮器103に相当する。媒体貯留部1は、凝縮液103の出口側コレクタの上部に接続されており、媒体貯留部1の液相部の温度を測定する温度計10と、媒体貯留部1の気相部の圧力を測定する圧力計11が設置されている。
【0024】
第1容器2は、弁12を介して配管で媒体貯留部1と接続している。さらに、媒体貯留部1とエダクター41を接続する配管が設置されており、この配管に弁16と圧力計45が設置されている。
【0025】
媒体タンク24は、ポンプ18に接続されている。ポンプ18は、流量計6と冷却器42と温度計15と弁13とを介して配管でエダクター41に接続されている。エダクター41の吐出口は、第1容器2上部に接続されている。
【0026】
第1容器2には、容器上方から順に圧力計7と液面計(高液面)8と液面計(低液面)9が設置されている。
燃焼器4は、内部に燃焼触媒を備え、燃焼器4の下部は、弁14を介して第1容器2と配管で接続されている。空気供給手段19は、弁17を介して配管で燃焼器4と接続されている。第1容器2から供給された混合ガスは、空気供給手段19から供給された空気と混合され、燃焼器4の燃焼触媒で燃焼され、排ガスになる。生じた排ガスは、大気に放出される。燃焼器4には、燃焼触媒を機能させるために、燃焼触媒を所定の温度に制御するヒーターが設置されている。燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではなく、弁14から排出されるガスを燃焼させずに大気で希釈する場合は、不要である。
【0027】
制御部5は、温度計10、15と圧力計11、7、45と液面計(高液面)8と液面計(低液面)9と流量計6とにそれぞれ信号線で接続されており、各機器からの信号はそれぞれ制御部5に入力される。また、制御部5は、弁12,13,14,16,17にそれぞれ電気配線で接続されており、各弁の開閉を制御している。
【0028】
次に本装置の動作について説明する。図2は、本発明の第1の実施形態に係る装置の作動シーケンスの概要を示す図である。制御部5は、空気混入検出工程S1、空気除去工程S2の順に実行し、その後、空気混入検出工程S1に戻る。なお、初期状態では、すべての弁は、閉じた状態である。
【0029】
まず、空気混入検出工程S1について説明する。混入空気除去装置は、圧力計11の圧力が大気圧以下(媒体がn−ペンタンの場合、36℃以下)になった事が確認された時のみ作動させる。なぜならば、媒体流路内の圧力が大気圧以上の状態が継続していれば、外気から媒体流路内に空気が混入し難いという点と、後述する空気除去工程S2の後半で、第1容器2に溜まった液状の媒体を媒体貯留部1に戻す際の駆動力として、大気圧と媒体貯留部1内部の圧力差を利用している点からである。第1容器2と弁12の間の配管に新たにポンプを設けて、この圧力差が無くても作動するようにしてもよい。
【0030】
制御部5は、まず、媒体貯留部1の気相部に設置された圧力計11の圧力値(PIa)が、101kPa未満かどうか判定する。圧力値(PIa)が、101kPa以上の場合は、この判定条件の上流にもどり、この判定を継続する。圧力値(PIa)が、101kPa未満の場合は、媒体貯留部1の気相部に設置された圧力計11の信号と媒体貯留部1の液相部に設置された温度計10の信号を取得し、温度計の温度に基づいて算出された媒体の飽和蒸気圧値に余裕値を加えた圧力閾値を計算する。そして、圧力計11の圧力値(PIa)が圧力閾値以下の場合は空気混入検出工程S1の最初に戻る。圧力計11の圧力値(PIa)が圧力閾値より高い場合は媒体に空気が混入したと判断し、次の工程に進む。また、上記余裕値は、固定値とするか、もしくは、前記温度計の温度に基づいて算出された前記媒体の飽和蒸気圧値に係数をかけた比例値とする。具体的には、例えば、nペンタンの場合、下記の式1を用いて、温度(T1)における飽和蒸気圧値(Pst)を演算する。グラフにしたものを図3に示す。用いる媒体が違う場合は、その媒体の特性に合わせて飽和蒸気圧値(Pst)を求める式を適宜変更する。
Pst=0.0003(T1)+0.0159(T1)+1.1844(T1)+24.316 ・・・(式1)
余裕値は、継手の数や状態を考慮して何回かの試験を経て決める。例えば、固定値の場合は、1気圧時の10%程度とする。比例値とする場合は、前記係数を0.1程度とする。
【0031】
次に、空気除去工程S2について説明する。この工程の主目的は、エダクター41により、媒体貯留部1から気相部の混合ガスを第1容器2へ移送することである。その際、エダクターの駆動媒体を冷却しておくことで混合ガスを冷却し、混合ガス中の媒体濃度を低下させることである。
【0032】
具体的には、図1に示す混入空気除去装置の弁12,13,16,14をそれぞれ閉じた後、冷却器42を作動させる。所定時間経過後、弁13と弁14を開き、ポンプ18を作動させる。そうすると、冷却器42で冷却された媒体が便13とエダクター41を経由して第1容器2に移送される。
【0033】
その後、一部の気化した媒体は、第1容器2から弁14を通って外部に排出される。この際、弁17も開けられる。この際、燃焼器4と空気供給部19と弁17およびそれらを接続する配管は必須の構成ではない。例えば、弁14から排出されるガスを燃焼させずに大気で希釈する場合は、弁14を開放して混合ガスを大気にそのまま放出してもよい。 混合ガスを燃やして大気に放出する場合は、混合ガスに含まれる酸素だけでは完全燃焼できないことが想定される。例えば、n−ペンタンの場合、空気との混合比がn−ペンタンの燃焼範囲(1.5%〜7.8%)を超える場合は、酸素を供給する必要がある。この範囲に空気量を調整する為、弁17を介して空気が投入される。この空気としては、圧縮空気供給設備から供給することが望ましく、例えば、装置の計装機器を作動させるための計装用空気を使用してもよい。具体的には、次の手順で行う。燃焼器4は、燃焼触媒として白金微粒子を担持させたセラミックハニカムフィルターを内部に備えている。燃焼器4内を200〜350℃になるようにヒーター4aで加熱された状態で、弁17と弁14を開いて燃焼器4へ混合ガスと空気を供給して媒体を燃焼する。
【0034】
ここから、2つの同時並行的に動作する分岐シーケンスが実行される。
第1の分岐シーケンスは、媒体貯留部1の混合ガスをエダクターによって吸引し、冷却された媒体と共に第1容器2に移送する工程であり、第2の分岐シーケンスは、第1容器2に溜まった媒体を媒体貯留部1に戻す工程である。
【0035】
具体的に説明すると、第1の分岐シーケンスでは、圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値未満かどうか判定される。この判定は、エダクターの真空度の到達具合をチェックしているだけであり、ここでは仮に、圧力計11の圧力値(PIa)の半分の値を用いているが、適宜任意に設定可能である。圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値以上である場合は、この判定条件の上流にもどり、この判定を継続する。圧力計45の圧力値(PIb)が圧力計11の圧力値(PIa)の半分の値未満である場合は、弁16を開く。そうすると、媒体貯留部1の混合ガスは、エダクターによって吸引され、冷却された媒体と共に第1容器2に移送される。
【0036】
次に、圧力計45の圧力値(PIb)が判断閾値(F3 × Pst)未満かどうか判定される。この判断式におけるPstは、温度計15で測定された温度(TI2)での媒体の飽和蒸気圧である。F3は、係数であり、初期には1.1を用いる。この値で頻繁に本装置が停止するようなら、発電装置の効率低下が続く事になるので、継手部分の漏洩を点検を実施する。
この判定は、本発明の混入空気除去装置の空気除去能力の限界を検知するために設けられている。圧力計45の圧力値(PIb)が判断閾値(F3 × Pst)以上である場合は、エラー信号を発信し、本装置を停止させる。圧力計45の圧力値(PIb)が判断閾値(F3 x Pst)未満の場合は、所定時間経過後、弁16を閉じ、ポンプ18と冷却器42を停止し、弁13を閉じる。そして、空気混入検出工程S1の最初に戻る。
【0037】
一方、第2の分岐シーケンスでは、弁13が開いているか判定し、弁13が閉じている場合は、第1の分岐シーケンスが終了していることを意味しているので、第2の分岐シーケンスを停止し、空気混入検出工程S1の最初に戻る。弁13が開いている場合は、第1容器2内の液面が、液面計8の位置(LI1)より高いかどうか判定する。第1容器2内の液面が、液面計8の位置(LI1)以下の場合は、上述の弁13が開いているか判定する部分に戻る。第1容器2内の液面が、液面計8の位置(LI1)より高い場合は、弁12を開く。弁12を開くと、第1容器2に溜まった液状の媒体が、媒体貯留部1に戻る。これは、大気圧と媒体貯留部1内部の圧力とに差があるために、ポンプを用いなくても媒体を移送できる。なお、ポンプを用いて能動的に媒体を移送させてもよい。
【0038】
次に、上述と同じように、弁13が開いているか判定する。弁13が閉じている場合は、第1の分岐シーケンスが終了していることを意味しているので、第2の分岐シーケンスを停止し、空気混入検出工程S1の最初に戻る。弁13が開いている場合は、第1容器2内の液面が、液面計9の位置(LI2)より高いかどうか判定する。第1容器2内の液面が、液面計9の位置(LI2)以下の場合は、直前の弁13が開いているか判定する部分に戻る。第1容器2内の液面が、液面計9の位置(LI2)より高い場合は、弁12を閉じる。そして、第2の分岐シーケンスの最初に戻る。
【0039】
ここで、空気と媒体の混合ガスが冷やされることで混合ガス中の媒体量を減らすことができる理由を説明する。空気に飽和するn−ペンタンの量Fstは、下記の式2で表わすことができる。
Fst=Fa×(Pst/(Pc−Pst)) ・・・・・・・・・・・・・(式2)
Fst:温度tで空気に飽和するn−ペンタンの標準状態量(Nm
Fa:空気の標準状態量(Nm
Pst:温度tでのn−ペンタンの飽和蒸気圧(kPa)
Pc:運転圧力(kPa)
この式2から、空気中に飽和するn−ペンタンの容積比率に関して、101kPaにおいて温度をパラメーターとして計算した結果を図4に示す。ここでいう容積比率とは、空気1に対して飽和するn−ペンタンの容積が空気の何倍かを表す値である。図4から解るように、温度が低い程、空気に飽和するペンタンが少ない事がわかる。
【符号の説明】
【0040】
1:媒体貯留部
2:第1容器
4:燃焼器(燃焼触媒充填)
5:制御部
6:流量計
7:第1容器の圧力計
8:第1容器の液面計(高液面)
9:第1容器の液面計(低液面)
10,15:温度計
11,45:圧力計
12,13,14,16,17:弁
18:ポンプ
19:空気供給部
24:媒体タンク
41:エダクター
42:冷却器
S1:空気混入検出工程
S2:空気除去工程
100:蒸発器
101:タービン
102:発電機
103:凝縮器
104:循環ポンプ
105:予熱器

【特許請求の範囲】
【請求項1】
水よりも沸点が低い媒体と空気との混合ガスから空気を除去する混入空気除去装置において、
媒体を冷却する冷却器と、
冷却された液状の前記媒体を駆動媒体とし前記混合ガスの流路から前記混合ガスを吸引するエダクターと、
前記エダクターに液状媒体を供給するポンプと、
前記エダクターの吐出部と接続され、大気と連通する配管を備えた前記第1容器と、
前記第1容器の下部と前記混合ガスの流路とを接続する配管に設けられた第1弁と、
前記混合ガスの流路の気相部の圧力を測定する圧力計と、
前記混合ガスの流路の温度を測定する温度計と、
前記温度計の温度と前記圧力計の圧力値に基づいて算出した前記媒体の飽和蒸気圧値と余裕値とを合計した圧力閾値を算出し、前記圧力閾値より前記圧力計の圧力値が大きい場合に、前記媒体に空気が混入していることを検知し、前記冷却器と前記ポンプを作動させて前記エダクターにより前記混合ガスの流路から前記混合ガスを取り出して前記第1容器に移送し、前記第1容器で気液分離された液状の媒体を、前記第1弁を介して前記混合ガスの流路に戻す制御を行う制御部を備えていることを特徴とする混入空気除去装置。
【請求項2】
前記第1容器の液面を検出する液面計を備えることを特徴とする請求項1に記載の混入空気除去装置。
【請求項3】
請求項1または2に記載の混入空気除去装置において、
前記混合ガスに空気を供給する空気供給部と、
前記空気供給部から供給する空気量を調節する第2弁と、
前記第1容器から供給される混合ガスの流量を調整する第3弁と、
前記第2弁と前記第3弁にそれぞれ接続され、前記第1容器から排出された前記媒体を燃焼する燃焼器を備え、
前記制御部は、前記第2弁と、前記第3弁とを制御して、前記燃焼器で前記媒体を燃焼することを特徴とする混入空気除去装置。
【請求項4】
請求項1ないし3のいずれか一項に記載の混入空気除去装置を備えた発電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate