説明

磁気記録媒体ガラス基板用ガラスブランク製造方法、磁気記録媒体ガラス基板製造方法、および、磁気記録媒体製造方法

【課題】平坦性に優れたガラスブランクを製造すること。
【解決手段】溶融ガラス塊に対して、水平方向に対向配置され、プレス成形面52Aおよびプレス成形面62Aの温度が実質同一である一対のプレス成形型50、60を略同時に接触させた後にプレス成形して板状ガラス26を作製し、板状ガラス26を一対の成形型50,60によりプレスし続けた後に取り出す際に、板状ガラス26のプレス継続時間をガラスブランクの平坦度が10μm以下となるように制御する磁気記録媒体ガラス基板用ガラスブランクの製造方法、および、これを用いた磁気記録媒体ガラス基板製造方法、および、磁気記録媒体製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体ガラス基板用ガラスブランク製造方法、磁気記録媒体ガラス基板製造方法、および、磁気記録媒体製造方法に関するものである。
【背景技術】
【0002】
磁気記録媒体ガラス基板(磁気ディスク基板)を製造する方式としては、代表的には、(1)溶融ガラス塊を一対のプレス成形型によりプレス成形するプレス成形工程を経て作製する方式(以下、「プレス方式」と称す場合がある。特許文献1、2参照)、および、(2)フロート法、ダウンドロー法などによってシート状ガラスを円盤状に切断加工する工程を経て作製する方法(以下、「シート状ガラス切断方式」と称す場合がある。特許文献3参照)が挙げられる。
【0003】
特許文献3に例示する従来のシート状ガラス切断方式では、シート状ガラスを円盤上に加工する円盤加工工程を経た後に、研磨工程として、ラッピング工程(粗研磨処理)と、ポリッシング工程(精密研磨処理)とを実施して、磁気記録媒体ガラス基板を得ていた。しかしながら、特許文献3に示されるシート状ガラス切断方式では、研磨工程として、ラッピング工程(粗研磨処理)を省いて、ポリッシング工程(精密研磨処理)のみを実施することが開示されている。
【0004】
これに対して、特許文献1、2に例示される従来のプレス方式では、通常、下型上に溶融ガラス塊を配置した後、上型と下型とにより、溶融ガラス塊に対して鉛直方向から押圧力を加えて溶融ガラス塊をプレス成形する方式(以下、「垂直ダイレクトプレス」と称す場合がある)でプレス成形工程を実施した後、さらに、ラッピング工程、ポリッシング工程等を経て磁気記録媒体ガラス基板を得る。
【0005】
ここで、特許文献2に示されるプレス方式では、生産性の低下を防ぎつつ、反りの小さい板状ガラスを得るために、プレス成形後に、プレス成型品上に冷却用上型を載置する方法が提案されている。この方法では、冷却用上型を使用することによりプレス成型品の上下面の冷却状態を均衡させる。
【0006】
また、特許文献2に示されるプレス方式では、垂直ダイレクトプレス以外にも、プレス成形工程を、水平方向に対向配置された一対のプレス成形型により、溶融ガラス塊に対して水平方向から押圧力を加える方式(以下、「水平ダイレクトプレス」と称す場合がある。)で実施することも提案されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2009−149477号公報(請求項1、段落番号0012等)
【特許文献2】特許第4380379号(段落0031、図1〜図9等)
【特許文献3】特開2003−36528号公報(図3〜図6、図8等)
【発明の概要】
【発明が解決しようとする課題】
【0008】
一方、磁気記録媒体ガラス基板の生産性を高める上では、磁気記録媒体ガラス基板の平坦性および板厚の均一性の確保、ならびに、板厚の調整等を主目的として実施されるラッピング工程の省略または短時間化は非常に効果的である。この理由は、ラッピング工程は、その実施にラッピング装置が必要であり、磁気記録媒体ガラス基板を作製するための工数が多くなると共に、加工時間の増大を招くためである。また、ラッピング工程によってガラス表面にクラックを生じさせることもあり、ラッピング工程の省略化が検討されているのが現状である。ここでラッピング工程の省略または短時間化という観点では、シート状ガラス切断方式と、プレス方式とを比較すると、フロート法、ダウンドロー法などにより作製された平坦性の高いシート状ガラスを利用して加工を行うシート状ガラス切断方式の方が有利である。しかしながら、プレス方式は、シート状ガラス切断方式と比較して、ガラスの利用効率が高いというメリットもある。
【0009】
垂直ダイレクトプレスを利用して作製された磁気記録媒体ガラス基板用ガラスブランク(以下、単に「ガラスブランク」と略す場合がある。)に後加工を施すことで磁気記録媒体を作製する際に、ラッピング工程を省略または短時間化するためには、ガラスブランクの板厚偏差を小さくすると共に、平坦性を高くすることが必要である。ここで、垂直ダイレクトプレスによりガラスブランクを製造する場合、下型の温度は、高温の溶融ガラス塊が融着しないように溶融ガラス塊の温度よりも十分に低い温度に設定される。そのため、溶融ガラス塊が下型上に配置されてからプレス成形を開始するまでの間、溶融ガラス塊は下型に接している面から熱を奪われる。したがって、下型上に配置された溶融ガラス塊の下面の粘度が局所的に上昇する。その結果、プレス成形は、大きな粘度分布(温度分布)が生じた溶融ガラス塊に対して行われることになるため、プレスによって伸びにくい部分が生じる。また、プレス成形後の冷却速度もプレス成形されて板状に延伸されたガラス成形体の部位ごとに異なる。このため、垂直ダイレクトプレスを利用して作製されるガラスブランクでは、板厚偏差が増大したり、平坦性が低下し易い。また、上述したメカニズムを考慮すれば、特許文献1に示されるように、たとえ冷却用上型を用いた垂直ダイレクトプレスであっても、ガラスブランクの板厚偏差の増大および平坦性の低下を抜本的に抑制することは困難である。
【0010】
これに対して、特許文献2に例示される水平ダイレクトプレスでは、溶融ガラス塊が、プレス成形型に接触すると略同時に板状にプレス成形される。すなわち、垂直ダイレクトプレスと比べて、水平ダイレクトプレスでは、プレス成形時における溶融ガラス塊の粘度分布が均一であるため、溶融ガラス塊を薄く均一に延伸させることが容易である。このため、垂直ダイレクトプレスと比べて、水平ダイレクトプレスの方が、原理的には、ガラスブランクの板厚偏差の増大および平坦性の低下を抜本的に抑制することが容易であると考えられる。
【0011】
一方、近年の磁気記録媒体の記録密度の更なる向上に伴い、磁気記録媒体の作製に用いるガラス製の磁気記録媒体ガラス基板やガラスブランクには、板厚偏差および平坦性をより一層改善することが求められている。しかしながら、本発明者らが鋭意検討したところ、特許文献2に記載の水平ダイレクトプレスを利用して作製されたガラスブランクでは、特に平坦性の点において、上述したニーズに対応することができなかった。
【0012】
本発明は上記事情に鑑みてなされたものであり、平坦性に優れたガラスブランクを作製することができる磁気記録媒体ガラス基板用ガラスブランク製造方法、ならびに、これを用いた磁気記録媒体ガラス基板製造方法、および、磁気記録媒体製造方法を提供することを課題とする。
【課題を解決するための手段】
【0013】
上記課題は以下の本発明により達成される。すなわち、
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法は、落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、第一のプレス成形型と第二のプレス成形型との間に形成された板状ガラスを、第一のプレス成形型と第二のプレス成形型とによりプレスし続ける第二のプレス工程と、該第二のプレス工程を経た後に、第一のプレス成形型と第二のプレス成形型とを離間して、第一のプレス成形型と第二のプレス成形型との間に挟持された板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造し、少なくとも第一のプレス工程および第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、第一のプレス工程において、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスすること、および、第二のプレス工程の継続時間を磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする。
【0014】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の一実施態様は、第二のプレス工程の継続時間を、第二のプレス工程の終了時における板状ガラスの温度が、少なくとも、板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することが好ましい。
【0015】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、溶融ガラスをガラス流出口から垂下させ、鉛直方向の下方側へと連続的に流出する溶融ガラス流の先端部を切断することで、溶融ガラス塊を形成する溶融ガラス塊形成工程を含むことが好ましい。
【0016】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、溶融ガラスの粘度が、500dPa・s〜1050dPa・sの範囲内であることが好ましい。
【0017】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第一のプレス成形型および第二のプレス成形型が、溶融ガラス塊の落下方向に対して直交する方向に対向配置されていることが好ましい。
【0018】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第一のプレス工程を実施する直前における、第一のプレス成形型および第二のプレス成形型のプレス成形面の面内温度差の絶対値が0℃〜100℃の範囲内であることが好ましい。
【0019】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第二のプレス工程におけるプレス圧力を、経時的に減少させることが好ましい。
【0020】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、プレス圧力を、第一のプレス成形型と第二のプレス成形型との間に挟持される板状ガラスの温度が、当該板状ガラスを構成するガラス材料の屈伏点±30℃の範囲内にまで低下した時点で、減少させることが好ましい。
【0021】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第二のプレス工程の実施中において、板状ガラスの一方の面と第一のプレス成形型のプレス成形面とを常に隙間無く密着させると共に、板状ガラスの他方の面と第二のプレス成形型のプレス成形面とを常に隙間無く密着させることが好ましい。
【0022】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第二のプレス工程の継続時間を、磁気記録媒体ガラス基板用ガラスブランクの平坦度が4μm以下になるように制御することが好ましい。
【0023】
本発明の磁気記録媒体ガラス基板用ガラスブランクの製造方法の他の実施態様は、第一のプレス成形型および第二のプレス成形型のプレス成形面の少なくとも板状ガラスと接触する領域が、略平坦な面であることが好ましい。
【0024】
本発明の磁気記録媒体ガラス基板の製造方法は、落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、第一のプレス成形型と第二のプレス成形型との間に形成された板状ガラスを、第一のプレス成形型と第二のプレス成形型とによりプレスし続ける第二のプレス工程と、該第二のプレス工程を経た後に、第一のプレス成形型と第二のプレス成形型とを離間して、第一のプレス成形型と第二のプレス成形型との間に挟持された板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造した後、磁気記録媒体ガラス基板用ガラスブランクの主表面を研磨する研磨工程を少なくとも経て、磁気記録媒体ガラス基板を製造し、少なくとも第一のプレス工程および第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、第一のプレス工程において、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスすること、および、第二のプレス工程の継続時間を磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする。
【0025】
本発明の磁気記録媒体ガラス基板の製造方法の一実施態様は、第二のプレス工程の継続時間を、第二のプレス工程の終了時における前記板状ガラスの温度が、少なくとも、板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することが好ましい。
【0026】
本発明の磁気記録媒体ガラス基板の製造方法の他の実施態様は、磁気記録媒体ガラス基板用ガラスブランクの平坦度と、磁気記録媒体ガラス基板の平坦度とが実質同一であることが好ましい。
【0027】
本発明の磁気記録媒体の製造方法は、落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、第一のプレス成形型と第二のプレス成形型との間に形成された板状ガラスを、第一のプレス成形型と第二のプレス成形型とによりプレスし続ける第二のプレス工程と、該第二のプレス工程を経た後に、第一のプレス成形型と第二のプレス成形型とを離間して、第一のプレス成形型と第二のプレス成形型との間に挟持された板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造した後、磁気記録媒体ガラス基板用ガラスブランクの主表面を研磨する研磨工程を少なくとも経て、磁気記録媒体ガラス基板を製造し、さらに、磁気記録媒体ガラス基板上に磁気記録層を形成する磁気記録層形成工程を少なくとも経て、磁気記録媒体を製造し、少なくとも第一のプレス工程および第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、第一のプレス工程において、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスすること、および、第二のプレス工程の継続時間を磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御すること、を特徴とする。
【0028】
本発明の磁気記録媒体の製造方法の一実施態様は、第二のプレス工程の継続時間を、第二のプレス工程の終了時における前記板状ガラスの温度が、少なくとも、板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することが好ましい。
【0029】
本発明の磁気記録媒体の製造方法の他の実施態様は、磁気記録媒体ガラス基板用ガラスブランクの平坦度と、磁気記録媒体ガラス基板の平坦度とが実質同一であることが好ましい。
【発明の効果】
【0030】
本発明によれば、平坦性に優れたガラスブランクを作製することができる磁気記録媒体ガラス基板用ガラスブランク製造方法、ならびに、これを用いた磁気記録媒体ガラス基板製造方法、および、磁気記録媒体製造方法を提供することができる。
【図面の簡単な説明】
【0031】
【図1】本実施形態のガラスブランクの製造方法の一例において、全工程の一部分を説明する模式断面図である。
【図2】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図3】落下中の溶融ガラス塊の一例を示す模式断面図である。
【図4】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図5】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図6】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図7】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図8】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図9】本実施形態のガラスブランクの製造方法の一例において、全工程の他の部分を説明する模式断面図である。
【図10】本実施形態のガラスブランクの製造方法に用いられるプレス成形型の一例を示す模式断面図である。
【発明を実施するための形態】
【0032】
(磁気記録媒体ガラス基板用ガラスブランクの製造方法)
本実施形態の磁気記録媒体ガラス基板用ガラスブランクの製造方法(以下、「ガラスブランクの製造方法」と略す場合がある)は、落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、第一のプレス成形型と第二のプレス成形型との間に形成された板状ガラスを、第一のプレス成形型と第二のプレス成形型とによりプレスし続ける第二のプレス工程と、該第二のプレス工程を経た後に、第一のプレス成形型と第二のプレス成形型とを離間して、第一のプレス成形型と第二のプレス成形型との間に挟持された板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造し、少なくとも第一のプレス工程および第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、第一のプレス工程において、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスすること、および、
上記第二のプレス工程の継続時間を上記ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする。ここで、本願明細書において、「磁気記録媒体ガラス基板」とは、非晶質ガラス(アモルファスガラス)製の磁気記録媒体用のガラス基板を意味する。
【0033】
本実施形態のガラスブランクの製造方法では、第一のプレス工程において、従来のプレス方式と同様にガラス材料の歪点よりも十分に温度が高く、変形容易な状態を保った溶融ガラス塊に対して、プレスを行い、板状に成形する。ここで、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスする。これに加えて、第一のプレス工程のおよび第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とは、実質的に同一である。このため、第一のプレス工程で板状に成形されつつある溶融ガラス塊、および、第二のプレス工程において一対のプレス成形型間に挟持された状態の板状ガラス、の両面は常に対称的に冷却され続けることになる。このため、下型と長時間接触することで粘度分布が生じた状態の溶融ガラス塊をプレス成形する垂直ダイレクトプレスと比べて、本実施形態のガラスブランクの製造方法では、プレス成形された後の板状ガラスの両面の温度差が殆ど生じず、両面の温度差に起因する平坦性の低下を確実に抑制できる。
【0034】
一方、第一のプレス工程を終えた直後の板状ガラスは、温度が高く流動性が高い(粘度が低い)。このため、板状ガラスが極めて容易に変形しやすく、平坦性が悪化し易い状態にある。しかしながら、第一のプレス工程に続いて実施される第二のプレス工程においては、第一のプレス成形型と第二のプレス成形型との間に形成された板状ガラスを、第一のプレス成形型と第二のプレス成形型とによりプレスし続ける。そして、この際、第二のプレス工程の継続時間を、ガラスブランクの平坦度が10μm以下になるように制御する。なお、第二のプレス工程の継続時間は、ガラスブランクの平坦度が4μm以下になるように制御することが好ましい。それゆえ、作製されるガラスブランクの平坦性をより優れたものとすることができる。なお、第二のプレス工程の継続時間が短いと外乱により冷却過程の板状ガラスに歪が生じ、当該歪がガラスブランクの平坦度を悪化させる。したがって、第二のプレス工程の継続時間を変え、得られたガラスブランクの平坦度を測定し、その結果、平坦度が10μm以下になるように第二のプレス工程の継続時間を設定し、ガラスブランクを製造する。ただし、第二のプレス工程の継続時間を長くし過ぎると生産性が低下するので、第二のプレス工程の継続時間はガラスブランクの平坦度と生産性とを考慮して設定すればよい。これらの観点では、第二のプレス工程の継続時間は、具体的には2秒〜40秒の範囲内が好ましく、2秒〜30秒の範囲内が好ましい。
【0035】
また、ガラスブランクの平坦度を10μm以下に制御するためには、第二のプレス工程では、板状ガラスの流動性が喪失して、変形が事実上不可能となる温度域まで、板状ガラスをプレスし続けるように第二のプレス工程の継続時間を選択することが特に好ましい。この場合、第一のプレス工程を終えた直後の板状ガラスの変形を抑制した状態を維持しつつ、板状ガラスを固化させることができる。それゆえ、作製されるガラスブランクの平坦性をより優れたものとすることができる。ここで、第二のプレス工程における継続時間は、第二のプレス工程の終了時における板状ガラスの温度が、板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することが好ましく、歪点に5℃を加えた温度以下となるように選択することがより好ましく、歪点以下となるように選択することがさらに好ましい。一方、第二のプレス工程の終了時における板状ガラスの温度の下限温度としては特に限定されないが、第二のプレス工程の実施に要する時間の増大による生産性低下を抑制する観点からは、実用上、歪点以上であることが好ましい。したがって、第二のプレス工程における継続時間の上限値も、この観点から選択されることが好ましい。
【0036】
本実施形態のガラスブランクの製造方法では、少なくとも第一のプレス工程および第二のプレス工程の実施期間中において、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度とが、実質的に同一であることが必要である。ここで、「実質的に同一」とは、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度との温度差の絶対値が10℃以内であることを意味する。この温度差の絶対値は、5℃以内がより好ましく、0℃が最も好ましい。ここで、プレス成形面内において、温度分布が存在する場合、「プレス成形面の温度」とは、プレス成形面の中心部近傍の温度を意味する。なお、参考までに述べれば、垂直ダイレクトプレス方式では、溶融ガラス塊をプレス成形中の上型のプレス成形面と下型のプレス成形面との温度差の絶対値は、プレス成形の条件にもよるが、一般的に50℃〜100℃程度である。
【0037】
また、第一のプレス工程においては、第一のプレス成形型のプレス成形面と、第二のプレス成形型のプレス成形面とを、溶融ガラス塊に対して略同時に接触させた後に溶融ガラス塊をプレスする。ここで、「略同時に接触させる」とは、溶融ガラス塊と一方のプレス成形面とが接触した時点と、溶融ガラス塊と他方のプレス成形面とが接触した時点と、の時間差の絶対値が0.1秒以内であることを意味する。この時間差の絶対値は、0.05秒以内がより好ましく、0秒が最も好ましい。なお、参考までに述べれば、垂直ダイレクトプレス方式では、溶融ガラス塊が下型のプレス成形面に接触した後、さらに上型のプレス成形面に接触するまでに要する時間は、プレス成形の条件にもよるが、一般的に1.5秒〜3秒程度である。
【0038】
なお、従来の垂直ダイレクトプレスにおいても、上型と下型とにより溶融ガラス塊を板状ガラスに成形した後、板状ガラスを上型と下型とによりプレスし続けた状態で板状ガラスを歪点近傍まで冷却すれば、ガラスブランクの平坦性の大幅な改善が期待できる。しかしながら、この場合、1枚のガラスブランクのプレス成形に要する時間が大幅に増大するため、大幅な生産性の低下が避けられず、実用性に欠ける(特許文献1、段落0009参照)。このため、本願出願人は、垂直ダイレクトプレスにおいては、板状ガラスを上型と下型とによりプレスし続けた状態で板状ガラスを歪点近傍まで冷却する技術の採用・実用化を断念し、特許文献1に例示したような冷却用上型を利用するなどの様々な代替技術により、生産性とガラスブランクの平坦性の改善との両立を図ってきた。
【0039】
このような経緯から、一対のプレス成形型によりプレス成形を行う点で垂直ダイレクトプレスと同様のプレス方式である水平ダイレクトプレスによりガラスブランクを量産する場合においても、できるだけ早期に第一のプレス成形型と第二のプレス成形型とを離間して、板状ガラスを取り出すことが極めて重要であると考えられる。これにより、溶融ガラス塊を板状ガラスに成形し終えた後は、生産性とガラスブランクの平坦性の改善との両立を図ることが容易となるからである。したがって、水平ダイレクトプレスによりガラスブランクを量産する場合、溶融ガラス塊が板状ガラスとなった後も、この板状ガラスの温度が歪点に10℃を加えた温度以下の温度となるまで、板状ガラスをプレスし続ける第二のプレス工程の実施は、ガラスブランクの生産性を大幅に低下させるだけで、実用上に欠けるものと考えられる。しかしながら、本発明者らが鋭意検討したところ、水平ダイレクトプレスにおいて、第二のプレス工程を実施したとしても、実用性を損なう程の大幅な生産性の低下が起こらないことを見出した。この理由は以下の通りである。
【0040】
まず、垂直ダイレクトプレスでは、下型に溶融ガラス塊を配置してから、プレス成形を行う。このため、下型と長時間接触して、大きな温度分布(粘度分布)が生じた溶融ガラス塊を、上型と下型とにより必ずプレス成形しなければならない。これに対して、水平ダイレクトプレスでは、落下中の溶融ガラス塊を、一対のプレス成形型により挟み込むようにプレス成形する。すなわち、プレス成形が開始されるまでの間に、溶融ガラス塊が一方のプレス成形型と接触し続けることがないため、結果として、プレス成形開始時の溶融ガラス塊の温度分布(粘度分布)は極めて均一である。したがって、水平ダイレクトプレスおよび垂直ダイレクトプレスにより、同程度の厚みのガラスブランクを作製するために、溶融ガラス塊をプレス成形により薄く均等に延伸させるためには、水平ダイレクトプレスに対して、垂直ダイレクトプレスでは、溶融ガラス塊の温度分布も考慮して、溶融ガラス塊の平均温度をより高く設定する必要がある。このため、プレス成形開始時の溶融ガラス塊の平均温度と歪点との温度差は、水平ダイレクトプレスよりも垂直ダイレクトプレスの方が大きくなる。この事実(第一の事実)は、溶融ガラス塊を板状に成形した後、さらに歪点近傍までに冷却するためには、水平ダイレクトプレスおよび垂直ダイレクトプレスの双方のプレス方式において溶融ガラス塊および板状ガラスの冷却速度が同じであれば、垂直ダイレクトプレスよりも水平ダイレクトプレスの方がより短時間で冷却できることを意味する。
【0041】
そして、溶融ガラス塊および板状ガラスの冷却速度は、プレス方式を問わずプレス成形型の熱容量が同程度であると仮定した場合、溶融ガラス塊と接触する一対のプレス成形型の温度によって決定される。すなわち、プレス成形開始時において、低温のプレス成形型を使用すれば冷却速度が増大し、高温のプレス成形型を使用すれば冷却速度は減少する。ここで、垂直ダイレクトプレスでは、プレス成形が開始されるまでの間に下型と溶融ガラス塊とが長時間に亘って接触するため、プレス成形が開始されるまでの間で、下型は溶融ガラス塊により加熱されることになる。したがって、垂直ダイレクトプレスでは、一対のプレス成形型のうち、必ず一方のプレス成形型(下型)が高温となった状態で、プレス成形が開始されることになる。この事実(第二の事実)は、垂直ダイレクトプレスよりも水平ダイレクトプレスの方が、溶融ガラス塊および板状ガラスの冷却速度をより大きくすることが極めて容易であることを意味する。
【0042】
よって、以上の2つの事実を考慮すれば、溶融ガラス塊を板状に成形した後、さらに歪点近傍までに冷却するために要する時間は、垂直ダイレクトプレスよりも水平ダイレクトプレスの方が、大幅に短縮できることは明らかである。したがって、水平ダイレクトプレスにおいて、第二のプレス工程を実施したとしても、垂直ダイレクトプレスで発生したような実用性を損なう程の大幅な生産性の低下は生じない。
【0043】
以上に説明した本実施形態のガラスブランクの製造方法は、第一のプレス工程、第二のプレス工程および取出工程を少なくとも含むものであれば特に限定されないが、通常は、溶融ガラス塊形成工程を有することが好ましい。以下に、溶融ガラス塊形成工程も含めて、各工程についてより詳細に説明する。なお、以下の説明において、既に上述した点については説明を省略する。
【0044】
−溶融ガラス塊形成工程−
溶融ガラス塊形成工程では、プレス成形の対象物である溶融ガラス塊を作製する。溶融ガラス塊の作製方法としては特に限定されないが、通常は、溶融ガラスをガラス流出口から垂下させ、鉛直方向の下方側へと連続的に流出する溶融ガラス流の先端部を切断することで、溶融ガラス塊を形成する。なお、溶融ガラス流からその先端部を分離するように実施される切断には、一対のシアブレードを用いることができる。また、溶融ガラスの粘度としては先端部の切断や、プレス成形に適した粘度であれば特に限定されないが、通常は、500dPa・s〜1050dPa・sの範囲内で、一定の値に制御されることが好ましい。
【0045】
次に、溶融ガラス塊形成工程の具体例を図面を用いてより詳細に説明する。溶融ガラス塊形成工程では、図1に示すように、上端部が不図示の溶融ガラス供給源に接続された溶融ガラス流出管10の下端部に設けられたガラス流出口12から、溶融ガラス流20を鉛直方向の下方側へと連続的に流出させる。一方、ガラス流出口12よりも下方側には、溶融ガラス流20の両側に、各々、第一のシアブレード(下側ブレード)30と、第二のシアブレード(上側ブレード)40とが、溶融ガラス流20の垂下する方向の中心軸Dに対して略直交する方向に、配置されている。そして、下側ブレード30および上側ブレード40は、各々、中心軸Dに対して直交し、かつ、図中、左側から右側へと進行する矢印X1方向、および、中心軸Dに対して直交し、かつ、図中、右側から左側へと進行する矢印X2方向に移動することで、溶融ガラス流20の両側から、溶融ガラス流20の先端部22側へと接近する。なお、溶融ガラス流20の粘度は、溶融ガラス流出管10や、その上流の溶融ガラス供給源の温度を調整することで制御される。
【0046】
また、下側ブレード30、上側ブレード40は、略板状の本体部32、42と、本体部32,42の端部側に設けられ、鉛直方向下方側へと連続的に流出する溶融ガラス流20の先端部22を、溶融ガラス流20の垂下する方向と略直交する方向から切断する刃部34、44とを有する。なお、刃部34の上面34Uおよび刃部44の下面44Bは、水平面と略一致する面を成し、刃部34の下面34Bおよび刃部44の上面44Uは、水平面に対して交差するように傾斜した面を成す。また、鉛直方向に対して、刃部34の上面34Uと、刃部44の下面44Bとは、略同程度の高さ位置となるように、下側ブレード30および上側ブレード40が配置される。
【0047】
次に、図2に示すように、下側ブレード30および上側ブレード40を、各々、矢印X1方向および矢印X2方向にさらに移動させることで、刃部34の上面34Uと、刃部44の下面44Bとが、部分的にほぼ隙間無く重なり合うように、下側ブレード30および上側ブレード40をそれぞれ水平方向に移動させる。すなわち、中心軸Dに対して下側ブレード30および上側ブレード40を垂直に交差させる。これにより、溶融ガラス流20に対して、その中心軸Dの近傍まで下側ブレード30および上側ブレード40が貫入して、先端部22が、略球状の溶融ガラス塊24として切断される。なお、図2は、先端部22が、溶融ガラス塊24として溶融ガラス流20の本体部分から分離される瞬間の様子を示したものである。そして、図3に示すように溶融ガラス流20から切断された溶融ガラス塊24は、さらに鉛直方向の下方Y1側に落下する。
【0048】
−第一のプレス工程−
第一のプレス工程では、図3に示す落下中の溶融ガラス塊24を、溶融ガラス塊24の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する。ここで、第一のプレス成形型および第二のプレス成形型は、溶融ガラス塊24の落下方向に対して90度±1度の範囲内の角度を成すように略直交する方向に対向配置されていることが好ましく、溶融ガラス塊24の落下方向に対して直交する方向に対向配置されていることが特に好ましい。このように溶融ガラス塊24の落下方向に対して一対のプレス成形型を対向配置することにより、溶融ガラス塊24を両側から均等にプレスして板状に成形することがより容易となる。
【0049】
また、第一のプレス工程を実施する直前における、第一のプレス成形型および第二のプレス成形型のプレス成形面の温度は、溶融ガラス塊24を構成するガラス材料の歪点に10℃を加えた温度以下であることが好ましく、溶融ガラス塊24を構成するガラス材料の歪点に5℃を加えた温度以下であることがより好ましい。プレス成形面の温度を、上述した範囲内とすることにより、プレス成形時に、溶融ガラス塊24とプレス成形面とが融着するのを確実に抑制することができる。第一のプレス工程を実施する直前における、第一のプレス成形型および第二のプレス成形型のプレス成形面の温度の下限値は特に限定されるものではないが、溶融ガラス塊24の急冷によるガラスブランクの割れ防止、プレス成形時の粘度の急激な増加による溶融ガラス塊24の延伸性の著しい低下を防止するなどの実用上の観点から溶融ガラス塊24を構成するガラス材料の歪点以上であることが好ましい。
【0050】
また、第一のプレス工程を実施する直前における、第一のプレス成形型のプレス成形面の温度と、第二のプレス成形型のプレス成形面の温度と、の差の絶対値は0℃〜10℃の範囲内であることが好ましく、0℃〜5℃の範囲内であることがより好ましく、0℃であることが特に好ましい。この場合、溶融ガラス塊24のプレスにより板状に形成された板状ガラスの両面での温度差が生じるのをより確実に抑制でき、結果的に平坦度をより向上させることができる。
【0051】
また、第一のプレス工程を実施する直前における、第一のプレス成形型および第二のプレス成形型のプレス成形面の面内温度差の絶対値は、0℃〜100℃の範囲内であることが好ましく、0℃〜50℃の範囲内であることが好ましく、0℃であることが特に好ましい。プレス成形面内における温度分布を上述した範囲内とすることにより、プレス成形に際して、溶融ガラス塊24を薄く均等に延伸させることがより容易となる。この結果、より薄い板厚を有するガラスブランクを製造する場合においても、平坦性に優れ板厚偏差も小さいガラスブランクを得ることがより容易となる。なお、「プレス成形面の面内温度」とは、プレス成形に際して、プレス成形面と、板状に延伸された溶融ガラス塊24とが接触する最大領域内において測定される温度を意味する。
【0052】
次に、第一のプレス工程について図面を用いてより具体的に説明する。まず、図3に示す溶融ガラス塊24は、図4に示すように、溶融ガラス塊24の落下方向Y1に対して直交する方向に対向配置された第一のプレス成形型50および第二のプレス成形型60の間に進入する。ここで、プレス成形を実施する前の第一のプレス成形型50および第二のプレス成形型60は、落下方向Y1に対して線対称を成すと共に直交する方向に、互いに離間して対向配置されている。そして、溶融ガラス塊24が、第一のプレス成形型50および第二のプレス成形型60の鉛直方向中央部近傍に到達するタイミング合わせて、溶融ガラス塊24を両側から押圧してプレス成形するために、第一のプレス成形型50が、落下方向Y1に対して直交し、かつ、図中、左側から右側へと進行する矢印X1方向へと移動し、第二のプレス成形型60が、落下方向Y1に対して直交し、かつ、図中、右側から左側へと進行する矢印X2方向へと移動する。なお、第一のプレス成形型50の矢印X1方向への移動速度と、第二のプレス成形型60の矢印X2方向への移動速度とは、同一または略同一に設定される。
【0053】
ここで、プレス成形型50、60は、略円盤形状を有するプレス成形型本体52、62と、このプレス成形型本体52、62の外周端を囲うように配置されたガイド部材54、64とを有する。なお、図4は断面図であるため、図4中において、ガイド部材54、64は、プレス成形型本体52、62の上下両側に位置するように描かれている。また、プレス成形型50を矢印X1方向へ移動させ、プレス成形型60を矢印X2方向に移動させる駆動部材については、図中、記載を省略してある。
【0054】
プレス成形型本体52、62の一方の面は、プレス成形面52A、62Aとなっている。そして、図4では、第一のプレス成形型50と第二のプレス成形型60とは、それぞれのプレス成形面52A、62Aが対向するように対向配置されている。また、ガイド部材54には、プレス成形面52Aに対してX1方向に少しだけ突出した高さ位置にガイド面54Aが設けられ、ガイド部材64には、プレス成形面62Aに対してX2方向に少しだけ突出した高さ位置にガイド面64Aが設けられている。このため、プレス成形に際しては、ガイド面54Aとガイド面64Aとが突き当たり接触するため、プレス成形面52Aとプレス成形面62Aとの間には隙間が形成される。このため、この隙間厚みが、第一のプレス成形型50と第二のプレス成形型60との間でプレス成形されて板状となる溶融ガラス塊24の厚み、すなわち、ガラスブランクの厚みとなる。また、プレス成形面52A、62Aは、第一のプレス工程の実施により、溶融ガラス塊24が、第一のプレス成形型50のプレス成形面52Aと第二のプレス成形型60のプレス成形面62Aとの間で、鉛直方向に完全に押し広げられて板状ガラスに成形された際に、プレス成形面52A,62Aの少なくとも上記の板状ガラスと接触する領域(溶融ガラス延伸領域)S1、S2が、略平坦な面を成すように形成される。なお、図4に示す例では、溶融ガラス延伸領域S1を含むプレス成形面52A、および、溶融ガラス延伸領域S2を含むプレス成形面62Aの全面が、通常の、実質的に曲率が0である平坦面を成している。また、当該平坦面には、プレス成形型を製造する際の通常の平坦化加工や鏡面研磨加工等を施すことで形成される微小な凹凸のみが存在し、これら微小な凹凸と比べてより大きい凸部および/または凹部は存在しない。
【0055】
ガラスブランクは、溶融ガラス塊24をプレス成形面52A、62Aにより押圧してプレス成形することにより作製される。このため、プレス成形面52A、62Aの表面粗さとガラスブランクの主表面の表面粗さとはほぼ同等になる。ガラスブランクの主表面の表面粗さ(中心線平均粗さRa)は、後述する後工程として実施されるスクライブ加工、および、ダイヤモンドシートを用いた研削加工を行う上で、0.01〜10μmの範囲とすることが望ましいため、プレス成形面の表面粗さ(中心線平均粗さRa)も0.01〜10μmの範囲とすることが好ましい。
【0056】
図4に示す溶融ガラス塊24は、更に下方へと落下し、2つのプレス成形面52A、62A間に進入する。そして、図5に示すように、落下方向Y1と平行を成すプレス成形面52A、62Aの上下方向の略中央部近傍に到達した時点で、溶融ガラス塊24の両側表面が、プレス成形面52A、62Aに同時または略同時に接触する。
【0057】
ここで、落下中の溶融ガラス塊24の粘度増大によりプレス成形し難しくなったり、あるいは、落下速度が大きくなりすぎて、プレス位置の変動が生じないようにする観点も考慮して、落下距離は、1000mm以下の範囲内で選択することが好ましく、500mm以下の範囲内で選択することがより好ましく、300mm以下の範囲内で選択することがさらに好ましく、200mm以下の範囲内で選択することが最も好ましい。なお、落下距離の下限は特に限定されないが、実用上は100mm以上であることが好ましい。なお、当該「落下距離」とは、図2に例示したように先端部22が溶融ガラス塊24として分離される瞬間、すなわち、下側ブレード30と上側ブレード40とが垂直方向に重なる位置から、図5に例示したようなプレス成形の開始時点(プレス成形の開始の瞬間)の位置、すなわち、落下方向Y1と平行を成すプレス成形面52A、62Aの直径方向の略中央部近傍までの距離を意味する。
【0058】
その後、図6に示すように、溶融ガラス塊24を、その両側から第一のプレス成形型50および第二のプレス成形型60により押圧し続けると、溶融ガラス塊24は、溶融ガラス塊24とプレス成形面52A、62Aとが最初に接触した位置を中心に均等な厚みで押し広げられる。そして、図7に示すようにガイド面54Aとガイド面64Aとが接触するところまで、第一のプレス成形型50および第二のプレス成形型60により押圧し続けることで、プレス成形面52A、62A間に、円盤状もしくは略円盤状の板状ガラス26に成形される。
【0059】
ここで、図7に示す板状ガラス26は、最終的に得られるガラスブランクと実質的に同一の形状・厚みを有するものである。そして、板状ガラス26の両面のサイズおよび形状は、溶融ガラス延伸領域S1、S2(図7中、不図示)のサイズおよび形状と一致する。また、図5に示すプレス成形の開始時点の状態から、図7に示すガイド面54Aとガイド面64Aとが接触した状態となるまでに要する時間(以下、「プレス成形時間」と称す場合がある。)は、溶融ガラス塊24を薄板化する観点から、0.1秒以内とすることが好ましい。また、プレス成形に際して、ガイド面54Aとガイド面64Aとが接触した状態となることにより、プレス成形面52Aとプレス成形面62Aとの平行状態を維持することが容易となる。なお、プレス成形時間の下限は特に限定されないが、実用上は0.05秒以上であることが好ましい。
【0060】
なお、図4〜図7に示したプレス成形型50は、プレス成形型本体52と、ガイド部材54とを有し、プレス成形型60も同様の構造を有する。しかしながら、本実施形態のガラスブランクの製造方法に用いられる一対のプレス成形型は、溶融ガラス塊24を板状にプレス成形可能なものであれば図4〜図7に示したタイプのものに限定されない。たとえば、一対のプレス成形型として、図4〜図7に示すプレス成形型50、60からガイド部材54、64を除いたプレス成形型本体52、62から構成されるタイプ(ガイド部材レスタイプ)を用いてもよい。また、図4〜図7に示したプレス成形型50、60は、プレス成形型本体52、62とガイド部材54、64とが一体的に構成された一体型タイプであってもよいし、別部材として構成された分離型タイプであってもよい。なお、プレス成形型50、60が分離型タイプの場合、第一のプレス工程では、プレス成形型本体52とガイド部材54とが、同時かつ一体的に矢印X1方向に移動し、プレス成形型本体62とガイド部材64とが、同時かつ一体的に矢印X2方向に移動する。
【0061】
なお、プレス成形型50、60は、各々ガイド部材54、64を有するため、図7に示すようにガイド部材54とガイド部材64とが接触した状態では、プレス成形面52Aとプレス成形面62Aとは、平行に保たれる。このため、図4〜図6に示すようにプレス成形型50が矢印X1方向に移動し、プレス成形型60が矢印X2方向に移動する過程において、プレス成形面52Aと、プレス成形面62Aとが、平行な状態を維持できなくても、得られるガラスブランクの板厚偏差を非常に小さくすることが容易である。それゆえ、プレス成形型50、60を駆動する駆動装置には、図4〜図7に示す一連のプロセスにおいて、プレス成形面52Aとプレス成形面62Aとが常に正確な平行状態を維持するように制御する制御能力は要求されない。
【0062】
−第二のプレス工程−
第二のプレス工程では、第一のプレス成形型50と第二のプレス成形型60との間に形成された板状ガラス26を、第一のプレス成形型50と第二のプレス成形型60とによりプレスし続ける。すなわち、図7に示す第一のプレス工程が完了した直後の状態を維持しつつ、第一のプレス成形型50と第二のプレス成形型60とにより板状ガラス26をプレスし続ける。そして、この際、第二のプレス工程の継続時間を、ガラスブランクの平坦度が10μm以下になるように制御する。
【0063】
なお、プレス成形面52A、62Aと溶融ガラス塊24とが接触する第一のプレス工程の開始直後から、第二のプレス工程が完了する時点までの間においては、プレス成形面52Aとプレス成形面62Aとの間に位置するガラス(溶融ガラス塊24および板状ガラス26)の温度は、プレス成形に使用するガラス材料にもよるが、一般的に、1200±50℃程度から480℃±20℃程度にまで大幅に低下する。これに加えて、第二のプレス工程では、板状ガラス26のプレスも継続するため、板状ガラス26の流動性も時間の経過と共に低下する。特に、板状ガラス26のプレスを、板状ガラス26を構成するガラス材料の歪点に10℃を加えた温度以下となるまで継続した場合、板状ガラス26の流動性はほぼ完全に喪失する。それゆえ、第二のプレス工程では、このような温度の大幅な低下に伴い、板状ガラス26の径方向における熱収縮が進行することになる。一方、第二のプレス工程においては、板状ガラス26の両面と接触するプレス成形面52A、62Aは、板状ガラス26の熱を吸収し続けて平面方向に熱膨張するか、あるいは、板状ガラス26から十分な熱を吸収し終えることで平面方向の熱膨張が停止、もしくは、緩やかな熱収縮に転じることになると考えられる。
【0064】
すなわち、第二のプレス工程では、板状ガラス26の両面とプレス成形面52A、62Aとの間で、両部材の間における熱膨張・熱収縮の度合に差が生じることになる。このため、第二のプレス工程においては、熱収縮しつつある板状ガラス26の両面には、プレス成形面52A、62Aにより、板状ガラス26の径方向に伸張させようとする力、すなわち、熱収縮とは逆方向の力が作用することになる。しかし、第二のプレス工程では、第二のプレス工程の進行に伴い板状ガラス26の流動性が大幅に低下するため、板状ガラス26に過剰な応力が作用すると板状ガラス26の脆性破壊が生じ易くなる。このため、板状ガラス26の両面に熱収縮とは逆方向の力が常に作用し続けると、板状ガラス26の平面方向に過剰な応力が作用し、板状ガラス26が割れてしまうことになる。
【0065】
このような板状ガラス26の割れを防止するためには、(1)プレス成形型50,60を構成する材料として、板状ガラス26を構成するガラス材料に、熱膨張係数が近い材料を用いた上で、(2)第二のプレス工程において、板状ガラス26の温度とプレス成形面52A、62Aの温度とを同期させて冷却することが考えられる。しかしながら、第二のプレス工程では大幅な温度変化を伴うため、上述したような冷却を実施しようとすると、冷却速度を非常に小さくする必要がある。しかしながら、この場合、第二のプレス工程の実施に要する時間が大幅に増大するため、量産性が大幅に低下し、実用性に欠ける可能性がある。
【0066】
以上に説明した点を考慮すれば、第二のプレス工程における板状ガラス26の割れをより確実に防止するためには、第二のプレス工程において、プレス圧力を経時的に減少させることが好ましい。この場合、プレス圧力の減少によって、板状ガラス26の両面と、プレス成形面52A、62Aとの間の摩擦係数が減少する。そして、その結果、板状ガラス26の両面とプレス成形面52A、62Aとの間でスリップが生じ、板状ガラス26の両面に、割れの原因となる熱収縮とは逆方向の力が作用するのを遮断し易くなる。ここで、「プレス圧力が経時的に減少する」とは、第二のプレス工程において、時間の経過に対してプレス圧力が減少する場合のみならず、時間の経過に対してプレス圧力が一時的に増大または一定値を維持する場合であっても、時間に対するプレス圧力の変化を1次方程式で近似した場合に、傾きがマイナスになる場合も含まれる。また、プレス圧力は、時間の経過と共に段階的に減少させてもよく、時間の経過に共に連続的に減少させてもよい。
【0067】
なお、プレス圧力を、時間の経過と共に段階的に減少させる場合、プレス圧力を、第一のプレス成形型50と第二のプレス成形型60との間に挟持される板状ガラス26の温度が、板状ガラス26を構成するガラス材料の屈伏点±30℃の範囲内にまで低下した時点で、減少させることが好ましい。これにより、比較的単純なプレス圧力の操作で、より効果的に板状ガラス26の割れを抑制することができる。なお、この場合、板状ガラス26の割れの確実な抑制と、平坦性の悪化抑制とをバランス良く両立させる観点から、プレス圧力は、減少前を100%とすると、減少後は1%〜10%程度の範囲内とすることが好ましい。
【0068】
また、第二のプレス工程において、プレス圧力を経時的に減少させる代わりに、プレス圧力を経時的に波状に変化させてもよい。この場合、たとえば、時間の経過に対して、プレス圧力を矩形波状や、サイン波状等のように周期的に変化させることができる。この場合、時間の経過に対して、プレス圧力が極小値近傍を示した際に、板状ガラス26の両面と、プレス成形面52A、62Aとの間の摩擦係数が減少する。そして、その結果、板状ガラス26の両面とプレス成形面52A、62Aとの間でスリップが生じ、板状ガラス26の両面に、割れの原因となる熱収縮とは逆方向の力が作用するのを遮断し易くなる。
【0069】
なお、第二のプレス工程では、板状ガラス26は、直径方向のみならず、厚み方向にも僅ではあるが熱収縮が生じる。このため、第二のプレス工程の実施中において、プレス成形面52Aや、プレス成形面62Aと、板状ガラス26との間に僅かな隙間が生じてしまう場合がある。この場合、プレス成形面52Aおよびプレス成形面62Aと、板状ガラス26とが隙間無く密着しているときと比べて、隙間が生じたときは、両部材間の熱伝導効率が低下する。そして、その結果、板状ガラス26の両面、あるいは、面内において、温度分布が生じ易くなる。このような温度分布は、板状ガラス26内における粘度分布(流動性のムラ)を生じさせることになるため、板状ガラス26に反りが生じ易くなり、得られるガラスブランクの平坦性を悪化させ易くなる。
【0070】
以上に説明した点を考慮するならば、第二のプレス工程の実施中において、板状ガラス26の一方の面と第一のプレス成形型50のプレス成形面52Aとを常に隙間無く密着させると共に、板状ガラス26の他方の面と第二のプレス成形型60のプレス成形面62Aとを常に隙間無く密着させることが好ましい。この場合、一対のプレス成形型としては、板状ガラス26の厚み方向の熱収縮に対してプレス成形面の追従性に優れたプレス成形型を用いることができる。このようなプレス成形型としては、具体的には、プレス成形型50、60からガイド部材54、64を除いたプレス成形型本体52、62から構成されるガイド部材レスタイプのプレス成形型や、プレス成形型本体52、62とガイド部材54、64とが別部材として構成された分離型タイプのプレス成形型50、60を用いることができる。なお、分離型タイプのプレス成形型50、60を用いる場合、第二のプレス工程では、プレス成形型本体52のみを矢印X1方向に押圧し、プレス成形型本体62のみを矢印X2方向に押圧することで、板状ガラス26に対してプレス圧力を加える。
【0071】
−取出工程−
第二のプレス工程を経た後は、第一のプレス成形型50と第二のプレス成形型60とを離間して、第一のプレス成形型50と第二のプレス成形型60との間に挟持された板状ガラス26を取り出す取出工程を行う。この取出工程は、たとえば、以下に説明するように実施できる。まず、図8に示すように、第一のプレス成形型50と第二のプレス成形型60とを互いに離間させるように、第一のプレス成形型50を矢印X2方向へ移動させ、第二のプレス成形型60を矢印X1方向へ移動させる。これにより、プレス成形面62Aと、板状ガラス26とを離型させる。次いで、図9に示すように、プレス成形面52Aと、板状ガラス26とを離型させて、板状ガラス26を鉛直方向の下方Y1側に落下させて取り出す。なお、プレス成形面52Aと板状ガラス26とを離型させる際には、板状ガラス26の外周方向から力を加えて板状ガラス26を剥がすように離型することができる。この場合、板状ガラス26に大きな力を加えることなく、取出しを行うことができる。なお、取出しに際しては、プレス成形面52Aと板状ガラス26とを離型した後に、プレス成形面62Aと板状ガラス26とを離型してもよい。そして、最後に、取出した板状ガラス26を必要に応じてアニール処理して歪を低減・除去し、磁気記録媒体ガラス基板を加工するための母材、すなわち、ガラスブランクを得る。
【0072】
−ガラスブランク−
以上に説明した本実施形態のガラスブランクの製造方法により得られたガラスブランクは、その平坦度を10μm以下とすることができ、4μm以下とすることも極めて容易である。なお、ラッピング工程等の平坦性の改善を主たる目的として実施される後工程を省略または短縮する観点からは、平坦度は4μm以下とすることが好ましい。
【0073】
−プレス成形型−
プレス成形型50、60を構成する材料としては、耐熱性、加工性、耐久性を考慮すると金属または合金が好ましい。この場合、溶融ガラスの温度を考慮すると、プレス成形型50、60を構成する金属または合金の耐熱温度は1000℃以上が好ましく、1100℃以上がより好ましい。プレス成形型50、60を構成する材料としては、具体的には、球状黒鉛鋳鉄(FCD)、合金工具鋼(SKD61など)、高速鋼(SKH)、超硬合金、コルモノイ、ステライトなどが好ましい。なお、プレス成形に際しては、水や空気などの冷却媒体を用いてプレス成形型50、60を冷却し、プレス成形型50、60の温度の上昇を抑制してもよい。また、プレス成形面52A、62Aの面内の温度分布を均一化するために、冷却媒体を利用してプレス成形面52A、62Aの中央部近傍を冷却したり、および/または、プレス成形型50、60の外周側にヒータ等の加熱部材を配置して、プレス成形面52A、62Aの外縁側を加熱してもよい。
【0074】
また、第一のプレス成形型50および第二のプレス成形型60のプレス成形面52A、62Aの少なくとも板状ガラス26と接触する領域(溶融ガラス延伸領域S1、S2)は、たとえば、ガラスブランクの表面に、板厚の1/3〜1/4程度の深さを有するV字溝等を形成するための凸部などの大きな凹凸部が形成された面でもよいが、通常は、略平坦な面であることが好ましい。なお、プレス成形面52A、62Aの全面を略平坦な面としてもよい。この理由は、ガラスブランクに大きなV字状の溝が形成された場合、V字溝部分の応力集中に起因すると推定される割れ欠陥が発生し易くなるためである。また、これに加えて、溶融ガラス延伸領域S1、S2に、大きな凹凸部が形成されると、第二のプレス工程における板状ガラス26の径方向の熱収縮を阻害する。このため、板状ガラス26の平面方向に過剰な応力が発生し、板状ガラス26が割れやすくなるためである。
【0075】
ここで、当該「略平坦な面」とは、通常の、実質的に曲率が0である平坦面に加えて、僅かに凸面または凹面を成すような非常に小さな曲率を有する面も意味する。また、「略平坦な面」には、プレス成形型を製造する際の通常の平坦化加工や鏡面研磨加工等を施すことで形成される微小な凹凸が存在することは、当然、許容されるが、この微小な凹凸と比べて、より大きい凸部および/または凹部が必要に応じて設けられていてもよい。
【0076】
ここで、微小な凹凸と比べてより大きい凸部としては、流動抵抗の悪化を招いたり、溶融ガラス塊の部分的な冷却を促進する可能性が小さく高さが20μm以下の実質的に点状および/または実質的に線状の凸部であれば、許容される。なお、当該高さは10μm以下が好ましく、5μm以下がより好ましい。また、微小な凹凸と比べてより大きい凸部が、実質的に点状および実質的に線状ではなく、頂面の最小幅が数ミリメーターまたはそれを超えるオーダーの台形状の凸部、または、この台形状の凸部と同程度の高さ・サイズを有するドーム状の凸部である場合には、上述したような流動抵抗の悪化を招いたり、溶融ガラス塊の部分的な冷却を促進する可能性が小さくなるため、その高さは50μm以下であれば、許容される。なお、当該高さは、30μm以下が好ましく、10μm以下がより好ましい。また、台形状の凸部の底面と側面との交点部分の応力集中による割れの発生を抑制する観点から、台形状の凸部の側面は、その傾斜角が、頂面に対して0.5度以下の角度を成す平面を成すか、この平面を凹面とした曲面とすることが好ましい。なお、当該角度は0.1度以下がより好ましい。
【0077】
また、微小な凹凸と比べてより大きい凹部としては、プレス成形時にこの凹部に流入する溶融ガラスの流動性の悪化を招いたり等しないように、深さが20μm以下の実質的に点状および/または実質的に線状の凹部であれば、許容される。なお、当該深さは10μm以下が好ましく、5μm以下がより好ましい。また、微小な凹凸と比べてより大きい凹部が、実質的に点状および実質的に線状ではなく、頂面の最小幅が数ミリメーターまたはそれを超えるオーダーの逆台形状の凹部、または、この逆台形状の凹部と同程度の高さ・サイズを有する逆ドーム状の凹部である場合には、上述したような流動性の悪化を招く可能性が小さくなるため、その深さは50μm以下であれば、許容される。なお、当該深さは、30μm以下が好ましく、10μm以下がより好ましい。また、台形状の凸部の底面と側面との交点部分の応力集中による割れの発生を抑制する観点から、台形状の凸部の側面は、その傾斜角が、底面に対して0.5度以下の角度を成す平面を成すか、この平面を凹面とした曲面とすることが好ましい。なお、当該角度は0.1度以下がより好ましい。
【0078】
本実施形態のガラスブランクの製造方法では、プレス成形型として、既述したように、(1)ガイド部材レスタイプのプレス成形型、(2)プレス成形型本体52、62とガイド部材54、64とが一体的に構成された一体型タイプのプレス成形型50、60、(3)プレス成形型本体52、62とガイド部材54、64とが別部材として構成された分離型タイプのプレス成形型50、60などが利用できる。これら3種類のプレス成形型の中でも、より高い平坦性と、より小さい板厚偏差とを最もバランス良く両立させることができる観点からは、分離タイプのプレス成形型50、60を用いることが最も好ましい。
【0079】
ここで、分離タイプのプレス成形型50、60は、具体的には以下に示す構造を有するものを用いることが好ましい。すなわち、分離タイプのプレス成形型50(またはプレス成形型60)としては、水平方向と略直交するプレス成形面52Aを有するプレス成形型本体52と、プレス成形時に、プレス成形面52Aに対向配置された他方のプレス成形型60側に押し出された際に、他方のプレス成形型60の一部と接触することで、一対のプレス成形型50、60のプレス成形面52A、62A間の距離を略一定に保つ機能を少なくとも有するガイド部材54と、プレス成形型本体52とガイド部材54とを、プレス成形面52Aと略直交する方向であって、かつ、他方のプレス成形型60側に、同時に押し出す第一の押出部材と、第一の押出部材によって、ガイド部材54と他方のプレス成形型60の一部とが接触した後に、プレス成形型本体52を、プレス成形面52Aと略直交する方向であって、かつ、他方のプレス成形型60側に押し出す第二の押出部材と、を少なくとも備えることが好ましい。
【0080】
図10は、本実施形態の磁気記録媒体ガラス基板用ガラスブランクの製造方法に用いられるプレス成形型の一例を示す模式断面図であり、具体的には、分離タイプのプレス成形型50、60の一例を示す図である。図10中、図4〜図9に示すものと同様のものについては同じ符号が付してある。また、図10に示すプレス成形型50Sは、プレス成形型50に対応した図であるが、プレス成形型60も同様の構造を採用できる。ここでプレス成形型50Sは、その主要部が、プレス成形型本体52と、ガイド部材54と、第一の押出部材56と、第二の押出部材58と、から構成されている。各々の部材の中心軸(図中、一点鎖線X)は一致しており、中心軸は水平方向と略一致している。
【0081】
ここで、プレス成形型本体52は、一方の端面が円形のプレス成形面52Aを構成する円柱体から構成されている。なお、プレス成形型本体52の形状は、図10に示す例では、円柱状であるが、略柱状形状であれば、その形状は特に限定されない。プレス成形面52Aは、図10に示す例では、略な平坦な面を成している。
【0082】
ガイド部材54は、軸方向Xの長さが円柱体からなるプレス成形型本体52の軸方向Xの長さよりも長く、内周側にプレス成形型本体52を収容すると共に、第一の押出部材56により押し出された際に一方の端面(ガイド面54A)が他方のプレス成形型を構成するガイド部材(図中、不図示)と接触する円筒体から構成されている。ここで、軸方向Xにおけるガイド部材54の長さとプレス成形型本体52の長さとの差、言い換えれば、軸方向Xにおけるガイド面54Aとプレス成形面52Aとの高低差Hは、作製されるガラスブランクの板厚のほぼ半分の長さに相当する。なお、ガイド部材54の形状は、円筒状であるが、筒状であれば、その形状は特に限定されない。
【0083】
第一の押出部材56は、円盤状部材から構成されている。ここで、この円盤状の第一の押出部材56の一方の面(押出面56A)は、プレス成形型本体52の他方の端面(被押出面52B)とガイド部材54の他方の端面(被押出面54B)とに接触する平坦面からなる。また、プレス成形型本体52の被押出面52Bに対向する領域の一部に、第一の押出部材56の厚み方向に貫通する貫通穴56Hが設けられている。なお、押出面56Aと反対側の面56Bは、不図示の第一の駆動装置に接続されている。このため、プレス成形に際しては、この第一の駆動装置によって、第一の押出部材56を介して、プレス成形型本体52とガイド部材54とを同時に、図中の軸方向Xの第一の押出部材56が配置された側からプレス成形型本体52およびガイド部材54が配置された側へと押し出すことができる。
【0084】
なお、図10に示す例では、第一の押出部材56の形状は円盤状であるが、略板状であればその形状は特に限定されない。また、貫通穴56Hは、プレス成形型本体52および第一の押出部材56の中心軸Xに沿って、円形の開口を有する穴として設けられているが、プレス成形型本体52の被押出面52Bに対向する領域の一部であれば、第一の押出部材56の任意の位置に、任意の数の貫通穴56Hを設けることができる。また、貫通穴56Hの開口形状も適宜選択することができる。ただし、貫通穴56Hは、プレス成形型本体52の中心軸Xに対して、点対称に設けられることが特に好ましい。
【0085】
第二の押出部材58は、貫通穴56H内に配置されると共に、プレス成形型本体52の被押出面52B側に接続された棒状部材から構成される。なお、第二の押出部材58は、図10に示す例では円柱状の棒状を成すが、プレス成形型本体52をX軸方向に移動させることができるのであれば、その形状は特に限定されない。なお、第二の押出部材58の被押出面52B側に接続された一方の端と反対側の端は、不図示の第二の駆動装置に接続されている。このため、プレス成形に際しては、この第二の駆動装置によって、第二の押出部材58を介して、プレス成形型本体52のみを、第二の押出部材58が配置された側からプレス成形型本体52が配置された側へと、軸方向Xに沿って押し出すことができる。
【0086】
−ガラス材料−
本実施形態のガラスブランクの製造方法に用いられるガラス材料としては、磁気記録媒体ガラス基板として好適な物性、特に、高熱膨張係数、さらに高剛性、あるいは耐熱性等を有し、かつ、水平ダイレクトプレスにより板状にプレス成形が容易なものであれば特に限定されない。熱膨張係数については、磁気記録媒体を保持する保持具の熱膨張係数に近いことが望まれる。具体的には、100〜300℃における平均線膨張係数が70×10−7/℃以上であることが好ましく、75×10−7/℃以上であることがより好ましく、80×10−7/℃以上であることがさらに好ましく、85×10−7/℃以上であることが一層好ましい。平均線膨張係数の上限値は特に限定されるものではないが、実用上は、120×10−7/℃以下であることが好ましい。磁気記録媒体の高速回転時に生じるたわみを低減する上から高剛性のガラス材料が望まれるが、具体的には、ヤング率が70GPa以上であることが好ましく、75GPa以上であることがより好ましく、80GPa以上であることがさらに好ましく、85GPa以上であることが一層好ましい。ヤング率の上限値は特に限定されるものではないが、実用上は、120GPa以下であることが好ましい。さらに、耐熱性の優れたガラス材料を用いることにより、磁気記録媒体の製造過程で基板を高温で処理することが可能になることから、ガラス材料のガラス転移温度は600℃以上が好ましく、610℃以上がより好ましく、620℃以上がさらに好ましく、630℃以上が一層好ましい。なお、ガラス転移温度の上限値は特に限定されないが、プレス成形時の温度が高温となるのを抑制するなどの実用上の観点からは780℃以下であることが好ましい。高熱膨張係数、高剛性、耐熱性を兼備するガラス材料を使用することは、高記録密度の磁気記録媒体に好適なガラス基板を得る上から有効である。
【0087】
ガラス材料の組成としては、磁気記録媒体ガラス基板として好適な物性の実現が容易な組成を適宜選択でき、たとえば、従来の垂直ダイレクトプレス用のガラス材料のガラス組成を適宜選択できるが、アルミノシリケートガラスを選択することが好ましい。なお、アルミノシリケートガラスとしては、耐熱性、高剛性および高熱膨張係数をバランス良く両立させることが容易であることから、特に、下記に示す組成が特に好ましい。すなわち、このガラスのガラス組成(以下、「ガラス組成1」という。)は、
モル%表示にて、
SiOを50〜75%、
Alを0〜5%、
LiOを0〜3%、
ZnOを0〜5%、
NaOおよびKOから選択される少なくとも1種の成分を合計で3〜15%、
MgO、CaO、SrOおよびBaOから選択される少なくとも1種の成分を合計で14〜35%、ならびに、
ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOから選択される少なくとも1種の成分を合計で2〜9%、
含み、
モル比{(MgO+CaO)/(MgO+CaO+SrO+BaO)}が0.8〜1の範囲であり、かつ、モル比{Al/(MgO+CaO)}が0〜0.30の範囲である。
【0088】
ガラス組成1の100〜300℃における平均線膨張係数の好ましい範囲は70×10−7/℃以上、ガラス転移温度の好ましい範囲は630℃以上、ヤング率の好ましい範囲は80GPa以上である。ガラス組成1は、高Ku磁性材料を使用したエネルギーアシスト方式の磁気記録媒体ガラス基板の材料として好適である。
【0089】
高熱膨張係数を備え、耐酸性、耐アルカリ性に優れ、基板表面からのアルカリ溶出も少なく、化学強化にも好適なガラス材料として、以下のガラス組成(以下、「ガラス組成2」という。)を有するものを示すことができる。すなわち、ガラス組成2は、
モル%表示にて、
SiOとAlを合計で70〜85%、ただし、SiOの含有量が50%以上、Alの含有量が3%以上、
LiO、NaOおよびKOを合計で10%以上、
MgOとCaOを合計で1〜6%、ただし、CaOの含有量がMgOの含有量よりも多い、
ZrO、TiO、La、Y、Yb、Ta、NbおよびHfOを合計で0%を超えて4%以下、
含む組成である。
【0090】
(磁気記録媒体ガラス基板の製造方法)
本実施形態の磁気記録媒体ガラス基板の製造方法は、本実施形態のガラスブランクの製造方法により作製されたガラスブランクの主表面を研磨する研磨工程を少なくとも経て、磁気記録媒体ガラス基板を製造することを特徴とする。以下にガラスブランクを加工して磁気記録媒体ガラス基板とする際の各工程の具体例についてより詳細に説明する。
【0091】
まず、プレス成形して得られたガラスブランクに対してスクライブが行われる。スクライブとは、成形されたガラスブランクを所定のサイズのリング形状とするために、ガラスブランクの表面に超鋼合金製あるいはダイヤモンド粒子からなるスクライバにより2つの同心円(内側同心円および外側同心円)状の切断線(線状のキズ)を設けることをいう。2つの同心円の形状にスクライブされたガラスブランクは、部分的に加熱され、ガラスの熱膨張の差異により、外側同心円の外側部分および内側同心円の内側部分が除去される。これにより、真円形状のディスク状ガラスとなる。なお、ガラスブランクの状態において、外径のサイズが最終的な磁気記録媒体ガラス基板(磁気ディスク用ガラス基板)の外径と略同じ場合(後述する端面研磨のみでサイズを修正可能な場合)には、スクライブ工程の代わりに円孔となる中心部に対してコアリングを行ってもよい。
【0092】
スクライブ加工する場合、ガラスブランクの主表面の粗さが1μm以下であれば、スクライバを用いて好適に切断線を設けることができる。なお、ガラスブランクの主表面の粗さが1μmを超える場合、スクライバが表面凹凸に追従せず、切断線を一様に設けることが困難となる場合がある。この場合は、ガラスブランクの主表面を平滑化してからスクライブを行う。
【0093】
次に、スクライブしたガラスの形状加工が行われる。形状加工は、チャンファリング(外周端部および内周端部の面取り)を含む。チャンファリングでは、リング形状のガラスの外周端部および内周端部に、ダイヤモンド砥石により面取りが施される。
【0094】
次にディスク状ガラスの端面研磨が行われる。端面研磨では、ガラスの内周側端面及び外周側端面をブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の微粒子を遊離砥粒として含むスラリーが用いられる。端面研磨を行うことにより、ガラスの端面での塵等が付着した汚染、ダメージあるいはキズ等の損傷の除去を行うことにより、ナトリウムやカリウム等のコロージョンの原因となるイオン析出の発生を防止することができる。
【0095】
次に、ディスク状ガラスの主表面に第1研磨が施される。第1研磨は、主表面に残留したキズ、歪みの除去を目的とする。第1研磨による取り代は、たとえば数μm〜10μm程度である。取り代の大きい研削工程を行わずに済むため、ガラスには、研削工程に起因するキズ、歪み等は生じない。よって、第1研磨工程における取り代は少なくて済む。
【0096】
第1研磨工程、及び後述する第2研磨工程では、両面研磨装置が用いられる。両面研磨装置は、研磨パッドを用い、ディスク状ガラスと研磨パッドとを相対的に移動させて研磨を行う装置である。両面研磨装置はそれぞれ所定の回転比率で回転駆動されるインターナルギア及び太陽ギアを有する研磨用キャリア装着部と、この研磨用キャリア装着部を挟んで互いに逆回転駆動される上定盤及び下定盤とを有する。上定盤および下定盤のディスク状ガラスと対向する面には、それぞれ後述する研磨パッドが貼り付けられている。インターナルギアおよび太陽ギアに噛合するように装着した研磨用キャリアは遊星歯車運動をして、太陽ギアの周囲を自転しながら公転する。
【0097】
研磨用キャリアにはそれぞれ複数のディスク状ガラスが保持されている。上定盤は上下方向に移動可能であって、ディスク状ガラスの表裏の主表面に研磨パッドを加圧する。そして研磨砥粒(研磨材)を含有するスラリー(研磨液)を供給しつつ、研磨用キャリアの遊星歯車運動と、上定盤および下定盤が互いに逆回転することにより、ディスク状ガラスと研磨パッドとは相対的に移動して、ディスク状ガラスの表裏の主表面が研磨される。なお、第1研磨工程では、研磨パッドとしてたとえば硬質樹脂ポリッシャ、研磨材としてはたとえば酸化セリウム砥粒、が用いられる。
【0098】
次に、第1研磨後のディスク状ガラスは化学強化される。化学強化液として、たとえば硝酸カリウムの溶融塩等を用いることができる。化学強化では、化学強化液が、たとえば300℃〜400℃に加熱され、洗浄したガラスが、たとえば200℃〜300℃に予熱された後、ガラスが化学強化液中に、たとえば3時間〜4時間浸漬される。この浸漬の際には、ガラスの両主表面全体が化学強化されるように、複数のガラスが端面で保持されるように、ホルダに収納した状態で行うことが好ましい。
【0099】
このように、ガラスを化学強化液に浸漬することによって、ガラスの表層のナトリウムイオンが、化学強化液中のイオン半径が相対的に大きいカリウムイオンにそれぞれ置換され、約50〜200μmの厚さの圧縮応力層が形成される。これにより、ガラスが強化されて良好な耐衝撃性が備わるようになる。なお、化学強化処理されたガラスは洗浄される。たとえば、硫酸で洗浄された後に、純水、IPA(イソプロピルアルコール)等で洗浄される。
【0100】
次に、化学強化されて十分に洗浄されたガラスに第2研磨が施される。第2研磨による取り代は、たとえば1μm程度である。
【0101】
第2研磨は、主表面を鏡面状に仕上げることを目的とする。第2研磨工程では、第1研磨工程と同様に、両面研磨装置を用いてディスク状ガラスに対する研磨が行われるが、使用する研磨液(スラリー)に含有される研磨砥粒、および研磨パッドの組成が異なる。第2研磨工程では、第1研磨工程よりも、使用する研磨砥粒の粒径を小さくし、研磨パッドの硬さを柔らかくする。たとえば、第2研磨工程では、研磨パッドとしてたとえば軟質発砲樹脂ポリッシャ、研磨材としてはたとえば、第1研磨工程で用いる酸化セリウム砥粒よりも微細な酸化セリウム砥粒やコロイダルシリカ等が用いられる。
【0102】
第2研磨工程で研磨されたディスク状ガラスは、再度洗浄される。洗浄では、中性洗剤、純水、IPAが用いられる。第2研磨により、たとえば、主表面の平坦度が4μm以下であり、主表面の粗さ(Ra)が0.2nm以下の磁気ディスク用ガラス基板が得られる。この後、磁気ディスク用ガラス基板に、磁性層等の各層が成膜されて、磁気ディスクが作製される。
【0103】
なお、化学強化工程は、第1研磨工程と第2研磨工程との間に行われるが、この順番に限定されない。第1研磨工程の後に第2研磨工程が行われる限り、化学強化工程は、適宜配置することができる。たとえば、第1研磨工程、第2研磨工程、化学強化工程の順(以下、工程順序1)でもよい。ただし、工程順序1では、化学強化工程により生じうる表面凹凸が除去されないことになるため、第1研磨工程、化学強化工程、第2研磨工程の工程順序が、より好ましい。
【0104】
なお、磁気記録媒体ガラス基板の製造に際して、加工に使用するガラスブランクの平坦度と、作製された磁気記録媒体ガラス基板の平坦度とを、実質同一とすることもできる。磁気記録媒体ガラス基板に要求される平坦度としては、例えば2.5インチのガラス基板に対して近年では10μm以下が要求されているが、このような平坦度は、本実施形態のガラスブランク製造方法により作製されたガラスブランクにより容易に達成することができるためである。ここで、「加工に使用するガラスブランクの平坦度と、作製された磁気記録媒体ガラス基板の平坦度とが、実質同一である」とは、求められる磁気記録媒体ガラス基板(磁気ディスク用ガラス基板)の平坦度を100%とした場合に、ガラスブランクの平坦度が105%以下であることを意味する。
【0105】
なお、加工に使用するガラスブランクの平坦度と、作製された磁気記録媒体ガラス基板の平坦度と、実質同一とする場合、ラッピング工程などの平坦度の改善を主目的のひとつとして実施される工程を省略することができる。
【0106】
(磁気記録媒体の製造方法)
本実施形態の磁気記録媒体の製造方法は、本実施形態の磁気記録媒体ガラス基板の製造方法により作製された磁気記録媒体ガラス基板上に磁気記録層を形成する磁気記録層形成工程を少なくとも経て、磁気記録媒体を製造することを特徴とする。
【0107】
磁気記録媒体は磁気ディスク、ハードディスクなどと呼ばれ、デスクトップパソコン、サーバ用コンピュータ、ノート型パソコン、モバイル型パソコンなどの内部記憶装置(固定ディスクなど)、画像および/または音声を記録再生する携帯記録再生装置の内部記憶装置、車載オーディオの記録再生装置などに好適である。
【0108】
磁気記録媒体は、たとえば、磁気記録媒体ガラス基板の主表面上に、この主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層を積層した構成とすることができる。たとえば磁気記録媒体ガラス基板を、減圧した成膜装置内に導入し、DCマグネトロンスパッタリング法にてAr雰囲気中で、磁気記録媒体ガラス基板の主表面上に付着層から磁性層までを順次成膜する。付着層としてはたとえばCrTi、下地層としてはたとえばCrRuを用いることができる。上記成膜後、たとえばCVD法によりCガスを用いて保護層を成膜し、同一チャンバ内で、表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、たとえばPFPE(ポリフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。
【0109】
磁気記録媒体のサイズとしては特に限定されないが、磁気記録媒体ガラス基板が耐衝撃性に優れたガラス材料から構成されるため、持ち運びに便利であり、かつ、外部からの衝撃に曝される可能性の高い2.5インチまたはこれ以下のサイズであることが好適である。
【実施例】
【0110】
以下に本発明を実施例を挙げて説明するが、本発明は以下の実施例にのみ限定されるものではない。
【0111】
<<ガラスブランクの作製>>
各実施例および比較例では、2.5インチサイズの磁気記録媒体ガラス基板作製用のガラスブランク(直径:約75mm、厚み:約0.9mm)を連続的に数百枚以上作製した。
【0112】
(実施例A1)
図1〜図9に示したプロセスにて、溶融ガラス塊形成工程、第一のプレス工程、第二のプレス工程および取出工程を実施し、ガラスブランクを作製した。なお、ガラス流出口12から流出する溶融ガラスの粘度は700dPa・sに調整し、第一のプレス成形型50および第二のプレス成形型60は、溶融ガラス塊24の落下方向に対して直交するように配置し、落下距離は150mmに設定した。
【0113】
ここで、ガラスブランクの作製に使用したガラス材料の主要な物性値および組成は以下の通りである。
・ガラス転移温度:495℃
・屈伏点:550℃
・歪点:490℃
・組成:ガラス組成2に相当する組成
【0114】
また、第一のプレス工程および第二のプレス工程の具体的な実施条件、ならびに、プレス成形に用いたプレス成形型50、60の詳細は以下の通りである。
【0115】
−第一のプレス工程の実施条件−
第一のプレス工程実施直前のプレス成形面52Aの温度を500℃、第一のプレス工程実施直前のプレス成形面62Aの温度を500℃、第一のプレス工程実施直前のプレス成形面52Aの面内温度差を50℃、第一のプレス工程実施直前のプレス成形面62Aの面内温度差を50℃に設定した。なお、プレス成形型50、60の駆動は、プレス成形面52Aおよびプレス成形面62Aが、溶融ガラス塊24に同時に接触するように設定した。また、プレス成形時間は0.07秒とした。なお、プレス成形面52A、62Aの温度は、プレス成形面52A、62Aから深さ1mmの位置に配置した熱電対によりモニターした。この熱電対は、プレス成形面52A、62Aの中心部に1個と、中心部から半径30mmの位置であってかつ周方向に0°、90°、180°、270°の位置に各々1個配置されている。
【0116】
−第二のプレス工程の実施条件−
第二のプレス工程の継続時間を調整し、得られたガラスブランクの平坦度を測定したところ、第二のプレス工程の継続時間を2秒以上にすると、ガラスブランクの平坦度が4μmとなった。そこで、第二のプレス工程の継続時間を2秒に設定した。第二のプレス工程終了時の板状ガラス26の温度(取出温度)を495℃である。第二のプレス工程実施中のプレス圧力は常に0.5MPaを維持するように設定した。なお、板状ガラス26の温度は、プレス成形面52A、62Aの中心部に配置された熱電対により測定された温度であると仮定して求めた値である。このようにして、ガラスブランクの平坦度を指標として第二のプレス工程の継続時間を制御し、平坦性の優れたガラスブランクを得た。
【0117】
−プレス成形型−
プレス成形型50は、鋳鉄製で、プレス成形型本体52とガイド部材54とが一体的に構成された一体型タイプのものを用いた。また、プレス成形型50もプレス成形型60と同様の一体型タイプのものを用いた。なお、プレス成形面52A、62Aは、完全な平坦面からなる。また、使用した一体型タイプのプレス成形型50、60には、プレス成形面52A、62Aの温度および面内温度分布が制御できるように、プレス成形型本体52、62の内部に、冷却水を流す流路が設けられると共に、プレス成形型50、60の外周側にヒータが配置されている。ここで、冷却水の流量およびヒータの加熱条件については、常にプレス成形型50のプレス成形面52Aの温度と、プレス成形型60のプレス成形面62Aの温度との差が、±10℃以内の範囲を維持するように制御した。
【0118】
(実施例A2)
第二のプレス工程の継続時間をさらに長くして、板状ガラスの取出温度を490℃に設定した以外は、実施例A1と同様にしてガラスブランクを作製した。
【0119】
(実施例A3)
プレス成形型50、60として、プレス成形型本体52、62とガイド部材54、64とが別部材として構成された分離型タイプのものを用いた以外は、実施例A1と同様にしてガラスブランクを作製した。
【0120】
(実施例A4)
第二のプレス工程実施中のプレス圧力を、経時的に減少させた以外は、実施例A3と同様にしてガラスブランクを作製した。なお、プレス圧力は、第二のプレス工程の開始直後を基準(100%)とした場合、板状ガラス26の温度が屈伏点−25℃に達した時点で50%となるように制御した。
【0121】
(実施例A5)
第二のプレス工程実施中のプレス圧力を、経時的に減少させた以外は、実施例A3と同様にしてガラスブランクを作製した。なお、プレス圧力は、第二のプレス工程の開始直後を基準(100%)とした場合、板状ガラス26の温度が屈伏点+25℃に達した時点で50%となるように制御した。
【0122】
(実施例A6)
第二のプレス工程実施中のプレス圧力を、経時的に減少させた以外は、実施例A3と同様にしてガラスブランクを作製した。なお、プレス圧力は、第二のプレス工程の開始直後を基準(100%)とした場合、板状ガラス26の温度が屈伏点+40℃に達した時点で50%となるように制御した。
【0123】
(実施例A7)
第二のプレス工程実施中のプレス圧力を、経時的に減少させた以外は、実施例A3と同様にしてガラスブランクを作製した。なお、プレス圧力は、第二のプレス工程の開始直後を基準(100%)とした場合、板状ガラス26の温度が屈伏点−40℃に達した時点で50%となるように制御した。
【0124】
(実施例A8)
第二のプレス工程実施中のプレス圧力を、経時的に減少させた以外は、実施例A3と同様にしてガラスブランクを作製した。なお、プレス圧力は、第二のプレス工程の開始直後を基準(100%)とした場合、板状ガラス26の温度が屈伏点に達した時点で50%となるように制御した。
【0125】
(比較例A1)
第二のプレス工程の継続時間を2秒未満として板状ガラスの取出温度を520℃に設定した以外は、実施例A1と同様にしてガラスブランクを作製した。
【0126】
(比較例A2)
第二のプレス工程の実施を省略した以外は、実施例A1と同様にしてガラスブランクを作製した。
【0127】
(比較例A3)
実施例A1で用いたものと同様のガラス材料を用いて、垂直ダイレクトプレスによりガラスブランクを作製した。ガラスブランクの作製には、外周縁に沿って等間隔に下型が12個配置され、プレスに際しては、一方向に30度毎に移動と停止とを交互に繰り返しながら回転する回転テーブルを備えたプレス装置を用いた。また、回転テーブルの外周縁上に配置された12個の下型に対応する12個の下型停止位置に対して、回転テーブルの回転方向に沿ってP1〜P12の番号を付した際に、以下の下型停止位置の下型プレス面上または下型の側には、各々下記の部材が配置されている。
・下型停止位置P1:溶融ガラス供給装置
・下型停止位置P2:上型
・下型停止位置P9:取出手段(真空吸着装置)
【0128】
このプレス装置では、下型停止位置P1にて、下型上に所定量の溶融ガラスが供給され、下型停止位置P2にて、上型と下型とにより溶融ガラスを板状ガラスにプレス成形し、下型停止位置P9にて、板状ガラス(ガラスブランク)を取り出す。また、下型が停止位置P2〜P9へと、移動する際に均熱・冷却工程が実施され、停止位置P9〜P12へと移動する際に、ヒーターを利用して下型の予熱が行われる。
【0129】
上型および下型の材質、および、プレス成形面の平滑性、平坦性は実施例A1で用いたプレス成形型50、60と同様とした。なお、下型停止位置P1に位置する下型上に供給される直前の溶融ガラスの粘度は、500dPa・sとなるように調整した。
【0130】
−プレス工程の実施条件−
なお、プレス工程の実施条件の詳細は以下の通りである。プレス工程実施直前の上型プレス成形面の温度を380℃、プレス工程実施直前の下型プレス成形面の温度を480℃、プレス工程実施直前の上型プレス成形面の面内温度差を30℃、プレス工程実施直前の下型プレス成形面の面内温度差を30℃に設定した。なお、上型は、下型上に所定量の溶融ガラスが供給されてから2秒後に、下方に駆動させた。また、上型が下型上の溶融ガラスに接触してから、上型と下型とが離間するまでの時間(プレス成形時間)は0.3秒とした。以上に説明した条件でプレス工程を実施した場合、プレス工程終了時の板状ガラスの温度(取出温度)は、500℃であった。なお、上型および下型のプレス成形面の温度は、プレス成形面から深さ5mmの位置に配置した熱電対によりモニターした。この熱電対は、プレス成形面の中心部に1個と、中心部から半径15mmの位置であってかつ周方向に0°、90°、180°、270°の位置に各々1個配置されている。
【0131】
(比較例A4)
取出温度が495℃となるようにプレス成形時間を延長した以外は、比較例A3と同様にしてガラスブランクを作製した。なお、生産速度が非常に遅く、実用性が無いため、ガラスブランクを数十枚程度作製した時点で、プレスを中止した。
【0132】
(比較例A5)
プレス装置として、下型停止位置P3のプレス面上に冷却用上型を更に配置した以外は、比較例A3で用いたプレス装置と同様の装置を用いた。なお、冷却用上型は、下型停止位置P2のプレス面上に配置されたプレス成形用の上型と、実質的に同一の構造を有するものである。ここで、下型停止位置P2において実施されるプレス工程は、比較例A3と同様の条件で実施した。
【0133】
また、下型停止位置P3において下型が停止している期間については、全体が480℃程度に予熱された冷却用上型を、下型上に配置された板状ガラスに接触しない程度の距離まで接近させた状態を維持した。
【0134】
(評価)
各実施例および比較例において作製したガラスブランクについて、平坦度、割れ、および、生産性について評価した。結果を表1および表2に示す。なお、水平ダイレクトプレスによりガラスブランクを作製した全ての実施例および比較例A1,A2における第一のプレス工程および第二のプレス工程実施中のプレス成形面間の温度は、最大でも550℃以下であり、垂直ダイレクトプレスによりガラスブランクを作製した比較例A3〜A5におけるプレス工程実施中のプレス成形面間の温度は、450℃〜500℃の範囲内であった。
【0135】
【表1】

【0136】
【表2】

【0137】
なお、表1および表2に示す、平坦度の評価方法、割れおよび生産性の評価方法・評価基準は以下の通りである。
【0138】
−平坦度−
平坦度は、三次元形状測定装置(コムス株式会社製、高精度3次元形状測定システム、MAP−3D)を用いて測定し、10枚サンプルの平坦度の平均値を求めた。
【0139】
−割れ−
ガラスブランクを連続して1000枚作製した場合に、得られたガラスブランクが割れたものをカウントし、割れの発生率を求めた。なお、表1および表2に示す評価結果の評価基準は以下の通りである。
A:割れの発生率が0%
B:割れの発生率が、0%を超え1%以下
C:割れの発生率が、1%を超え2%以下
D:割れの発生率が、2%以上
【0140】
−生産性−
ガラスブランクを連続して1000枚作製した場合における単位時間当たりのガラスブランク生産枚数を求めた。なお、表1および表2に示す評価結果の評価基準は以下の通りである。
A:1時間当たりの生産枚数が3420枚以上
B:1時間当たりの生産枚数が3240枚以上3420枚未満
C:1時間当たりの生産枚数が3060枚以上3240枚未満
D:1時間当たりの生産枚数が3060枚未満
【0141】
<<磁気記録媒体ガラス基板および磁気記録媒体の作製>>
<実施例B1>
実施例A1において作製したガラスブランクをアニールし、歪を低減、除去した。次に、磁気記録媒体ガラス基板の外周となる部分と中心孔になる部分にスクライブ加工を施した。こうした加工で、外側および外側に2つの同心円状の溝を形成した。次いで、スクライブ加工した部分を部分的に加熱して、ガラスの熱膨張の差異により、スクライブ加工した溝に沿ってクラックを発生させ、外側同心円の外側部分と内側部分とを除去した。これにより、真円形状のディスク状ガラスを得た。
【0142】
次に、ディスク状ガラスをチャンファリングなどにより形状加工を施し、さらに端面研磨を行った。次に、ディスク状ガラスの主表面に第1研磨を施した後、ガラスを化学強化液に浸漬して化学強化した。化学強化後、十分に洗浄したガラスに対し、第2研磨を施した。第2研磨工程後、ディスク状ガラスを再度洗浄して磁気記録媒体ガラス基板を作製した。得られた磁気記録媒体ガラス基板の外径は65mm、中心孔径は20mm、厚さは0.8mm、主表面の粗さは0.2nm以下であった。
【0143】
なお、磁気記録媒体ガラス基板の作製に際しては、上述したようにラッピング工程などの平坦度の改善を主目的のひとつとして実施される工程は省略した。しかしながら、加工に用いたガラスブランクの平坦度は4μmであり、作製された磁気記録媒体ガラス基板の平坦度は4μmであり、両者の平坦度には殆ど差が見られなかった。なお、磁気記録媒体ガラス基板の平坦度は、ガラスブランクの平坦度の測定と同様にして測定した。
【0144】
次に、作製した磁気記録媒体ガラス基板を用いて、この磁気記録媒体ガラス基板の主表面上に、付着層、下地層、磁性層、保護層、潤滑層をこの順に形成し、磁気記録媒体を得た。まず、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にて、Ar雰囲気中で、付着層、下地層および磁性層を順次成膜した。このとき、付着層は、厚さ20nmのアモルファスCrTi層となるように、CrTiターゲットを用いて成膜した。続いて枚葉・静止対向型成膜装置を用いて、Ar雰囲気中で、DCマグネトロンスパッタリング法にて下地層としてアモルファスCrRuからなる10nm厚の層を形成した。また、磁性層は、厚さ200nmのアモルファスFePtまたはCoPt層となるように、FePtまたはCoPtターゲットを用いて成膜温度400℃にて成膜した。磁性層までの成膜を終えた磁気記録媒体を成膜装置から加熱炉内に移し、650〜700℃の温度でアニールした。
【0145】
続いて、エチレンを材料ガスとしたCVD法により水素化カーボンからなる保護層を形成した。この後、PFPE(パーフロロポリエーテル)を用いてなる潤滑層をディップコート法により形成した。潤滑層の膜厚は1nmであった。以上の製造工程により、磁気記録媒体を得た。
【0146】
得られた磁気記録媒体の平坦度は、4μmであり、磁気記録媒体の作製に用いた磁気記録媒体ガラス基板の平坦度とほぼ同程度であった。なお、磁気記録媒体の平坦度は、ガラスブランクの平坦度の測定と同様にして測定した。
【0147】
<比較例B1>
比較例A1において作製したガラスブランクを用いて、磁気記録媒体ガラス基板を作製した。なお、磁気記録媒体ガラス基板の作製に際しては、端面研磨後にかつ第一研磨の実施前に、研削代を50μmに設定してラッピング工程を更に実施した以外は、実施例B1と同様にして磁気記録媒体ガラス基板を作製した。得られた磁気記録媒体ガラス基板の外径は65mm、中心孔径は20mm、厚さは0.8mm、主表面の粗さは0.2nm以下であった。また、加工に用いたガラスブランクの平坦度は15μmであり、作製された磁気記録媒体ガラス基板の平坦度は4μmであり、平坦度が大きく改善されていることが確認された。
【0148】
次に、得られた磁気記録媒体ガラス基板を用いて実施例B1と同様にして磁気記録媒体ガラス基板を作製した。得られた磁気記録媒体の平坦度は、4μmであり、磁気記録媒体の作製に用いた磁気記録媒体ガラス基板の平坦度とほぼ同程度であった。
【0149】
<比較例B2>
ラッピング工程を省略した以外は、比較例B1と同様にして磁気記録媒体ガラス基板および磁気記録媒体を作製した。得られた磁気記録媒体ガラス基板および磁気記録媒体の平坦度は、加工に用いたガラスブランクの平坦度と実質同一であった。
【0150】
<比較例B3>
比較例A5において作製したガラスブランクを用いた以外は、比較例B1と同様にして、磁気記録媒体ガラス基板および磁気記録媒体を作製した。得られた磁気記録媒体ガラス基板の外径は65mm、中心孔径は20mm、厚さは0.8mm、主表面の粗さは0.2nm以下であった。また、加工に用いたガラスブランクの平坦度は15μmであり、作製された磁気記録媒体ガラス基板の平坦度は4μmであり、平坦度が大きく改善されていることが確認された。
【0151】
次に、得られた磁気記録媒体ガラス基板を用いて比較例B1と同様にして磁気記録媒体ガラス基板を作製した。得られた磁気記録媒体の平坦度は、4μmであり、磁気記録媒体の作製に用いた磁気記録媒体ガラス基板の平坦度とほぼ同程度であった。
【0152】
<比較例B4>
ラッピング工程を省略した以外は、比較例B3と同様にして磁気記録媒体ガラス基板および磁気記録媒体を作製した。得られた磁気記録媒体ガラス基板および磁気記録媒体の平坦度は、加工に用いたガラスブランクの平坦度と実質同一であった。
【符号の説明】
【0153】
10 溶融ガラス流出管
12 ガラス流出口
20 溶融ガラス流
22 先端部
24 溶融ガラス塊
26 板状ガラス
30 下側ブレード(シアブレード)
32 本体部
34 刃部
34U (刃部の)上面
34B (刃部の)下面
40 上側ブレード(シアブレード)
42 本体部
44 刃部
44U (刃部の)上面
44B (刃部の)下面
50 第一のプレス成形型
50S プレス成形型
52 プレス成形型本体
52A プレス成形面
52B 被押出面
54 ガイド部材
54A ガイド面
54B 被押出面
56 第一の押出部材
56A 押出面
56B 押出面56Aと反対側の面
56H 貫通穴
58 第二の押出部材
60 第二のプレス成形型
62 プレス成形型本体
62A プレス成形面
64 ガイド部材
64A ガイド面

【特許請求の範囲】
【請求項1】
落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、
上記第一のプレス成形型と上記第二のプレス成形型との間に形成された板状ガラスを、
上記第一のプレス成形型と上記第二のプレス成形型とによりプレスし続ける第二のプレス工程と、
該第二のプレス工程を経た後に、上記第一のプレス成形型と上記第二のプレス成形型とを離間して、上記第一のプレス成形型と上記第二のプレス成形型との間に挟持された上記板状ガラスを取り出す取出工程と、
を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造し、
少なくとも上記第一のプレス工程および上記第二のプレス工程の実施期間中において、上記第一のプレス成形型のプレス成形面の温度と、上記第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、
上記第一のプレス工程において、上記第一のプレス成形型のプレス成形面と、上記第二のプレス成形型のプレス成形面とを、上記溶融ガラス塊に対して略同時に接触させた後に上記溶融ガラス塊をプレスすること、および、
上記第二のプレス工程の継続時間を上記磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項2】
請求項1に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程の継続時間を、前記第二のプレス工程の終了時における前記板状ガラスの温度が、少なくとも、前記板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項3】
請求項1または2に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
溶融ガラスをガラス流出口から垂下させ、鉛直方向の下方側へと連続的に流出する溶融ガラス流の先端部を切断することで、前記溶融ガラス塊を形成する溶融ガラス塊形成工程を含むことを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項4】
請求項3に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記溶融ガラスの粘度が、500dPa・s〜1050dPa・sの範囲内であることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項5】
請求項1〜4のいずれか1つに記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第一のプレス成形型および前記第二のプレス成形型が、前記溶融ガラス塊の落下方向に対して直交する方向に対向配置されていることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項6】
請求項1〜5のいずれか1つに記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第一のプレス工程を実施する直前における、前記第一のプレス成形型および前記第二のプレス成形型のプレス成形面の温度が、前記溶融ガラス塊を構成するガラス材料の歪点に10℃を加えた温度以下であることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項7】
請求項1〜6のいずれか1つに記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程におけるプレス圧力を、経時的に減少させることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項8】
請求項7に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記プレス圧力を、前記第一のプレス成形型と前記第二のプレス成形型との間に挟持される前記板状ガラスの温度が、当該板状ガラスを構成するガラス材料の屈伏点±30℃の範囲内にまで低下した時点で、減少させることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項9】
請求項1〜8のいずれか1つに記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程の実施中において、前記板状ガラスの一方の面と前記第一のプレス成形型のプレス成形面とを常に隙間無く密着させると共に、前記板状ガラスの他方の面と前記第二のプレス成形型のプレス成形面とを常に隙間無く密着させることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項10】
請求項1〜9のいずれか1つに記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程の継続時間を、前記磁気記録媒体ガラス基板用ガラスブランクの平坦度が4μm以下になるように制御することを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項11】
請求項1〜10のいずれか1つに記載のガラスブランクの製造方法において、
前記第一のプレス成形型および前記第二のプレス成形型のプレス成形面の少なくとも前記板状ガラスと接触する領域が、略平坦な面であることを特徴とする磁気記録媒体ガラス基板用ガラスブランクの製造方法。
【請求項12】
落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、
上記第一のプレス成形型と上記第二のプレス成形型との間に形成された板状ガラスを、
上記第一のプレス成形型と上記第二のプレス成形型とによりプレスし続ける第二のプレス工程と、
該第二のプレス工程を経た後に、上記第一のプレス成形型と上記第二のプレス成形型とを離間して、上記第一のプレス成形型と上記第二のプレス成形型との間に挟持された上記板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造した後、
上記磁気記録媒体ガラス基板用ガラスブランクの主表面を研磨する研磨工程を少なくとも経て、磁気記録媒体ガラス基板を製造し、
少なくとも上記第一のプレス工程および上記第二のプレス工程の実施期間中において、上記第一のプレス成形型のプレス成形面の温度と、上記第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、
上記第一のプレス工程において、上記第一のプレス成形型のプレス成形面と、上記第二のプレス成形型のプレス成形面とを、上記溶融ガラス塊に対して略同時に接触させた後に上記溶融ガラス塊をプレスすること、および、
上記第二のプレス工程の継続時間を上記磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする磁気記録媒体ガラス基板の製造方法。
【請求項13】
請求項12に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程の継続時間を、前記第二のプレス工程の終了時における前記板状ガラスの温度が、少なくとも、前記板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することを特徴とする磁気記録媒体ガラス基板の製造方法。
【請求項14】
請求項12または13に記載の磁気記録媒体ガラス基板の製造方法において、
前記磁気記録媒体ガラス基板用ガラスブランクの平坦度と、前記磁気記録媒体ガラス基板の平坦度とが実質同一であることを特徴とする磁気記録媒体ガラス基板の製造方法。
【請求項15】
落下中の溶融ガラス塊を、当該溶融ガラス塊の落下方向に対して交差する方向に対向配置された第一のプレス成形型および第二のプレス成形型によりプレスし、板状に成形する第一のプレス工程と、
上記第一のプレス成形型と上記第二のプレス成形型との間に形成された板状ガラスを、
上記第一のプレス成形型と上記第二のプレス成形型とによりプレスし続ける第二のプレス工程と、
該第二のプレス工程を経た後に、上記第一のプレス成形型と上記第二のプレス成形型とを離間して、上記第一のプレス成形型と上記第二のプレス成形型との間に挟持された上記板状ガラスを取り出す取出工程と、を少なくとも経て磁気記録媒体ガラス基板用ガラスブランクを製造した後、
上記磁気記録媒体ガラス基板用ガラスブランクの主表面を研磨する研磨工程を少なくとも経て、磁気記録媒体ガラス基板を製造し、さらに、
上記磁気記録媒体ガラス基板上に磁気記録層を形成する磁気記録層形成工程を少なくとも経て、磁気記録媒体を製造し、
少なくとも上記第一のプレス工程および上記第二のプレス工程の実施期間中において、上記第一のプレス成形型のプレス成形面の温度と、上記第二のプレス成形型のプレス成形面の温度とが、実質的に同一であり、
上記第一のプレス工程において、上記第一のプレス成形型のプレス成形面と、上記第二のプレス成形型のプレス成形面とを、上記溶融ガラス塊に対して略同時に接触させた後に上記溶融ガラス塊をプレスすること、および、
上記第二のプレス工程の継続時間を上記磁気記録媒体ガラス基板用ガラスブランクの平坦度が10μm以下になるよう制御することを特徴とする磁気記録媒体の製造方法。
【請求項16】
請求項15に記載の磁気記録媒体ガラス基板用ガラスブランクの製造方法において、
前記第二のプレス工程の継続時間を、前記第二のプレス工程の終了時における前記板状ガラスの温度が、少なくとも、前記板状ガラスを構成するガラス材料の歪点に10℃を加えた温度以下となるように選択することを特徴とする磁気記録媒体の製造方法。
【請求項17】
請求項15または16に記載の磁気記録媒体の製造方法において、
前記磁気記録媒体ガラス基板用ガラスブランクの平坦度と、前記磁気記録媒体ガラス基板の平坦度とが実質同一であることを特徴とする磁気記録媒体の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−79361(P2012−79361A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2010−221316(P2010−221316)
【出願日】平成22年9月30日(2010.9.30)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】