説明

磁気ディスク用ガラス基板の製造方法

【課題】良好な表面凹凸の精度と耐衝撃性を備えた磁気ディスク用ガラス基板を、効率よく製造する方法を提供すること。
【解決手段】溶融ガラスの塊を、互いに対向し、かつ、略同じ温度に設定された一対の型の面を用いて挟み込みプレス成形することにより、板状ガラス素材を成形する工程と、板状ガラス素材の主表面に研磨パッドを押圧させ、板状ガラス素材と研磨パッドとの間に研磨材を含む研磨液を供給しながら、板状ガラス素材と研磨パッドとを相対的に移動させて、板状ガラス素材の主表面を研磨する研磨工程と、を有することを特徴とする磁気ディスク用ガラス基板の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一対の主表面を有する磁気ディスク用ガラス基板の製造方法に関する。
【背景技術】
【0002】
今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられる。
【0003】
また、ハードディスク装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。例えば、磁性層における磁化方向を基板の面に対して垂直方向にする垂直磁気記録方式を用いて、磁気記録情報エリアの微細化が行われている。これにより、1枚のディスク基板における記憶容量を増大させることができる。しかも、記憶容量の一層の増大化のために、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することも行われている。このような磁気ディスクの基板においては、磁性層の磁化方向が基板面に対して略垂直方向に向くように、磁性層が平らに形成される。このために、ガラス基板の表面凹凸は可能な限り小さく作製されている。
また、磁気ヘッドの浮上距離が短いことによりヘッドクラッシュ障害やサーマルアスペリティ障害を引き起こし易い。これらの障害は磁気ディスク面上の微小な凹凸あるいはパーティクルによって発生するため、ガラス基板の主表面の他にガラス基板の端面の表面凹凸も可能な限り小さく作製されている。
【0004】
ところで、磁気ディスクに用いるガラス基板の元となる板状ガラス素材の成形方法としては、プレス成形法とフロート法が知られている。
【0005】
例えば以下の特許文献1で提案されたガラス製品の製造方法には、磁気ディスクに用いる板状ガラス基板の元となるガラス素材の成形方法として、プレス成形法が開示されている。開示されているプレス成形法では、受けゴブ形成型である下型上に、溶融ガラスからなるガラスゴブが供給され、下型と対向ゴブ形成型である上型を使用してガラスゴブがプレス成形される。より具体的には、下型上に溶融ガラスからなるガラスゴブを供給した後に上型用胴型の下面と下型用胴型の上面を当接させ、上型と上型用胴型との摺動面および下型と下型用胴型との摺動面を超えて外側に肉薄板状ガラス成形空間を形成し、さらに上型を下降してプレス成形を行い、プレス成形直後に上型を上昇する。これにより、磁気ディスク用ガラス基板の元となる板状ガラス素材が成形される。
【0006】
しかし、上述した従来のプレス成形法で成形される板状ガラス素材の表面凹凸は、上述の磁気記録の高密度化および磁気記録情報エリアの微細化のために求められる主表面の表面凹凸の精度に対して十分でない。
例えば、板状ガラス素材を成形する際、ガラス材が上型および下型の型表面に融着するのを防止するために型表面に離型剤を塗布するが、この離型剤を用いるために主表面の表面粗さは大きい。また、上型および下型の表面温度差が大きく、ガラスコブ(溶融ガラスの塊)が供給される下型は高温となる。この表面温度差は、成形された板状ガラス素材の厚さ方向およびこの板の面内で温度分布をつくるため、型から取り出されて冷却された板状ガラス素材の収縮量も板状ガラス素材の厚さ方向およびこの板の面内で分布を持つ。このため、板状ガラス素材は反り易く、その結果、成形されたときの板状ガラス素材の平坦度は低い。
【0007】
よって、上述した従来のプレス成形法で得られる板状ガラス素材は、その平坦度を磁気ディスク用ガラス基板として要求される平坦度まで向上させる必要がある。そのため、プレス成形の後、板状ガラス素材に対して研削工程が行われ、これによりガラス素材の平坦度を向上させていた。しかしながら、研削工程を行うことは磁気ディスク用ガラス基板の製造上追加の工程となるばかりではなく、以下で述べる「だれの問題」が生ずる。
すなわち、従来のプレス成形法は平坦度がそれほど良好でないために研削工程における取り代(削り量)が大きくなる。例えば、その取り代は200μm程度である。研削工程における取り代を大きくすると、板状ガラス素材の表面に深いクラックが入る。そのため、研削工程に続く研磨工程では、この深いクラックが残留しないように取り代(研磨量)は必然的に大きくなる。ここで、遊離砥粒および樹脂ポリッシャを用いる研磨工程において取り代を大きくすると、板状ガラス素材の主表面の外周エッジ部近傍が丸く削られて、エッジ部の「だれの問題」が発生する。この「だれ」はロールオフともいう。すなわち、板状ガラス素材の外周エッジ部近傍が丸く削られるため、この板状ガラス素材をガラス基板として用いて磁気ディスクを作製したとき、外周エッジ部近傍の磁性層と磁気ヘッドとの間の距離が、ガラス基板の別の部分における磁気ヘッドの浮上距離より大きくなる。また、外周エッジ部近傍が丸みを持った形状となるため、表面凹凸が発生する。この結果、外周エッジ部近傍の磁性層において磁気ヘッドの記録及び読み出しの動作が正確でなくなる。すなわち、記録及び読み出し可能領域が減少する。以上が「だれの問題」である。
また、研磨工程における取り代が大きくなるため、研磨工程は長時間を要する等により実用上好ましくない。
【0008】
要するに、従来のプレス成形法は、十分な平坦度の板状ガラス素材が得られないため、主として、後工程において比較的長時間を要する研削工程が必要となる点と、研削工程により上述した「だれの問題」が生ずる点とにより好ましくない。
【0009】
それに対して、フロート法は、錫などの溶融金属の満たされた浴槽内に、溶融ガラスを連続的に流し入れることで板状ガラス素材を得る方法である。溶融ガラスは厳密な温度操作が施された浴槽内で進行方向に沿って流れ、最終的に所望の厚さ、幅に調整された帯状のガラスリボンが形成される。このガラスリボンから、磁気ディスクに用いるガラス基板の元となる板状ガラス素材が切り出される。浴槽内の溶融錫の表面は水平であるために、フロート法により得られる板状ガラス素材は、その表面の平坦度が十分に高いものとなる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特許第3709033号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
ところで、磁気ディスクに用いるガラス基板には所定の耐衝撃性が要求される。そのために、当該ガラス基板の耐衝撃性を向上させる目的で、その元となる板状ガラス素材に対して化学強化工程が行われる場合がある。
この化学強化工程は、以下のとおり行われる。先ず、化学強化液として例えば硝酸カリウムと硫酸ナトリウムの混合液を用いる。この化学強化液を、例えば300℃〜400℃に加熱する。そして、洗浄した板状ガラス素材を、例えば200℃〜300℃に予熱した後、化学強化液中に例えば3時間〜4時間浸漬させる。これにより、ガラス素材の表層をナトリウムイオン、カリウムイオンによってイオン置換させ、圧縮応力層を形成させる。これにより、ガラス素材の表面に生じうるクラックがガラス素材内部にまで進行し難くなる。化学強化工程で形成される圧縮応力層の厚さは、約50〜200μmである。
【0012】
しかしながら、フロート法で得られた、平坦度が極めて高い板状ガラス素材に対して化学強化工程を施すと、板状ガラス素材に反りが生ずるという問題がある。すなわち、フロート法で得られた板状ガラス素材には、その一方の面に必然的に、溶融金属として用いた錫による10〜50μm程度の厚さの錫拡散層が形成され、他方の面には錫拡散層が形成されない。この板状ガラス素材に対して化学強化工程を施すと、錫拡散層の有無によって一方の面と他方の面で形成される圧縮応力層が異なることで反りが生じ、平坦度が低下する。それゆえ、化学強化を施すという前提の下では、フロート法で得られた板状ガラス素材の錫拡散層が生成された面に対して、錫拡散層を除去するための研削工程が必要となる。
【0013】
以上まとめると、従来のプレス成形法によれば、十分な平坦度の板状ガラス素材が得られないために研削工程を必要とし、フロート法によれば、十分な平坦度の板状ガラス素材が得られるものの素材表面の錫拡散層を除去するために研削工程を必要とする。
そこで、本発明は、良好な表面凹凸の精度と耐衝撃性を備えた磁気ディスク用ガラス基板を、効率よく製造する方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明の磁気ディスク用ガラス基板の製造方法は、溶融ガラスの塊を、互いに対向し、かつ、略同じ温度に設定された一対の型の面を用いて挟み込みプレス成形することにより、板状ガラス素材を成形する工程と、前記板状ガラス素材の主表面に研磨パッドを押圧させ、前記板状ガラス素材と研磨パッドとの間に研磨材を含む研磨液を供給しながら、前記板状ガラス素材と前記研磨パッドとを相対的に移動させて、前記板状ガラス素材の主表面を研磨する研磨工程と、を有する。
【0015】
また、上記板状ガラス素材を成形する工程は、前記一対の型の面で前記塊を略同じタイミングで接触させて挟み込みプレス成形するとともに、一対の型の面で前記塊を挟み込みプレス成形した直後に一対の型を開放することが好ましい。
【0016】
また、上記板状ガラス素材は、主表面が磁気ディスク用ガラス基板における目標平坦度を有していることが好ましい。
【0017】
研削工程を行うことなく、磁気ディスク用ガラス基板を製造することが好ましい。
【0018】
主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板としての目標平坦度の平坦度を有し、磁気ディスク用ガラス基板としての目標板厚に対して研磨量の分だけ厚い板厚を有する板状ガラス素材が成形される。プレス成形工程で得られる板状ガラス素材の表面凹凸の精度が良好であるために、この板状ガラス素材に対する表面処理工程は研磨工程で済み、この研磨工程よりも主表面に対する取り代が大きい研削工程が行われない。また、化学強化工程で形成される圧縮応力層により良好な耐衝撃性が得られる。それゆえ、良好な表面凹凸の精度と耐衝撃性を備えた磁気ディスク用ガラス基板を効率よく製造することができる。
【0019】
前記プレス成形工程は、溶融ガラスの塊を落下させる工程と、前記塊の落下経路の両側から、互いに対向し、かつ、略同じ温度に設定された一対の型の面で前記塊を挟み込みプレス成形することにより、前記板状ガラス素材を成形する工程と、を有することが好ましい。前記プレス成形により、主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板として必要な平坦度を有し、磁気ディスク用ガラス基板としての目標板厚の板厚である板状ガラス素材を作製することができる。
【発明の効果】
【0020】
上述の磁気ディスク用ガラス基板の製造方法では、良好な表面凹凸の精度と耐衝撃性を備えた磁気ディスク用ガラス基板を、効率よく製造することができる。
【図面の簡単な説明】
【0021】
【図1】一実施形態である磁気ディスク用ガラス基板を用いて作製される磁気ディスクを説明する図。
【図2】板状ガラス素材あるいはガラス基板における表面凹凸を説明する図。
【図3】磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図。
【図4】図3に示すプレス成形において用いる装置の平面図。
【図5】図4に示す装置が行うプレス成形の一例を説明する図。
【図6】図4に示す装置が行うプレス成形の他の例を説明する図。
【図7】図4に示す装置が行うプレス成形の、更に他の例を説明する図。
【図8】図4に示す装置が行うプレス成形の、更に他の例を説明する図。
【図9】図3に示す第1研磨及び第2研磨で使用される両面研磨装置を説明する図。
【発明を実施するための形態】
【0022】
以下、本発明の磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板について詳細に説明する。
図1(a)〜(c)は、本発明の磁気ディスク用ガラス基板を用いて作製される磁気ディスクを説明する図である。
【0023】
(磁気ディスクおよび磁気ディスク用ガラス基板)
図1(a)に示す、ハードディスク装置に用いる磁気ディスク1は、リング状のガラス基板2の主表面に、図1(b)に示すように少なくとも磁性層(垂直磁気記録層)3A,3B等の層が形成されている。より具体的には、例えば、図示されない付着層、軟磁性層、非磁性下地層、垂直磁気記録層、保護層および潤滑層が順次積層されている。付着層には、例えばCr合金等が用いられ、ガラス基板2との接着層として機能する。軟磁性層には、例えばCoTaZr合金等が用いられ、非磁性下地層には、例えばグラニュラー非磁性層等が用いられ、垂直磁気記録層には、例えばグラニュラー磁性層等が用いられる。また、保護層には、水素カーボンからなる材料が用いられ、潤滑層には、例えばフッ素系樹脂等が用いられる。
【0024】
上記層3A,3Bについて、より具体的な例で説明すると、ガラス基板2に対して、インライン型スパッタリング装置を用いて、ガラス基板2の両主表面に、CrTiの付着層、CoTaZr/Ru/CoTaZrの軟磁性層、CoCrSiO2の非磁性グラニュラー下地層、CoCrPt−SiO2・TiO2のグラニュラー磁性層、水素化カーボン保護膜が順次成膜される。さらに、成膜された最上層にディップ法によりパーフルオロポリエーテル潤滑層が成膜されて磁性層3A,3Bが形成される。
【0025】
磁気ディスク1は、図1(c)に示すように、ハードディスク装置の磁気ヘッド4A,4Bのそれぞれが、磁気ディスク1の高速回転、例えば7200rpmの回転に伴って磁気ディスク1の表面から約5nm浮上する。すなわち、図1(c)中の距離Hが約5nmである。この状態で、磁気ヘッド4A,4Bは、磁性層に情報を記録し、あるいは読み出しを行う。この磁気ヘッド4A,4Bの浮上によって、磁気ディスク1に対して摺動することなく、しかも近距離で磁性層に対して記録あるいは読み出しを行うので、磁気記録情報エリアの微細化と磁気記録の高密度化を実現する。
このとき、磁気ディスク1のガラス基板2の中央部から外周エッジ部5まで、目標とする表面凹凸精度で正確に表面処理され、距離H=約5nmを保った状態で磁気ヘッド4A,4Bを正確に動作させることができる。
このようなガラス基板2の表面凹凸の表面処理工程は、後述するように、比較的取り代の大きい研削工程を含まず、比較的取り代の小さい第1研磨および第2研磨のみからなる。
【0026】
このような磁気ディスク1に用いるガラス基板2の主表面の表面凹凸は、平坦度が4μm以下であり、表面の粗さが0.2nm以下である。平坦度は、例えば、Nidek社製フラットネステスターFT−900を用いて測定することができる。また、主表面の粗さはJIS B0601:2001により規定され算術平均粗さRaで表され、0.006μm以上200μm以下の場合は、例えば、ミツトヨ社製粗さ測定機SV−3100で測定し、JIS B0633:2001で規定される方法で算出できる。その結果粗さが0.03μm以下であった場合は、例えば、エスアイアイナノテクノロジーズ社製走査型プローブ顕微鏡(原子間力顕微鏡)で計測しJIS R1683:2007で規定される方法で算出できる。
本発明においては、研磨工程前の板状ガラス素材については上記粗さ測定機、研磨後のガラス基板については上記走査型プローブ顕微鏡(原子間力顕微鏡)にて測定した。
【0027】
図2(a)〜(d)は、表面凹凸を説明する図である。表面凹凸は、凹凸の波長に応じて概略4つの凹凸によって定めることができる。
具体的には、表面凹凸は、最も波長が大きなうねり(波長0.6μm〜130mm程度)、ウェービネス(波長0.2μm〜1mm程度)、マイクロウェービネス(波長0.1μm〜1mm)、粗さ(波長10nm以下)に分けられる。
この中で、うねりは上記平坦度を指標として表すことができ、粗さは上記Raを指標として表すことができる。
【0028】
本実施形態の製造方法において、プレス成形後に得られる板状ガラス素材は、主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板の目標平坦度の平坦度を有する。プレス成形で作製される板状ガラス素材は、磁気ディスク用ガラス基板としての目標板厚に対して、研磨工程による研磨量の分だけ厚い板厚を有する。すなわち、プレス成形後の板状ガラス素材の板厚は、最終製品の磁気ディスク用ガラス基板の目標板厚に、研磨工程による微量の取り代を加えた板厚となっている。そして、プレス成形後の板状ガラス素材に対して、平坦度及び板厚を調整する研削工程を行うことなく磁気ディスク用ガラス基板が作製される。「磁気ディスク用ガラス基板の目標平坦度の平坦度」とは、例えば、4μm以下である。板状ガラス素材の表面の平坦度を4μm以下とするのは、磁気ディスク1に用いるガラス基板2の平坦度を維持するためであり、磁気ヘッド4A,4Bによる適切な記録と読み取りの動作を可能にするためである。主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板の目標平坦度の平坦度を有し、磁気ディスク用ガラス基板としての目標板厚に対して主表面研磨による研磨量の分だけ厚い板厚を有する板状ガラス素材は、一例を挙げると、後述するプレス成形により作製することができる。なお、従来のプレス成形では、主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板の目標平坦度の平坦度を有し、磁気ディスク用ガラス基板としての目標板厚に対して主表面研磨による研磨量の分だけ厚い板厚を有する板状ガラス素材を成形することはできない。
本実施形態の製造方法によれば、後述するプレス成形後、第1研磨工程および第2研磨工程を経て、平坦度が4μm以下であり、表面の粗さが0.2nm以下の磁気ディスク用ガラス基板を得ることができる。
【0029】
ここで、プレス成形後の板状ガラス素材の表面の粗さを0.01μm以下とするのは、後述する2回の研磨工程により取り代を多くすることなく表面粗さを0.2nmに調整するためである。また、表面粗さが0.01μm以下であれば、板状ガラス素材に対して効率良くスクライブを行うことができる。
このような板状ガラス素材Gの表面凹凸は、プレス成形における型の表面の粗さを調整することにより達成することができる。
【0030】
磁気ディスク1に用いるガラス基板2の材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平坦度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。
アルミノシリケートガラスとして、モル%表示で、SiO2を57〜74%、ZnO2を0〜2.8%、Al23を3〜15%、Li2Oを7〜16%、Na2Oを4〜14%、を主成分として含有する、化学強化用ガラス材を用いることが好ましい。
【0031】
(磁気ディスク用ガラス基板の製造方法)
図3は、磁気ディスク用ガラス基板の製造方法の一実施形態のフローを示す図である。このフローにおいて、ステップS50の第1研磨工程とステップS70の第2研磨工程は、板状ガラス素材の主表面を鏡面加工する表面処理工程を構成する。
まず、板状ガラス素材をプレス成形により作製する(ステップS10)。作製される板状ガラス素材は、主表面の粗さが0.01μm以下であり、かつ、磁気ディスク用ガラス基板の目標平坦度の平坦度を有し、磁気ディスク用ガラス基板としての目標板厚に対して主表面研磨による研磨量の分だけ厚い板厚を有するガラス素材である。
このようなプレス成形は、例えば図4及び図5に示す装置を用いて行われる。また、このプレス成形は、図6、図7、あるいは図8に示す装置を用いて行うこともできる。図4はプレス成形をする装置101の平面図であり、図5〜8は、装置がプレス成形をする様子を側面から見た図である。
【0032】
(a)プレス成形工程
図4に示す装置101は、4組のプレスユニット120,130,140及び150と、切断ユニット160を有する。切断ユニット160は、溶融ガラス流出口111から流出する溶融ガラスの経路上に設けられる。装置101は、切断ユニット160によって切断されてできる溶融ガラスの塊を落下させ、そのとき、塊の落下経路の両側から、互いに対向し、かつ、略同じ温度に設定された一対の型の面で塊を挟み込みプレスすることにより、板状ガラス素材を成形する。
具体的には、図4に示されるように、装置101は、溶融ガラス流出口111を中心として、4組のプレスユニット120,130,140及び150が90度おきに設けられている。
ここで、「略同じ温度」とは、一対の型を構成する第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度との温度差の絶対値が10℃以内であることを意味する。この温度差の絶対値は、5℃以内がより好ましく、0℃が最も好ましい。ここで、プレス成形面内において、温度分布が存在する場合、「プレス成形面の温度」とは、プレス成形面の中心部近傍の温度を意味する。
また、前記一対の型の面で前記塊を略同じタイミングで接触させて挟み込み、プレス成形することが好ましい。ここで、「略同じタイミングで接触させ」とは、溶融ガラス塊と一方のプレス成形面とが接触した時点と、溶融ガラス塊と他方のプレス成形面とが接触した時点と、の時間差の絶対値が0.1秒以内であることを意味する。この時間差の絶対値は、0.05秒以内がより好ましく、0秒が最も好ましい。
【0033】
プレスユニット120,130,140及び150の各々は、図示しない移動機構によって駆動されて、溶融ガラス流出口111に対して進退可能となっている。すなわち、溶融ガラス流出口111の真下に位置するキャッチ位置(図4においてプレスユニット140が実線で描画されている位置)と、溶融ガラス流出口111から離れた退避位置(図4において、プレスユニット120,130及び150が実線で描画されている位置及び、プレスユニット140が破線で描画されている位置)との間で移動可能となっている。
【0034】
切断ユニット160は、キャッチ位置と溶融ガラス流出口111との間の溶融ガラスの経路上に設けられ、溶融ガラス流出口111から流出される溶融ガラスを適量に切り出して溶融ガラスの塊(以降、ゴブともいう)を形成する。切断ユニット160は、一対の切断刃161及び162を有する。切断刃161及び162は、一定のタイミングで溶融ガラスの経路上で交差するよう駆動され、切断刃161及び162が交差したとき、溶融ガラスが切り出されてゴブが得られる。得られたゴブは、キャッチ位置に向かって落下する。
【0035】
プレスユニット120は、第1の型121、第2の型122、第1駆動部123及び第2駆動部124を有する。第1の型121と第2の型122の各々は、ゴブをプレス成形するための面を有するプレート状の部材である。この2つの面の法線方向が略水平方向となり、この2つの面が互いに平行に対向するよう配置されている。第1駆動部123は、第1の型121を第2の型122に対して進退させる。一方、第2駆動部124は、第2の型122を第1の型121に対して進退させる。第1駆動部123及び第2駆動部124は、例えばエアシリンダやソレノイドとコイルばねを組み合わせた機構など、第1駆動部123の面と第2駆動部124の面とを急速に近接させる機構を有する。
なお、プレスユニット130,140及び150の構造は、プレスユニット120と同様であるため、説明は省略する。
【0036】
プレスユニットの各々は、キャッチ位置に移動した後、第1駆動部と第2駆動部の駆動により、落下するゴブを第1の型と第2の型の問で挟み込んで所定の厚さに成形すると共に急速冷却し、円形状の板状ガラス素材Gを作製する。つぎに、プレスユニットは退避位置に移動した後、第1の型と第2の型を引き離し、成形された板状ガラス素材Gを落下させる。プレスユニット120,130,140及び150の退避位置の下には、第1コンベア171、第2コンベア172、第3コンベア173及び第4コンベア174が設けられている。第1〜第4コンベア171〜174の各々は、対応する各プレスユニットから落下する板状ガラス素材Gを受け止めて図示しない次工程の装置に板状ガラス素材Gを搬送する。
【0037】
装置101では、プレスユニット120,130,140及び150が、順番にキャッチ位置に移動して、ゴブを挟み込んで退避位置に移動するよう構成されているため、各プレスユニットでの板状ガラス素材Gの冷却を待たずに、連続的に板状ガラス素材Gの成形を行うことができる。
【0038】
図5(a)〜(c)は、装置101を用いたプレス成形をより具体的に説明している。図5(a)は、ゴブを作る以前の状態を示す図であり、図5(b)は、切断ユニット160によってゴブが作られた状態を示す図であり、図5(c)は、ゴブをプレスすることにより板状ガラス素材Gが成形された状態を示す図である。
【0039】
図5(a)に示されるように、溶融ガラス流出口111から、溶融ガラス材料LGが連続的に流出される。このとき、所定のタイミングで切断ユニット160を駆動し、切断刃161及び162によって溶融ガラス材料LGを切断する(図5(b))。これにより、切断された溶融ガラスは、その表面張力によって、概略球状のゴブGGとなる。図示される例では、一回切断ユニット160を駆動する度に、例えば半径10mm程度のゴブGG が形成されるように、溶融ガラス材料LGの時間当たりの流出量及び切断ユニット160の駆動間隔が調整される。
【0040】
作られたゴブGG は、プレスユニット120の第1の型121と第2の型122の隙間に向かって落下する。このとき、ゴブGG が第1の型121と第2の型122の隙間に入るタイミングで、第1の型121と第2の型122が互いに近づくように、第1駆動部123及び第2駆動部124(図4参照)が駆動される。これにより、図5(c)に示されるように、第1の型121と第2の型122の間にゴブGG が捕獲(キャッチ)される。さらに、第1の型121の内周面121aと第2の型122の内周面122aとが、微小な間隔にて近接した状態になり、第1の型121の内周面121aと第2の型122の内周面122aの間に挟み込まれたゴブGG が、薄板状に成形される。なお、第1の型121の内周面121aと第2の型122の内周面122aの間隔を一定に維持するために、第2の型122の内周面122aには、突起状のスペーサ122bが設けられる。すなわち、第2の型のスペーサ122bが第1の型121の内周面121aに当接することによって、第1の型121の内周面121aと第2の型122の内周面122aの間隔は一定に維持されて、板状の空間が作られる。なお、第1の型121の内周面121aと第2の型122の内周面122aの間隔は、磁気ディスク用ガラス基板としての目標板厚に対して主表面研磨による研磨量の分だけ厚い板厚を有する板状ガラス素材が作製できるように調整されている。
【0041】
第1の型121及び第2の型122には、図示しない温度調節機構が設けられており、第1の型121及び第2の型122の温度は、溶融ガラスLGのガラス転移温度TGよりも十分に低い温度に保持されている。
装置101では、ゴブGG が第1の型121の内周面121a又は第2の型122の内周面122aに接触してから、第1の型121と第2の型122とがゴブGGを完全に閉じ込める状態になるまでの時間は約0.06秒と極めて短い。このため、ゴブGG は極めて短時間の内に第1の型121の内周面121a及び第2の型122の内周面122aに沿って広がって略円形状に成形され、さらに、急激に冷却されて非晶質のガラスとして固化する。これによって、板状ガラス素材Gが作製される。なお、本実施形態において成形される板状ガラス素材Gは、例えば、直径75〜80mm、厚さ約1mmの円形状の板である。
【0042】
第1の型121と第2の型122が閉じられた後、プレスユニット120は速やかに退避位置に移動し、代わりに、他のプレスユニット130がキャッチ位置に移動し、このプレスユニット130によって、ゴブGG のプレスが行われる。
【0043】
プレスユニット120が退避位置に移動した後、板状ガラス素材Gが十分に冷却されるまで(少なくとも屈服点よりも低い温度となるまで)、第1の型121と第2の型122は閉じた状態を維特する。この後、第1駆動部123及び第2駆動部124が駆動されて第1の型121と第2の型122が離間し、板状ガラス素材Gは、プレスユニット120を離れて落下し、下部にあるコンベア171に受け止められる(図4参照)。
【0044】
装置101では、上記のように、0.1秒以内(約0.06秒)という極めて短時間の問に第1の型121と第2の型122が閉じられ、第1の型121の内周面121aと第2の型122の内周面122aの全体に、略同時に溶融ガラスが接触することになる。このため、第1の型121の内周面121aと第2の型122の内周面122aが局所的に加熱されることは無く、内周面121aと内周面122aに歪みは殆ど生じない。また、溶融ガラスから第1の型121及び第2の型122に熱が移動する前に、溶融ガラスが円形状に成形されるため、成形される溶融ガラスの温度分布は略一様なものとなる。このため、溶融ガラスの冷却時、ガラス材料の収縮量の分布は小さく、板状ガラス素材Gの歪みが大きく発生することはない。したがって、作製された板状ガラス素材Gの主表面の平坦度は、従来のプレス成形により作製される板状ガラス素材に比べて向上し、4μm以下にすることができる。
【0045】
また、内周面121a及び内周面122aの表面の粗さは、板状ガラス素材Gの算術平均粗さRaが0.01μm以下となるように調整される。
【0046】
なお、図5に示す例では、切断刃161及び162を用いて、流出する溶融ガラスLGを切断することによって略球状のゴブGGが形成される。しかしながら、溶融ガラス材料LG の粘度が、切り出そうとするゴブGGの体積に対して小さい場合は、溶融ガラスLGを切断するのみでは切断されたガラスが略球状とはならず、ゴブが作れない。このような場合は、ゴブを作るためのゴブ形成型を用いる。
【0047】
図6(a)〜(c)は、図5に示す実施形態の変形例を説明する図である。この変形例ではゴブ形成型を用いる。図6(a)は、ゴブを作る前の状態を示す図であり、図6(b)は、切断ユニット160及びゴブ形成型180によってゴブGGが作られた状態を示す図であり、図6(c)は、ゴブGGをプレス成形して板状ガラス素材Gが作られた状態を示す図である。
図6(a)に示すように、プレスユニット120は、ブロック181,182を溶融ガラスLGの経路上で閉じることにより溶融ガラスLGの経路が塞がれ、ブロック181,182で作られる凹部180Cで、切断ユニット160で切断された溶融ガラスLGの塊が受け止められる。この後、図6(b)に示すように、ブロック181,182が開かれることにより、凹部180Cにおいて球状となった溶融ガラスLGが一度にプレスユニット120に向けて落下する。この落下時、ゴブGGは、溶融ガラスLGの表面張力により球状になる。球状のゴブGGは、落下途中、図6(c)に示すように、第1の型121と第2の型122とに挟まれてプレス成形されることにより、円形状の板状ガラス素材Gが作製される。
【0048】
あるいは、図7(a)〜(d)に示すように、装置101は、図6(a)〜(c)に示す切断ユニット160を用いず、ゴブ形成型180を、溶融ガラスLGの経路に沿って上流側方向あるいは下流側方向に移動させる移動機構を用いてもよい。図7(a)〜(d)は、ゴブ形成型180を使用する変形例を説明する図である。図7(a),(b)は、ゴブGGが作られる前の状態を示す図であり、図7(c)は、ゴブ形成型180によってゴブGGが作られた状態を示す図であり、図7(d)は、ゴブGGをプレス成形して板状ガラス素材Gが作られた状態を示す図である。
図7(a)に示すように、ブロック181,182によって作られる凹部180Cが溶融ガラス流出口111から流出する溶融ガラスLGを受け止め、図7(b)に示すように、所定のタイミングでブロック181,182を溶融ガラスLGの流れの下流側に素早く移動させる。これにより、溶融ガラスLGが切断される。この後、所定のタイミングで、図7(c)に示すように、ブロック181,182が離間する。これにより、ブロック181,182で保持されている溶融ガラスLGは一度に落下し、ゴブGGは、溶融ガラスLGの表面張力により球状になる。球状のゴブGGは、落下途中、図7(d)に示すように、第1の型121と第2の型122とに挟まれてプレス成形されることにより、円形状の板状ガラス素材Gが作製される。
【0049】
図8(a)〜(c)は、ゴブGGとの代わりに図示されない軟化炉で加熱した光学ガラスの塊CPを落下させ、落下途中の両側から型221,222で挟んでプレス成形する変形例を説明する図である。図8(a)は、加熱した光学ガラスの塊を成形する前の状態を示す図であり、図8(b)は、光学ガラスの塊を落下する状態を示す図であり、図8(c)は、光学ガラスの塊をプレス成形して板状ガラス素材Gが作られた状態を示す図である。
図8(a)に示すように、装置201は、光学ガラスの塊CPをガラス材把持機構212でプレスユニット220の上部の位置に搬送し、この位置で、図8(b)に示すように、ガラス材把持機構212による光学ガラスの塊CPの把持を開放して、光学ガラスの塊CPを落下させる。光学ガラスの塊CPは、落下途中、図8(c)に示すように、第1の型221と第2の型222とに挟まれて円形状の板状ガラス素材Gが成形される。第1の型221及び第2の型222は、図5に示す第1の型121及び第2の型122と同じ構成及び作用をするので、その説明は省略する。
【0050】
(b)スクライブ工程
以上のプレス成形の後、図3に示すように、成形された板状ガラス素材Gに対してスクライブが行われる(ステップS20)。
ここでスクライブとは、成形された板状ガラス素材Gを所定のサイズのリング形状とするために、板状ガラス素材Gの表面に超鋼合金製あるいはダイヤモンド粒子からなるスクライバにより2つの同心円(内側同心円および外側同心円)状の切断線(線状のキズ)を設けることをいう。2つの同心円の形状にスクライブされた板状ガラス素材Gは、部分的に加熱され、板状ガラス素材Gの熱膨張の差異により、外側同心円の外側部分が除去される。これにより、真円形状の板状ガラス素材となる。
上述したように、上記(a)のプレス工程で製作される板状ガラス素材Gの粗さが0.01μm以下であるため、スクライバを用いて好適に切断線を設けることができる。なお、板状ガラス素材Gの粗さが1μmを越える場合、スクライバが表面凹凸に追従せず、切断線を一様に設けることはできない。
【0051】
(c)形状加工工程(チャンファリング工程)
次に、スクライブされた板状ガラス素材Gの形状加工が行われる(ステップS30)。形状加工は、チャンファリング(外周端部および内周端部の面取り)を含む。チャンファリングでは、リング形状の板状ガラス素材Gの外周端部および内周端部に、ダイヤモンド砥石により面取りが施される。
【0052】
(d)端面研磨工程
次に板状ガラス素材Gの端面研磨が行われる(ステップS40)。
端面研磨では、板状ガラス素材Gの内周側端面及び外周側端面をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、板状ガラス素材Gの端面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
【0053】
(e)第1研磨(主表面研磨)工程
次に、板状ガラス素材Gの主表面に第1研磨が施される(ステップS50)。第1研磨は、主表面に残留したキズ、歪みの除去を目的とする。
第1研磨による取り代は、例えば数μm〜10μm程度である。本実施形態の製造方法では、取り代の大きい研削工程を行わないので、板状ガラス素材Gには、研削工程に起因するキズ、歪み等は生じない。よって、第1研磨工程における取り代は少なくて済む。
【0054】
第1研磨工程、及び後述する第2研磨工程では、図9に示す両面研磨装置3が用いられる。両面研磨装置3は、研磨パッド10を用い、板状ガラス素材Gと研磨パッド10とを相対的に移動させて研磨を行う装置である。
【0055】
図9(a)は両面研磨装置の駆動機構部の説明図であり、図9(b)は上下定盤を有する両面研磨装置の主要部断面図である。図9(a)に示すように、両面研磨装置3はそれぞれ所定の回転比率で回転駆動されるインターナルギア34及び太陽ギア35を有する研磨用キャリア装着部と、この研磨用キャリア装着部を挟んで互いに逆回転駆動される上定盤31及び下定盤32とを有する。上定盤31および下定盤32の板状ガラス素材Gと対向する面には、それぞれ後述する研磨パッド10が貼り付けられている。インターナルギア34および太陽ギア35に噛合するように装着した研磨用キャリア33は遊星歯車運動をして、太陽ギア35の周囲を自転しながら公転する。
【0056】
研磨用キャリア33にはそれぞれ複数の板状ガラス素材Gが保持されている。上定盤31は上下方向に移動可能であって、図9(b)に示すように、板状ガラス素材Gの表裏の主表面に研磨パッド10を加圧する。そして研磨砥粒(研磨材)を含有するスラリー(研磨液)を供給しつつ、研磨用キャリア33の遊星歯車運動と、上定盤31および下定盤32が互いに逆回転することにより、板状ガラス素材Gと研磨パッド10とは相対的に移動して、板状ガラス素材Gの表裏の主表面が研磨される。
なお、第1研磨工程では、研磨パッドとして例えば硬質樹脂ポリッシャ、研磨材としては例えば酸化セリウム砥粒、が用いられる。
【0057】
(f)化学強化工程
次に、第1研磨後の板状ガラス素材Gは化学強化される(ステップS60)。
化学強化液として、例えば硝酸カリウム(60%)と硫酸ナトリウム(40%)の混合液等を用いることができる。化学強化では、化学強化液が、例えば300℃〜400℃に加熱され、洗浄した板状ガラス素材Gが、例えば200℃〜300℃に予熱された後、板状ガラス素材Gが化学強化液中に、例えば3時間〜4時間浸漬される。この浸漬の際には、板状ガラス素材Gの両主表面全体が化学強化されるように、複数の板状ガラス素材Gが端面で保持されるように、ホルダに収納した状態で行うことが好ましい。
このように、板状ガラス素材Gを化学強化液に浸漬することによって、板状ガラス素材Gの表層のリチウムイオン及びナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいナトリウムイオン及びカリウムイオンにそれぞれ置換され、約50〜200μmの厚さの圧縮応力層が形成される。これにより、板状ガラス素材Gが強化されて良好な耐衝撃性が備わるようになる。なお、化学強化処理された板状ガラス素材Gは洗浄される。例えば、硫酸で洗浄された後に、純水、IPA(イソプロピルアルコール)等で洗浄される。
【0058】
(g)第2研磨(最終研磨)工程
次に、化学強化されて十分に洗浄された板状ガラス素材Gに第2研磨が施される(ステップS70)。第2研磨による取り代は、例えば1μm程度である。
第2研磨は、主表面を鏡面状に仕上げることを目的とする。第2研磨工程では、第1研磨工程と同様に、両面研磨装置3(図9参照)を用いて板状ガラス素材Gに対する研磨が行われるが、使用する研磨液(スラリー)に含有される研磨砥粒、および研磨パッド10の組成が異なる。第2研磨工程では、第1研磨工程よりも、使用する研磨砥粒の粒径を小さくし、研磨パッド10の硬さを柔らかくする。例えば、第2研磨工程では、研磨パッドとして例えば軟質発砲樹脂ポリッシャ、研磨材としては例えば、第1研磨工程で用いる酸化セリウム砥粒よりも微細な酸化セリウム砥粒、が用いられる。
【0059】
第2研磨工程で研磨された板状ガラス素材Gは、再度洗浄される。洗浄では、中性洗剤、純水、IPAが用いられる。
第2研磨により、主表面の平坦度が4μm以下であり、主表面の粗さが0.2nm以下の磁気ディスク用ガラス基板2が得られる。
この後、磁気ディスク用ガラス基板2に、図1に示されるように、磁性層等の各層が成膜されて、磁気ディスク1が作製される。
【0060】
以上が、図3に沿ったフローの説明である。
以上説明したように、本実施形態の製造方法によれば、プレス成形工程にて、主表面の平坦度が4μm以下であり、主表面の粗さが0.01μm以下である表面凹凸を有する板状ガラス素材を成形することができる。そのため、平坦度を向上させるための研削工程、取り代が例えば200μm程度となるような取り代の大きい研削工程を、プレス成形後に行う必要がない。また、言うまでもないが、本実施形態の製造方法では、フロート法によって板状ガラス素材を製作していないため主表面に錫拡散層が形成されず、この錫拡散層を除去するための研削工程を行う必要もない。本実施形態の製造方法の第1研磨工程及び第2研磨工程での板状ガラス素材Gの取り代は10μm程度と小さく、圧縮応力層の厚さ(約50〜200μm)よりも少ない量である。よって、従来の「だれの問題」、すなわち、研削工程による取り代が大きく、引いては研磨工程による取り代が大きいことに起因する従来の「だれの問題」が生じない。
また、プレス成形後の化学強化工程で形成される圧縮応力層により良好な耐衝撃性が得られる。言うまでもないが、本実施形態の製造方法では、フロート法によって板状ガラス素材を製作していないため、主表面の一方の面のみに錫拡散層が形成されることに起因する圧縮応力層のアンバランスが生じることがない。
以上から、本実施形態の製造方法によれば、良好な表面凹凸の精度と耐衝撃性を備えた磁気ディスク用ガラス基板を、効率よく製造することができる。
【0061】
なお、図3に示すフローでは、化学強化工程(ステップS60)は、第1研磨工程(ステップS50)と第2研磨工程(ステップS70)との間に行われるが、この順番に限定されない。第1研磨工程(ステップS50)の後に第2研磨工程(ステップS70)が行われる限り、化学強化工程(ステップS60)は、適宜配置することができる。例えば、第1研磨工程→第2研磨工程→化学強化工程(以下、工程順序1)の順でもよい。但し、工程順序1では、化学強化工程により生じうる表面凹凸が除去されないことになるため、図3に示した工程順序が、より好ましい。
【実施例】
【0062】
(実施例、比較例)
以下、実施例及び比較例により、図3に示す方法の有効性を確かめた。
実施例及び比較例では、ガラス材は、アルミノシリケートガラス(SiO2を57〜74%、ZnO2を0〜2.8%、Al23を3〜15%、Li2Oを7〜16%、Na2Oを4〜14%)を用いた。
実施例及び比較例では、作製されたガラス基板の両主表面に、インライン型スパッタリング装置を用いて、CrTiの付着層、CoTaZr/Ru/CoTaZrの軟磁性層、CoCrSiO2の非磁性グラニュラー下地層、CoCrPt−SiO2・TiO2のグラニュラー磁性層、水素化カーボン保護膜を順次成膜した。この後、成膜された最上層にディップ法によりパーフルオロポリエーテル潤滑層を成膜した。これにより、磁気ディスクを得た。
【0063】
・実施例1〜5
図4,5に示すプレス成形の方法により成形された、主表面の平坦度が4μm以下であり、主表面の粗さが0.001μm〜0.010μmの板状ガラス素材を用いて図3に示すステップS20〜ステップS70を行ってガラス基板を作製した。
【0064】
・比較例1〜6
また、図4,5に示すプレス成形の方法により成形された、主表面の平坦度が4μm以下であり、主表面の粗さが0.011μm〜1.334μmである板状ガラス素材を用いて、図3に示すステップS20〜ステップS70を行ってガラス基板を作製した。
【0065】
・比較例7〜8
フロート法により得られた、主表面の平坦度が4μm以下であり、主表面の粗さが0.001〜0.002μmの板状ガラス素材を用いて、図3に示すステップS20〜ステップS70を行ってガラス基板を作製した。
【0066】
・比較例9〜11
従来のプレス法を用いて得られた、主表面の平坦度が4μmを超えるガラス素材に対して、主表面の粗さが0.004〜0.006μmの板状ガラス素材を用いて、図3に示すステップS20〜ステップS70を行ってガラス基板を作製した。
【0067】
実施例および比較例の研磨の条件は以下のように行った。
・第1研磨工程:研磨材として酸化セリウム砥粒(平均粒子サイズ;直径1〜2μm)、研磨パッドとして硬質ウレタンパッド、を使用して研磨した。取り代は約3μmである。
・第2研磨工程:研磨材としてコロイダルシリカ砥粒(平均粒子サイズ;直径0.1μm)、研磨パッドとして軟質ポリウレタンパッド、を使用して研磨した。取り代は約1μmである。
【0068】
実施例および比較例により得られたガラス基板の平坦度及び表面粗さ(加工後の平坦度及び表面粗さ)を測定した。
さらに、実施例および比較例により得られたガラス基板を元に作製された磁気ディスクに対する磁気ヘッドの浮上安定性を評価するため、LUL(ロードアンロード)耐久試験(60万回)を行った。LUL耐久試験とは、HDD(ハードディスク装置)を70℃80%の恒温恒湿槽に入れた状態で、ヘッドを、ランプ→IDストップ→ランプ→IDストップ→・・・というサイクルで動かし、エラーの発生状況や試験後のヘッドの汚れや摩耗等の異常発生を調査する試験のことである。1つの実施例又は比較例に対して10台のHDDを用い、8万回/日×7.5日=60万回のLUL試験の結果、HDD1台でも異常が見られる場合は不合格として評価した。
下記表1は、実施例1〜5、比較例1〜11における主表面の粗さ、成形方法及び平坦度(加工前後)と、LUL耐久試験結果(合格、不合格)を示す。なお、表1の加工後の表面粗さについて、○は0.2nm以下の基準(磁気ディスク用ガラス基板として要求される基準)を満足したことを示し、×は0.2nm以下の基準を満足しなかったことを示す。
【0069】
【表1】

【0070】
表1から、図4,5に示すプレス成形の方法により成形されたガラス素材について、その平坦度が4μm以下であり、かつ表面粗さが0.01μm以下である場合(実施例1〜5)には、第1研磨工程及び第2研磨工程のみで表面粗さが基準(0.2nm以下)に達したことが分かる。この場合、LUL耐久試験も合格であった。
【0071】
一方、表1から、図4,5に示すプレス成形の方法により成形されたガラス素材について、その平坦度が4μm以下であっても表面粗さが0.01μmを超える場合(比較例1〜6)には、第1研磨工程及び第2研磨工程のみでは表面粗さが基準(0.2nm以下)には達しなかったことが分かる。この場合、LUL耐久試験も不合格であった。
表1から、フロート法により成形されたガラス素材(比較例7〜8)は表面粗さ・平坦度が良好であるが、化学強化工程によって錫拡散層のある面と無い面においてイオン交換に差が生じるため表面の応力差から反りが生じ、第1研磨工程及び第2研磨工程のみでは、反りによって悪化した平坦度が改善されなかったことが分かる。この場合、LUL耐久試験も不合格であった。
表1から、従来のプレス法により成形されたガラス素材について、その表面粗さが0.01μm以下であっても平坦度が4μmを超える場合(比較例9〜11)には、第1研磨工程及び第2研磨工程のみでは平坦度が基準(4μm以下)には達しなかったことが分かる。この場合、LUL耐久試験も不合格であった。
【0072】
以上の実施例及び比較例で示したように、本実施形態で参照したプレス成形の方法により成形されたガラス素材について、その平坦度が4μm以下であり、かつ表面粗さが0.01μm以下である場合には、取り代が大きい研削工程を経ることなく、第1研磨工程及び第2研磨工程のみで、磁気ディスク用ガラス基板として要求される表面粗さ、平坦度の基準を満足した。
【0073】
以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
【符号の説明】
【0074】
1 磁気ディスク
2 ガラス基板
3A,3B 磁性層
4A,4B 磁気ヘッド
5 外周エッジ部
10 研磨パッド
31 上定盤
32 下定盤
33 研磨用キャリア
34 インターナルギア
35 太陽ギア
101,201,400 装置
111 溶融ガラス流出口
120、130、140,150,220 プレスユニット
121,221 第1の型
121a、122a 内周面
122,222 第2の型
122b スペーサ
123 第1駆動部
124 第2駆動部
160 切断ユニット
161,162 切断刃
171 第1コンベア
172 第2コンベア
173 第3コンベア
174 第4コンベア

【特許請求の範囲】
【請求項1】
溶融ガラスの塊を、互いに対向し、かつ、略同じ温度に設定された一対の型の面を用いて挟み込みプレス成形することにより、板状ガラス素材を成形する工程と、
前記板状ガラス素材の主表面に研磨パッドを押圧させ、前記板状ガラス素材と研磨パッドとの間に研磨材を含む研磨液を供給しながら、前記板状ガラス素材と前記研磨パッドとを相対的に移動させて、前記板状ガラス素材の主表面を研磨する研磨工程と、
を有することを特徴とする磁気ディスク用ガラス基板の製造方法。
【請求項2】
上記板状ガラス素材を成形する工程は、前記一対の型の面で前記塊を略同じタイミングで接触させて挟み込みプレス成形するとともに、一対の型の面で前記塊を挟み込みプレス成形した直後に一対の型を開放することを特徴とする請求項1に記載の磁気ディスク用ガラス基板の製造方法。
【請求項3】
上記板状ガラス素材は、主表面が磁気ディスク用ガラス基板における目標平坦度を有していることを特徴とする請求項1又は2に記載の磁気ディスク用ガラス基板の製造方法。
【請求項4】
研削工程を行うことなく、磁気ディスク用ガラス基板を製造することを特徴とする請求項1乃至3のいずれかに記載の磁気ディスク用ガラス基板の製造方法。
【請求項5】
上記板状ガラス素材の主表面の粗さが0.01μm以下であることを特徴とする請求項1乃至4のいずれかに記載の磁気ディスク用ガラス基板の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−133883(P2012−133883A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2012−74005(P2012−74005)
【出願日】平成24年3月28日(2012.3.28)
【分割の表示】特願2010−288969(P2010−288969)の分割
【原出願日】平成22年12月24日(2010.12.24)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】