説明

磁気軸受制御システムおよび磁気軸受制御方法

【課題】ロータの機器浮上時において、補助軸受に支えられた状態から基準位置までロータを段階的に浮上させるようにして、ロータの急激な浮上を防止した磁気軸受制御システムおよび磁気軸受制御方法を提供する。
【解決手段】ロータの上下に配置され通電によりロータを基準位置に磁気的に浮上させるコイルと、ロータの上下に配置されロータ位置を検出する位置検出器と、前記位置検出器からの信号に基いて前記各コイルに電流指令を与えるサーボ制御器を備え、前記位置検出器からのロータ位置のフィードバックにより前記コイルへの通電を制御する磁気軸受制御システムにおいて、ロータの上下に配置されロータの磁気浮上前にロータを支える補助軸受と、ロータの磁気浮上時に、前記補助軸受の間でロータを上記基準位置まで段階的に浮上させるように前記サーボ制御器を制御する制御部を設けた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、工場やプラント等で用いられる任意の回転機、特に回転機やターボ分子ポンプ等に使用される磁気軸受制御システムおよび磁気軸受制御方法に関するものである。
【背景技術】
【0002】
磁気軸受制御システムは、予め定められている軸上に二個のコイルを有し、このコイルに電流を流すことで、電磁石として機能しそのコイルの磁力によりロータを浮上させて、非接触で支持するシステムである。上下方向から、それぞれのコイルの磁力によりロータを引張会う不安定な系である。制御システムとしては、例えば特許文献1に記載のようにロータ位置をフィードバックし、二個のコイルを制御する方法が一般的である。具体的なシステムとしては、ロータ位置を検出するための位置検出器と、サーボ制御器と、二個のコイルに電流を給電する二つの電流増幅器を有している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第04554204号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
前述の磁気軸受システムには補助軸受があり、この補助軸受は、磁気軸受システムが停止している場合や、磁気軸受システムの異常等で磁力が働かなくなった場合に、ロータが自重により落下しようとするときロータを下から支え、コイル等の軸受を含めた他の部品にロータが落下接触して破損等が起きないように構成されている。補助軸受けはロータの上下に離間して配置され、通常、補助軸受とロータとの隙間は、コイルとロータとの隙間よりも、更に狭く設計・配置されている。例えば、コイルとロータとの隙間の半分の隙間としている。
【0005】
ここでロータの初回浮上前に着目すると、この時点では磁気軸受システムが停止しているため、ロータは補助軸受に接触して支えられて停止している。この状態からロータを磁気浮上させるには、磁気軸受システムによって、ロータの現在位置のフィードバックに基いてサーボ制御でコイルに電流を流す。
【0006】
しかしながら、磁気軸受システムを構成するサーボ制御器のPID等の各パラメータの調整や電流増幅器による通電量が適切でないと、ロータが補助軸受で下を支えられている状態から急激に浮上して上方の補助軸受と接触する可能性があり、補助軸受が破損、磨耗する恐れがあるという問題があった。
【0007】
本発明は、ロータの磁気浮上時において、補助軸受に支えられた状態から基準位置までロータを段階的に浮上させるようにして、ロータの急激な浮上を防止した磁気軸受制御システムおよび磁気軸受制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は上記目的を達成するためになされたものであり、ロータの上下に配置され通電によりロータを基準位置に磁気的に浮上させるコイルと、ロータの上下に配置されロータ位置を検出する位置検出器と、前記位置検出器からの信号に基いて前記各コイルに電流指令を与えるサーボ制御器を備え、前記位置検出器からのロータ位置のフィードバックにより前記コイルへの通電を制御する磁気軸受制御システムにおいて、
ロータの上下に配置されロータの磁気浮上前にロータを支える補助軸受と、ロータの磁気浮上時に、前記補助軸受の間でロータを上記基準位置まで段階的に浮上させるように前記サーボ制御器を制御する制御部を設けたことを特徴とする。
【0009】
また、上記に記載の磁気軸受制御システムにおいて、前記制御部は、ロータの上記基準位置より下の位置に初回基準位置を設定し、ロータの磁気浮上時にこの初回基準位置まで上昇させるように前記サーボ制御器を制御することを特徴とする。
【0010】
また、上記に記載の磁気軸受制御システムにおいて、前記制御部は、上記初回基準位置を前記基準位置までの上昇間隔の半分の位置に設定したことを特徴とする。
【0011】
また、本発明は、ロータの上下に配置され通電によりロータを基準位置に磁気的に浮上させるコイルと、ロータの上下に配置されロータ位置を検出する位置検出器と、前記位置検出器からの信号に基いて前記各コイルに電流指令を与えるサーボ制御器を備え、前記位置検出器からのロータ位置のフィードバックにより前記コイルへの通電を制御する磁気軸受制御方法において、
ロータの磁気浮上前にロータを補助軸受で支え、ロータの磁気浮上時に補助軸受に支えられた状態から上記基準位置までロータを段階的に浮上させるように制御することを特徴とする。
【0012】
また、上記に記載の磁気軸受制御方法において、ロータの上記基準位置より下の位置に初回基準位置を設定し、ロータの磁気浮上時にこの初回基準位置まで上昇させるように制御することを特徴とする。
【0013】
また、上記に記載の磁気軸受制御方法において、上記初回基準位置を前記基準位置までの上昇間隔の半分の位置に設定したことを特徴とする。
【0014】
さらに、本発明の特徴は、予め定められている軸上に上下方向に各1個ずつロータ位置を検出するための位置検出器と、各2個の位置検出器からの出力の差を計算し差動位置を出力する差動出力計算器と、指令信号である基準信号と応答であるロータの差動位置との差を計算する減算器と、減算器からの出力である両者間の誤差が0になる様に演算を行うサーボ制御器と、サーボ制御器からの電流指令に沿った電流を出力する電流増幅器と、この電流増幅器に接続され通電されることで電磁石として機能する2個のコイルと磁気軸受システムが停止している場合や磁気軸受システムの異常等で磁力が働かなくなった場合にロータが自重により落下するとしても、ロータを支えコイル等の軸受を含めた他の部品にロータが接触し破損等が起きないようにしている補助軸受とを持つ場合に、ロータの初回浮上時において、ロータが急激に浮上しないようにしたものである。
【0015】
また、本発明の特徴は、予め定められている軸上に上下方向に各1個ずつロータ位置を検出するための位置検出器と、各2個の位置検出器からの出力の差を計算し差動位置を出力する差動出力計算器と、指令信号である基準信号と応答であるロータの差動位置との差を計算する減算器と、減産器からの出力である両者間の誤差が0になる様に演算を行うサーボ制御器と、サーボ制御器からの電流指令に沿った電流を出力する電流増幅器と、この電流増幅器に接続され通電されることで電磁石として機能する2個のコイルと磁気軸受システムが停止している場合や磁気軸受システムの異常等で磁力が働かなくなった場合にロータが自重により落下するとしても、ロータを支えコイル等の軸受を含めた他の部品にロータが接触し破損等が起きないようにしている補助軸受とを持つ場合に、ロータの初回浮上時においは、本来の基準位置より下の位置を初回基準位置として位置制御を行うようにしたものである。
【発明の効果】
【0016】
本発明によれば、補助軸受の破損や磨耗等を防ぐことで、寿命を延ばすことができると共に、部品コスト及び交換のための時間と作業コストを少なくできる。
【図面の簡単な説明】
【0017】
【図1】本発明の一実施例である磁気軸受制御システムを示すブロック図である。
【図2】磁気軸受けのハード構成図である。
【図3】磁気軸受制御システムのロータ浮上前の状態を示す図である。
【図4】磁気軸受制御システムのロータ浮上後の状態を示す図である。
【図5】ロータ浮上開始時の制御動作を説明するフローチャートである。
【図6】ロータ浮上開始時のロータ位置の時間履歴を示す図である。
【図7】図3の拡大図にロータ位置の時間履歴を示した図である。
【発明を実施するための形態】
【0018】
図1によって、本発明の一実施例である磁気軸受制御システムについて説明する。
図1は、本発明の一実施例である磁気軸受制御システムの構成を示すブロック図である。1はロータで、磁気軸受制御システムによって磁気浮上の制御がなされる。2、3はロータ1の上下に配置され、ロータ1の位置を検出する位置検出器である。4、5はロータ1の上下に配置され、ロータ1を磁気的に浮上させるコイルである。6,7は電流増幅器、8は位置検出器2、3からの出力の差を計算する差動出力計算器、9はサーボ制御器、10は減算器である。13はサーボ制御器9の動作を制御する制御部で、ロータ1を停止状態から磁気浮上させるのに際し、磁気浮上のし方についてサーボ制御器9の動作を制御する。
【0019】
ロータ1は工場やプラント等で用いられる任意の回転機、特に回転機やターボ分子ポンプ等のロータであり、図示していない電気駆動モータ等により駆動され回転する。位置検出器2、3は、ロータ1の上下に配置されロータ1の外周の位置を計測するためのもので例えば、渦電流式変位センサである。
【0020】
渦電流式変位センサは、高周波磁界を利用したセンサであり、センサヘッド内部にコイルを持ちこのコイルに高周波電流を流して、高周波磁界を発生させる。この磁界内に測定対象物(金属:この場合はロータ1)があると、電磁誘導作用によって、対象物表面に磁束の通過と垂直方向の渦電流が流れて、センサコイルのインピーダンスが変化する。渦電流の大きさはセンサコイルと測定対象物との距離により変化するため、この距離の変化を前述のインピーダンスの変化として測定する。
【0021】
位置検出器2、3からの出力はそれぞれ差動出力計算器8に入力される。差動出力計算器8では、位置検出器2、3からの出力の差を計算する。ここで、位置検出器2、3は予めロータ1の位置がy軸上の原点にある場合にそれぞれの出力が等しくなるように調整され、この場合の位置検出器2、3からの出力を差動出力計算器8で差を計算すると0になる。従って、位置検出器2、3からの出力それぞれの差を計算することで、図1のy軸上の原点(0)からの位置を求めることができる。
【0022】
コイル4,5は通電されることで、電磁石となり磁力を発生させる。この磁力によりロータ1を浮上させ、ロータの位置制御を行う。電流増幅器6、7は、サーボ制御器9からの電流指令に沿って、コイル4,5に電流を通電する。電流増幅器6、7は例えばPWM(Pulse Width Modulation:パルス幅変調)アンプである。これは、出力を矩形波として、そのオンとオフの時間比率(デューティー比)を変化させて、出力の絶対値を制御する方式のアンプである。
【0023】
サーボ制御器9はロータ1の位置(回転中心位置)を制御するためのサーボ機能を有する。該サーボ機能は指令信号である基準位置(y軸原点位置すなわち0)と、応答であるロータ1の実際の位置を示す位置検出器2、3の差の信号である差動出力計算器8の信号とを比較し、両者間の誤差が0になる様に演算を行う。前述のサーボ機能において指令信号(基準位置)と応答である差動出力計算器8の信号との比較を行うのが減算器10である。実際は減算器10では両者間(指令信号と差動出力計算器8の信号)の差をとっているため、該両者の出力(共に0)が等しければ差は0となり、すなわち誤差が0になる。該サーボ制御器9は例えばPIDコントローラである。
【0024】
図2において、磁気軸受制御システムのハード構成について説明する。1aはロータ1の回転中心である。コイル4,5はロータ1の両端の上下に配置され、ロータ1をラジアル方向に磁気浮上させる。12はロータ1に挿入状態に固定されたディスクで、その両面を挟むように配置されたコイル14、15によってロータ1をスラスト方向に磁気的に浮いた状態に支える。11はロータ1の両端の上下に離間して配置された補助軸受、16はロータ1に固定されたインぺラである。図2は、ロータ1が上記各コイル4、5、14、15によって磁気駆動されて、ラジアル方向とスラスト方向に浮上している状態を示している。
【0025】
図3において、磁気軸受制御システムが停止している場合や、該システムの異常等で磁力が働かなくなった場合にロータ1は自重により落下しようとするが、この際、補助軸受11がロータ1を支えることで、コイル等の軸受を含めた他の部品にロータ1が接触し破損等が起きないようにしている。補助軸受11とロータ1との隙間は、コイル4、5とロータ1との隙間よりも更に狭い隙間、例えば半分の隙間となるように設計・配置されている。また、補助軸受11は例えば転がり軸受である。
【0026】
図3、図4において、0はロータ1が磁気浮上されたときロータ1の回転中心1a(図示せず)と一致する基準位置、a、−aはコイル4、5の端面の位置を示し、前記基準位置と各コイルの端面との間隔も表す。b、−bは前記補助軸受11の端面の位置を示し、前記基準位置と前記補助軸受11の端面との間隔も表す。a=2bに設定される。ロータ1は、浮上開始前は図3に示すように補助軸受11に接触した状態にあり、補助軸受11からの浮上後は図4に示すように、回転中心1aが基準位置(0)に一致するように浮上した状態となる。
【0027】
ロータ1の浮上後は、サーボ制御器9で通常のサーボ制御が行なわれ、図3、図4の基準位置(0)にロータ1の回転中心1aを合わせるように常時制御がなされる。
【0028】
次に、図3から図4に至るロータ1の浮上開始動作について説明する。本動作は、制御部13の制御に基いてサーボ制御器9がコイル4、5に電流指令を与え、例えば制御部13内に予め記憶されているソフトウェアで実行される。図5は上記ソフトウエアによって実行されるロータ1の浮上開始時の制御のフローチャート、図6はロータ1の浮上開始動作に伴う、ロータ位置の時間履歴を示す図であり、横軸に時間と縦軸にロータ1の下面の位置を示している。
【0029】
図5でまず、ステップ310でロータ1の現在位置を位置検出器2、3で検出する。実際に使用する位置情報は、前述のように差動出力計算器8から出力される差動位置である。ステップ310では浮上開始前であるため、ロータ1の下面は下方の補助軸受11と接触しており、図3で−bの位置にある。
【0030】
次に、ステップ320でロータ1が浮上したか確認する。具体的には、サーボ制御器9に予め制御部13に設定したしきい値と比較をする。しきい値は図6でδとする。すなわち−bからδだけ上昇したかどうかを判定する。上昇している場合はステップ340に進む。上昇していない場合は、ステップ330に進み、上方のコイル4に電流を通電する。通電する電流の値は任意とするが、少なくとも大電流を通電することは避け、例えば予め制御部13に設定した所定比率によって決まった値を採用し、通電電流を段階的に増加させるようにする。ステップ330の処理が終了した後は、ステップ310に戻り、前述の動作を繰り返す。
【0031】
次にステップ340に進んだ場合は、下方のコイル5に電流を通電する。ステップ330と同様に通電する電流の値は任意とするが、例えば予め制御部13に設定した所定比率によって決まった値を採用し、通電電流を段階的に増加させるようにする。次にステップ350に進む。ステップ350では、ロータ1が現在位置(−b+δ)からさらに上昇したか判定する。具体的には、予め制御部13に設定したしきい値と比較をする。しきい値は図6でλとする。すなわち(−b+δ)からλだけ上昇したかどうかを判定する。
【0032】
上昇していない場合はステップ360に進み、上昇している場合はステップ370に進む。ステップ360では、上位置コイル4及び下位置コイル5への通電を継続する。次にステップ350に戻り、前述の動作を繰り返す。ステップ370では、上位置コイル4及び下位置コイル5への通電量の上昇を停止する。すなわち位置(−b+δ+λ)をロータ1の初回浮上時の初回基準位置としてこの位置に浮上状態を保つ。実際には、位置(−b+δ+λ)はロータ1の下面の初回基準位置となる。
【0033】
以上の図5のフローチャートでは、磁気浮上の開始時に、ロータ1の位置を本来の基準位置0より下の位置(−b+δ+λ)を初回基準位置として浮上制御し、しかも、浮上制御はコイルへの通電を段階的に増加制御することで、段階的に浮上させている。従って、ロータ1は、浮上時の慣性で基準位置0を通り越して上方の補助軸受け11に衝突することが無い。
【0034】
ステップ370の後は、浮上開始動作は終了し、その後は、サーボ制御器9によって前述の通常のサーボ制御に切替られ、基準位置すなわち、図1のy軸上の原点(0)にロータ1の回転中心位置を合わせるように制御がなされる。通常のサーボ制御では、ロータ1を初回基準位置(−b+δ+λ)から基準位置(0)に合わせる制御動作となるので、位置合わせ距離(上昇距離)が小さく、ロータ1が慣性で基準位置0を通り越して上方の補助軸受け11に衝突することが無い。
【0035】
図6でロータ1の浮上動作を示すと、ステップ330でコイル4の通電を開始し、ロータ1がδ分上昇したとき、ステップ340でコイル5の通電を開始する。その後、ロータ1がさらにλ分上昇したとき、ステップ370でコイル4、5の通電量の上昇を停止(通電量を一定に保持)して、初回基準位置に浮上状態を維持する。
【0036】
図7で上記のロータ1の浮上動作を示す。前記の磁気浮上の説明では、―bの位置からδ分上昇し、さらにλ分上昇した位置(−b+δ+λ)を初回基準位置としているが、この位置はロータ1の下面の初回基準位置である。ロータ1の回転中心1aの動作も上記と同様に、図7の位置から矢印1bで示すように、δ分、λ分と段階的に上昇する。この初回基準位置までの浮上間隔(δ+λ)は、任意の値とするが、例えば、ロータ1の回転中心位置1aが補助軸受11に支持されている状態から基準位置(0)までの上昇間隔をYとしたとき、この半分の値とする(δ+λ=Y/2)。この設定により、ロータの回転中心1aは、上昇間隔Yの中間まで上昇して一旦停止し、その後残りの半分を上昇して基準位置(0)に円滑に位置合わせすることができる。
【符号の説明】
【0037】
1…ロータ、1a…ロータ回転中心、2、3…位置検出器、4、5…コイル、6、7…電流増幅器、8…差動出力計算器、9…サーボ制御器、10…減算器、11…補助軸受、13…制御部、「0」…基準位置、Y…基準位置までの上昇間隔。

【特許請求の範囲】
【請求項1】
ロータの上下に配置され通電によりロータを基準位置に磁気的に浮上させるコイルと、ロータの上下に配置されロータ位置を検出する位置検出器と、前記位置検出器からの信号に基いて前記各コイルに電流指令を与えるサーボ制御器を備え、前記位置検出器からのロータ位置のフィードバックにより前記コイルへの通電を制御する磁気軸受制御システムにおいて、
ロータの上下に配置されロータの磁気浮上前にロータを支える補助軸受と、ロータの磁気浮上時に、前記補助軸受の間でロータを上記基準位置まで段階的に浮上させるように前記サーボ制御器を制御する制御部を設けたことを特徴とする磁気軸受制御システム。
【請求項2】
請求項1に記載の磁気軸受制御システムにおいて、
前記制御部は、ロータの上記基準位置より下の位置に初回基準位置を設定し、ロータの磁気浮上時にこの初回基準位置まで上昇させるように前記サーボ制御器を制御することを特徴とする磁気軸受制御システム。
【請求項3】
請求項2に記載の磁気軸受制御システムにおいて、
前記制御部は、上記初回基準位置を前記基準位置までの上昇間隔の半分の位置に設定したことを特徴とする磁気軸受制御システム。
【請求項4】
ロータの上下に配置され通電によりロータを基準位置に磁気的に浮上させるコイルと、ロータの上下に配置されロータ位置を検出する位置検出器と、前記位置検出器からの信号に基いて前記各コイルに電流指令を与えるサーボ制御器を備え、前記位置検出器からのロータ位置のフィードバックにより前記コイルへの通電を制御する磁気軸受制御方法において、
ロータの磁気浮上前にロータを補助軸受で支え、ロータの磁気浮上時に補助軸受に支えられた状態から上記基準位置までロータを段階的に浮上させるように制御することを特徴とする磁気軸受制御方法。
【請求項5】
請求項4に記載の磁気軸受制御方法において、
ロータの上記基準位置より下の位置に初回基準位置を設定し、ロータの磁気浮上時にこの初回基準位置まで上昇させるように制御することを特徴とする磁気軸受制御方法。
【請求項6】
請求項5に記載の磁気軸受制御方法において、
上記初回基準位置を前記基準位置までの上昇間隔の半分の位置に設定したことを特徴とする磁気軸受制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−79678(P2013−79678A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2011−220003(P2011−220003)
【出願日】平成23年10月4日(2011.10.4)
【出願人】(000005452)株式会社日立プラントテクノロジー (1,767)
【Fターム(参考)】