説明

磁気記録装置

【課題】高密度に磁化情報を書き込むことのできる磁気記録装置を提供する。
【解決手段】磁気記録媒体101の磁気記録層103として、電界印加により磁気異方性エネルギーが変化する磁性材料を用い、ヘッドに磁気記録層の記録領域に電界を印加するための電極105を設ける。磁気記録層の記録領域に直流磁界106を印加しながら電極105から交流電界を印加して磁気記録する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁化情報の書き込みを行う装置に関し、磁気記録膜の磁化状態を外部からの物理作用に伴う異方性エネルギーの変化を利用して変化させ、磁化情報の書き込みを行う新規な磁気記録装置に関するものである。
【背景技術】
【0002】
ハードディスクドライブ装置(HDD)や光磁気ディスクでは、高記録密度化による記録単位の狭小化に伴い、記録媒体のより小さな領域に書き込み・読み出しする技術が求められている。しかし、従来のHDDに適用される連続媒体では、テラビット/平方インチ級に記録単位を狭小化したときは、1ビットあたりの記録単位の大きさは約20平方ナノメートルと小さく、熱的な擾乱が大きい。このため、磁気異方性エネルギーの高い材料を適用し、熱擾乱を防ぐとともに、粒子の微細化と粒子間相互作用の低減で記録にじみを低減し、実用化を図ってきた。さらなる高記録密度化に対して、昨今、媒体の記録層を不連続化することで書きにじみのノイズを低減する、デイスクリートトラック媒体やパターン媒体が考えられている。しかし、前述の記録ビットあたりの磁気エネルギーは熱擾乱を防ぐために一定以上の大きさであることが必須なため、そのままでは記録に対して大きな磁界を必要とする。
【0003】
書き込みヘッドは、電磁石の原理でコイルに通電することで磁極に発生する磁界を用いているが、記録ビットが狭小化すると磁界が不足する現象が顕在化する。このため、ヘッドにレーザ等の光源機構をつけ、さらに、記録媒体に熱によって保磁力が変化する材料を用いることによって、記録時にレーザを照射し、媒体温度を上げて記録を行う熱アシスト磁気記録が検討されている。
【0004】
それに類似する技術として、特開2003−91801号公報には、磁気異方性エネルギーの高い材料と光誘起強磁性材料を積層した構造を用い、光の照射によって磁性材料の結合が変化し、記録層の保磁力が減少する記録方式が提案されている。これは、特開平8−255707号公報にあるような特定の材料に限られた現象である。
【0005】
【特許文献1】特開2003−91801号公報
【特許文献2】特開平8−255707号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
熱アシスト磁気記録は、記録時に隣接する記録ビットも加熱してしまうため、熱揺らぎの影響が大きく、記録密度向上のためには保磁力の温度変化が急峻な材料の開発が課題である。また、光照射を伴う記録方法の場合、ヘッドにレーザ照射機構を組み込む必要があるが、構造上大変複雑でありコストが高くなる。
【0007】
本発明は、単層の磁気記録層を用い、単純な磁気ヘッド構造で高密度記録が可能な磁気記録方式を提供するものである。
【課題を解決するための手段】
【0008】
本発明の磁気記録装置は、電界等の外部エネルギー印加に伴い異方性エネルギーが変化する強磁性層を記録層として用い、記録媒体に外部エネルギーを印加するアシスト源を配置するとともに、記録を行うヘッドを配置する。例えば外部エネルギーを電界としたときは、電界印加によって記録媒体の磁気異方性エネルギーが変化し、保磁力が減少する材料を記録層に用いる。具体的には、磁性半導体は、顕著なキャリア濃度に依存した磁気結合の生成及び消滅が調整できるために、これと磁気特性を最適化することで、強磁性特性を持ちながら、外部電界によってキャリア濃度を変調し、結晶磁気異方性を変えることが可能である。この減少は、特に媒体の磁化容易方向が面内方向で方位が定まった単結晶構造である場合に顕著である。このとき、電界印加によって磁化容易軸自体が動く現象が起きるので、保磁力は大きく変化する。
【0009】
このため、このような電界印加機構をヘッド内に設ける。例えば、電極層を一層記録ヘッドの磁極近傍に配置する。これは、構造上非常に単純なため、容易に実現可能である。したがって、この電界印加機構から記録媒体に電界を印加し、記録媒体の保磁力が減少したときに書き込みヘッドからの磁界によって記録を行い、記録終了とともにヘッドが移動すると、電界はゼロとなり、保磁力が増大して記録層の磁化情報は安定して保持される。
【発明の効果】
【0010】
本発明によれば、磁気記録媒体に高密度に磁化情報を記録することができる。
【発明を実施するための最良の形態】
【0011】
以下に図を参照して、本発明による磁気記録原理を説明すると共に、その実施例を説明する。
【0012】
本発明による磁気記録再生装置の一実施例について、図1を参照して説明する。図1は、磁気記録媒体101、記録再生ヘッド200、及び磁界印加機構106の関係を示した模式図である。磁気記録媒体101は、電気伝導性を持つ基板102と磁気記録層103を備えるもので、図の記録層の磁化は膜面に垂直な方向に向いている。基板102として導電性基板を用いると、基板固定部分を介して基板の電位を特定の値に電気的に設定することが可能なため、電界印加機構からの電界を一定にすることができ有効である。たとえば、基板を接地することで電位の基準にすることができる。一方、基板を挟み、電界印加機構のある側と反対側に電位の基準がある場合も有効である。この回路磁気記録媒体101は、磁気記録層103自体を膜面垂直方向に容易磁化方向が存在する材料で構成することによって、あるいは、媒体の磁気記録部分を不連続なパターン形状に加工し、形状磁気異方性によって個々のパターンの磁化が膜面垂直になるようにすることによって得られる。これらパターンの媒体上面から見た形状は、円形、楕円形、四辺形(正方形、長方形、菱形をふくむ)、六角形等とすることができ、その大きさは、ドット面積として100〜5000nm2の範囲で、記録密度によって異なる。例えば、1テラビットの記録密度の長方形ドットでは、記録トラック幅Tw<25nm、かつ、ビット幅<25nmで、ドットあたり625nm2となる。
【0013】
磁気記録媒体の膜は、アルミ基板あるいは、半導体基板上にスパッタリング法、真空蒸着法、MBE法等の製膜技法により形成されたものを用いた。あるいは、絶縁性基板上に予め導電性材料を下地層として形成したものでもよい。特に、下地に単結晶導電性半導体基板を用いることにより、面内の結晶方位のそろった磁気記録媒体が作製できる。磁気記録層の材料は、電界によって磁気異方性が変化する材料を選択する。このような材料系として現在知られているものは、キャリア濃度によって磁気特性が変わる一部の磁性半導体であり、具体的な材料としては、MnをドープしたInAs化合物である(InMn)As、MnをドープしたGaAs化合物である(GaMn)As、GaN、ZnO等がある。これらのうち(InMn)As、(GaMn)Asについては、低温での特性が顕著である。しかし、ドープ量の増大によって、室温でも強磁性的な特性が報告されつつあり、本発明での特性も確認されている。室温で挙動する磁性半導体材料のうちキャリアドープが顕著な材料は、本構造に好適である。
【0014】
この磁気記録媒体の基板裏面側から磁界印加用ヘッド106により、アシスト磁界107を基板の磁気記録を行う領域に印加する。磁界印加用ヘッド106はコイルあるいは電磁石からなり、媒体裏面側を記録再生ヘッド200と同期して移動するアームに取り付けられているか、あるいは、媒体の裏面から記録領域全域に均一に磁界を印加する形態をとる。記録誤りや消費電力等の観点で、前者の方が有効である。これらの磁界印加用ヘッド106は、上記ビットや、記録再生ヘッド200より十分に大きい寸法を有する。
【0015】
磁界印加用ヘッド106から印加する磁界の大きさは、磁気記録層の材料によって変わる。一部の希釈磁性半導体では、印加する磁界の大きさによって磁気異方性エネルギーが変化し、結果として保磁力が変化する。この変化を有効に与える磁界は、100Oe以上、10万Oe以下の範囲にあり、実用的には100Oe以上、2000Oe以下で使用される。磁界印加用ヘッド106は、大きいとそれだけ消費電力が大きくなり、高い磁界を出すのに大きなコストが必要となる。また、もれた磁束の影響を低減するシールドも必要となるため、必要最低限の面積とする要求がある。このため、記録ビットを中心とする1cm2以下、できれば100μm2以下の範囲に磁束を集中できる機構が望ましい。
【0016】
媒体101の表面側に配置される記録再生ヘッド200には、記録されたビットからの漏洩磁界を検知するに十分な分解能と出力を備えた再生ヘッド104と、電界を印加して媒体の磁気異方性エネルギーを変調し、書き込みを行うための電界印加用電極105が設けられる。再生ヘッド104は、GMRあるいはTMRによる磁気抵抗効果、あるいはスピントロニクス効果を利用した高空間分解能磁気再生ヘッドからなる。一方、層状の電界印加用電極105は、高周波交流電流によって高周波の周期的電界を磁気記録媒体に印加する働きをするものである。周波数との関係について、磁界に対する磁気特性の追随性は、通常の3d金属原子の化合物の場合、静的状態から3GHz程度まで安定である。一方、本発明における磁性半導体の媒体は、磁界に対する磁気特性の追随性は、磁性を発生する電子状態が3d金属とは異なり、s電子、d電子、p電子の混成軌道の電子から構成されるために、同等かそれ以上とされる。また、電界に対する磁気特性の追随性はこの範囲では十分追従する。
【0017】
電界印加用電極105のサイズは、記録密度及びそれに対応した記録パターン幅に関係する。ただし、パターン媒体のドットパターンへの書き込みの場合は、ドット同士が離れていてサイドトラック書き込みの影響が低いことと、電界を絞り込むために媒体裏側の誘電率を調整するなどの手法があり、高密度にすることが可能である。電極に発生させる電圧パルスは、1〜5Vの一定の値である。ただし、媒体によっては、数100Vの電圧が必要であるため、特殊な電源が必要である。一方、再生ヘッド104の大きさは、記録されるドットのサイズに依存する。TMRなどは現状の技術ではギャップ幅40nm程度が限界なために、400Gb/in2程度で使用可能である。さらなる高密度化に対しては、より高分解能機能を高めた再生素子が必要である。例えば1テラビット/In2では、Gs<25nmの再生分解能が必要である。ひとつは、スピントロニクス技術を応用した新しいヘッド構造のもの、あるいは、針状の磁界センス機構を用いるプローブタイプの再生機構などが考えられる。
【0018】
図2に示されるように、磁界印加ヘッド106に一定の電流を流すことで、一定強度の直流磁界が発生し、磁気記録媒体101には一定の大きさの磁界Haが印加される。一方、記録再生ヘッド200の電界印加用電極105からは、Eという大きさの電界が磁気記録媒体101の記録ビット領域に印加される。磁気記録媒体101の磁気記録層103は、印加電界Eがゼロのときは図2(a)に示すように保磁力の大きな磁界依存性を示し、印加電界EがE0のときは図2(b)に示すように保磁力の小さい磁界依存性を示す。したがって、磁界印加ヘッド106から磁気記録媒体101に印加する磁界Haの大きさを、E=0のときの保磁力の大きさより小さく、E=E0のときの保磁力よりも大きい値にし、電界印加電極105からの電界をE0と0の間で高速に変化させることにより、磁化状態としてMHとMLという2つの状態を可逆に形成できる。
【0019】
すなわち、磁気記録媒体101に磁界Haを印加した状態で電界印加電極105からの電界をE=E0にすると、図2(b)に示すように、磁気記録層103の電界印加領域の保磁力は小さい状態になり、磁気記録層103の電界印加領域の磁化状態はMHになる。その後、印加電界がゼロになると、図2(c)に示すように、磁気記録層103の電界印加領域の保磁力は大きな状態に戻るが、磁気記録層103の電界が印加されていた領域の磁化状態はMHのまま維持される。磁気記録媒体101に磁界Haを印加した状態で電界印加電極105からの電界がゼロであれば、図2(a)に示すように、磁気記録層の対応領域の磁化状態はMLのままである。このような原理で記録を行うものである。この方式では、通常の磁気記録と比べて電界による磁気異方性の反転速度を高速に行うことが可能であり、高速の磁化変調が可能である。また、記録に際して必要な磁界が低減することにより、磁界発生に要する電力を削減できる。
【0020】
本方式による磁気記録装置は、通常記録を行わない場合の磁気記録媒体の保磁力は十分大きいため、熱による磁気記録情報の擾乱に強く、かつ、ヘッド構造も簡単であり、製造が容易である。
【0021】
本発明による磁気記録再生装置の他の実施例について、図3を参照して説明する。図3は、磁気記録媒体101と記録再生ヘッド210の関係を示した模式図である。磁気記録媒体101は、少なくとも電気伝導性を持つ基板102と磁気記録層103を備え、図では記録層の磁化は膜面に平行な方向に向いている。この磁気記録媒体101は、磁気記録層103の膜自体を膜面内方向に容易磁化方向が存在する材料で構成することによって、あるいは、媒体の磁気記録部分を不連続なパターン形状に加工し、形状磁気異方性によって磁化が膜面内方向を向くようにすることによって得られる。
【0022】
磁気記録媒体の膜は、アルミ基板あるいは半導体基板上にスパッタリング法、真空蒸着法、MBE法等の製膜技法により形成されたものを用いた。あるいは、絶縁性基板上に予め導電性材料を下地層として形成したもの、さらにこれを接地したものでもよい。特に、下地に単結晶導電性半導体基板を用いることにより、面内の結晶方位のそろった磁気記録媒体が作製できる。磁気記録層の材料は、先の実施例と同様に、電界によって磁気異方性が変化する材料を用いた。
【0023】
記録再生ヘッドは、記録されたビットからの漏洩磁界を検知するに十分な分解能と出力を備えた再生ヘッド104と、電界を印加して媒体の磁気異方性エネルギーを変調し、書き込みを行うための電界印加用電極105、及び磁気記録用磁極306を備える。再生ヘッド104は、GMRあるいはTMRによる磁気抵抗効果、あるいはスピントロニクスを利用した再生ヘッドからなる。一方、電界印加用電極105は磁気記録用磁極306の近傍に配置されており、一定強度のアシスト電界を磁気記録媒体101の磁気記録を行う領域に印加する働きをする。
【0024】
電界印加電極105は電極層の形態をなしており、ヘッドと一体になっている。この電界印加電極105は、図3では記録用磁極及びリターンヨークの間に位置していて、記録再生ヘッド210の媒体対向面に露出しているが、媒体対向面に露出せず、ヘッド内部に引き込まれたところに位置する構造も可能である。この場合、記録分解能は記録用磁極及びリターンヨークの間の距離で決まるが、そこから離れた位置にある電極から電界が印加されるため、比較的広い範囲に電界が印加されることになる。したがって、隣接トラックに影響を与えないように、電界印加用電極105の媒体対向面からの引き込み高さと電界強度とを最適化させることが必要である。
【0025】
図4に示されるように、この電界印加電極105に一定の電圧信号を印加することで、一定強度の電界が発生し、磁気記録媒体101にはE0の大きさの一定電界が印加される。一方、記録再生ヘッド210の磁気記録用磁極306からは大きさH0の交流磁界が磁気記録媒体101の記録ビット領域に印加される。磁気記録媒体101の磁気記録層103は、印加電界がゼロのときは図4(a)に示す保磁力の大きな磁界依存性を示し、印加電界がE0のときは、図4(b)に示す保磁力の小さな磁界依存性を示す。したがって、印加する磁界H0の大きさを、印加電界が0のときの保磁力の大きさより小さく、印加電界がE0のときの保磁力よりも大きい値にし、磁界を±H0で高速反転することにより、磁化状態としてMHとMLという2つの状態を可逆に作製できる。
【0026】
すなわち、図4(b)に示すように、電界E0を印加して磁気記録層103の保磁力を小さくした状態で、磁気記録層103の記録領域に磁気記録用磁極306から磁界−H0を印加すると記録領域の磁化状態はMLになり、磁界+H0を印加すると記録領域の磁化状態はMHになる。その後、印加電界をゼロにしても、図4(c)に示すように、記録領域の磁化状態はMLあるいはMHに維持される。このような原理により記録を行うものである。
【0027】
本方式による磁気記録装置は、通常記録を行わない場合の磁気記録媒体の保磁力は十分大きいため、熱による磁気記録情報の擾乱に強く、かつ、ヘッド構造が簡単なため容易に製造することができる。
【0028】
本発明による磁気記録再生装置の別の実施例について、図5を参照して説明する。図5は、磁気記録媒体101と、記録再生ヘッド220の関係を示した模式図である。磁気記録媒体101は、少なくとも電気伝導性を持つ基板102と磁気記録層103を備え、必要があれば軟磁性下地層507を磁気記録層103の下に備える。磁気記録層の材料としては、先の実施例と同様に、電界によって磁気異方性が変化する材料を用いた。磁気記録層103の磁化は、膜面に垂直な方向に向くようになっている。この磁気記録媒体101は、磁気記録層103自体を膜面垂直方向に容易磁化方向が存在する材料で構成することによって、あるいは軟磁性下地層507との磁気的結合あるいは、磁気記録層103を不連続なパターン形状に加工し、形状磁気異方性によって個々のパターンの磁化が膜面垂直になるようにすることによって得られる。本実施例の磁気記録再生装置によっても、図3及び図4で説明した実施例と同様に、良好な動作が得られた。
【0029】
また、これらの磁気記録再生装置のヘッド構造について図6と図7を参照して説明する。図6は、記録部に電界印加用電極105を備えるヘッドの模式図である。このヘッドは、電界印加用ポール105と、再生シールド部104及び再生センサ部606を備える。また、図7は磁気記録ヘッドを備えるヘッドの模式図であり、磁気記録用ヘッド306のギャップ部分に電界印加用電極105を備えるものである。
【0030】
図8及び図9は、本発明による磁気ディスク装置の構成例を示す模式図である。まず、構造が単純な、上記図7のヘッドを搭載する場合の磁気ディスク装置の構成例である図9について説明する。この磁気ディスク装置は、同心円状のトラックとよばれる記録領域にデータを記録するための、ディスク状に形成された磁気記録媒体としての磁気ディスク801、データの読み取り、書き込みを実施するための本発明による記録再生ヘッド806、記録再生ヘッド806を支え磁気ディスク801上の所定位置へ移動させるアクチュエータ811、磁気ヘッドが読み取り、書き込みするデータの送受信及びアクチェータ手段の移動などを制御する制御手段805を有する。磁気ディスク801は回転軸802によって支持され、駆動用モータ803によって回転させられる。磁気ディスク801が回転すると同時に、記録再生ヘッド806がディスク表面を移動することによって、目的とするデータが記録されている所定位置へアクセスされる。記録再生ヘッド806は、サスペンション807によってアーム808にとりつけられる。サスペンション807はわずかな弾力性を有し、アーム808はアクチュエータ811に取り付けられる。アクチュエータ811は、制御手段805からライン804を介して与えられる電気信号によって制御される。
【0031】
同様に、図8は前述の図6のヘッドを搭載する場合の磁気ディスク装置の構成例であり、ヘッド制御以外に、基板裏側から磁界印加機構106を備えることが特徴である。磁界印加機構106の大きさは、磁気ヘッドに比べて十分大きい。ヘッド用のアクチュエータと同期して基板裏側の磁界印加機構106も移動するが、制御手段を最適化することにより、磁界印加機構106の位置決め精度、速度は比較的緩慢にすることが可能である。
【0032】
磁気ディスクの動作中、磁気ディスク801の回転によって記録再生ヘッド806を保持するスライダーとディスク表面の間に空気流によるエアベアリングが生じ、それがスライダーを磁気ディスク801の表面から浮上させる。したがって、磁気ディスク装置の動作中、本エアベアリングはサスペンション807のわずかな弾性力とバランスをとり、スライダーは磁気ディスク表面にふれずに、かつ磁気ディスク801と一定間隔を保って浮上するように維持される。通常、制御手段805はロジック回路、メモリ、及びマイクロプロセッサなどから構成される。そして、制御手段805は、各ラインを介して制御信号を送受信し、かつ磁気ディスク装置の種々の構成手段を制御する。例えば、モータ803はライン804を介し伝達されるモータ駆動信号によって制御される。アクチュエータ811は、ライン809を介したヘッド位置制御信号及びシーク制御信号等によって、その関連する磁気ディスク801上の目的とするデータトラックへ選択されたスライダーを最適に移動、位置決めするように制御される。
【0033】
そして、制御信号は、磁気ヘッド810が磁気ディスク801のデータを読み取り変換した電気信号を、ライン809を介して受信し解読する。また、磁気ディスク801にデータとして書き込むための電気信号を、ライン809を介して記録再生ヘッド806に送信する。すなわち、制御手段805は、記録再生ヘッド806が読み取り又は書き込みする情報の送受信を制御している。なお、上記の読み取り、書き込み信号は、記録再生ヘッド806から直接伝達されるようにすることも可能である。また、制御信号として例えばアクセス制御信号及びクロック信号などがある。さらに、磁気ディスク装置は複数の磁気ディスクやアクチュエータ等を有し、該アクチュエータが複数の記録再生ヘッドを有してもよい。また、媒体は図に示されるように円盤型の媒体が回転し、ヘッドがアクセスするタイプ以外に、固定した媒体上に多数のヘッドが同時並行にスキャンするような機構のものも同様に有効である。このような複数の機構を兼ね備えることによって、いわゆるデイスクアレイ装置を形成することが可能である。本発明の磁気記録媒体と記録再生ヘッドを搭載することにより、再生密度が1Tb/in2を超える領域の磁気記録再生が可能となる。
【図面の簡単な説明】
【0034】
【図1】本発明による磁気記録再生装置の一実施例の概念図。
【図2】磁気記録層の磁化曲線と外部磁界の関係及び、記録条件を表す図。
【図3】本発明による磁気記録再生装置の他の実施例の概念図。
【図4】磁気記録層の磁化曲線と外部磁界の関係及び、記録条件を表す図。
【図5】本発明による磁気記録再生装置の別の実施例の概念図。
【図6】本発明による磁気ヘッドの構成例を示す模式図。
【図7】本発明による磁気ヘッドの構成例を示す模式図。
【図8】本発明による磁気ディスク装置の構成例を示す模式図。
【図9】本発明による磁気ディスク装置の構成例を示す模式図。
【符号の説明】
【0035】
101:磁気記録媒体、102:基板、103:磁気記録層、104:再生ヘッド、105:電界印加用電極、106:磁界印加用ヘッド、107:アシスト磁界、200〜220:記録再生ヘッド、306:磁気記録用磁極、507:軟磁性下地層、602:磁界発生用コイル、604:再生用下部電極膜、606:再生センサ膜、801:磁気ディスク、802:回転軸、803:駆動用モータ、805:制御手段、806:記録再生ヘッド、807:アーム、808:駆動伝達部、811:アクチュエータ

【特許請求の範囲】
【請求項1】
磁気記録層として外部エネルギーの印加によって異方性エネルギーが変化する磁性材料を用いた磁気記録媒体と、
前記磁気記録媒体に前記外部エネルギーを印加するための外部エネルギー印加手段と、
前記磁気記録媒体に磁界を印加するための磁界印加手段とを備え、
前記前記磁気記録媒体の磁気記録層に前記外部エネルギー印加手段から外部エネルギーを印加した状態で前記磁界印加手段から磁界を印加して磁化情報を書き込むことを特徴とする磁気記録装置。
【請求項2】
請求項1記載の磁気記録装置において、前記磁性材料は電界印加によって保磁力が減少することを特徴とする磁気記録装置。
【請求項3】
磁気記録層として電界印加により磁気異方性エネルギーが変化する磁性材料を用いた磁気記録媒体と、
前記磁気記録媒体を駆動するための駆動部と、
前記磁気記録層の記録領域に電界を印加するための電極及び当該記録領域に磁界を印加するための磁極を有するヘッドと、
前記ヘッドを前記磁気記録媒体の所望位置に位置決めするためのアクチュエータとを備え、
前記磁気記録媒体の磁気記録層に前記電極から直流電界を印加しながら前記磁極から交流磁界を印加して磁気記録することを特徴とする磁気記録装置。
【請求項4】
請求項3記載の磁気記録装置において、前記電極は前記記録領域に磁界を印加するための一対の磁極の間に設けられていることを特徴とする磁気記録装置。
【請求項5】
請求項3記載の磁気記録装置において、前記磁性材料は電界印加によって保磁力が減少することを特徴とする磁気記録装置。
【請求項6】
請求項3記載の磁気記録装置において、前記磁性材料は磁性半導体材料であることを特徴とする磁気記録装置。
【請求項7】
請求項3記載の磁気記録装置において、前記磁性材料はMnをドープしたGaAs化合物、MnをドープしたInAs化合物、GaN又はZnOを主成分とする材料であることを特徴とする磁気記録装置。
【請求項8】
磁気記録層として電界印加により磁気異方性エネルギーが変化する磁性材料を用いた磁気記録媒体と、
前記磁気記録媒体を駆動するための駆動部と、
前記磁気記録層の記録領域に電界を印加するための電極と、
前記記録領域に磁界を印加するための磁極と、
前記ヘッドを前記磁気記録媒体の所望位置に位置決めするためのアクチュエータとを備え、
前記磁気記録媒体の磁気記録層に前記磁極から直流磁界を印加しながら前記電極から交流電界を印加して磁気記録することを特徴とする磁気記録装置。
【請求項9】
請求項8記載の磁気記録装置において、前記電極と前記磁極は前記磁気記録媒体の表裏から当該磁気記録媒体を挟むように配置されていることを特徴とする磁気記録装置。
【請求項10】
請求項8記載の磁気記録装置において、前記磁性材料は電界印加によって保磁力が変化することを特徴とする磁気記録装置。
【請求項11】
請求項8記載の磁気記録装置において、前記磁性材料は磁性半導体材料であることを特徴とする磁気記録装置。
【請求項12】
請求項8記載の磁気記録装置において、前記磁性材料はMnをドープしたGaAs化合物、MnをドープしたInAs化合物、GaN又はZnOを主成分とする材料であることを特徴とする磁気記録装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2007−265512(P2007−265512A)
【公開日】平成19年10月11日(2007.10.11)
【国際特許分類】
【出願番号】特願2006−88349(P2006−88349)
【出願日】平成18年3月28日(2006.3.28)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】