説明

立体形状記録装置

【課題】移動物体に対しても適用可能であり、精度の高い立体形状を簡易かつ迅速に測定することができること。
【解決手段】三角形の各辺上に配置され、機械的変位量を電気的変位量に変換する摺動抵抗器118〜120と、各摺動抵抗器118〜120が検出した電気的変位量を取得し、記録する制御装置とを備え、摺動抵抗器を有した三角形をメッシュ状に隣接配置した布状の変位部とすることによって、自由立体形状を測定する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、簡易かつ精度高く立体の自由曲面形状を測定し、記録することができる立体形状記録装置に関するものである。
【背景技術】
【0002】
従来から、立体の自由曲面形状を計測する方式があり、たとえば、3次元測定機、3次元デジタイザなどが用いられる。近年、動体の形状変化を検出するものとして、圧力検出を用いて形状を認識する装置やこれを用いたモーションキャプチャなどが提案されている(特許文献1参照)。一方、データグローブおよびこれを用いた形状認識方法も提案されている(特許文献2参照)。
【0003】
【特許文献1】特開2000−321013号公報
【特許文献2】特開2000−329511号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した従来の3次元測定機や3次元デジタイザでは、被測定物の近傍に大きな装置を設置しなければならず、移動物体の計測が困難であった。
【0005】
また、特許文献1に記載されたものは、圧力分布と元の形状との関係をもとに間接的に立体形状を測定するものであり、測定形状の誤差が生じやすいという問題点があった。
【0006】
さらに、特許文献2に記載されたものは、データグローブの関節の屈曲状態を抵抗値変化として測定するものであって、1つの抵抗値変化の測定範囲が広く、しかも特許文献1に記載されたものと同様に抵抗値変化という間接的な変化をもとに立体形状を求めるため、測定形状の誤差が生じやすいという問題点があった。
【0007】
この発明は、上記に鑑みてなされたものであって、移動物体に対しても適用可能であり、精度の高い立体形状を簡易かつ迅速に測定することができる立体形状記録装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した課題を解決し、目的を達成するために、この発明にかかる立体形状記録装置は、三角形の各辺上に配置され、機械的変位量を電気的変位量に変換する検出素子と、各検出素子が検出した電気的変位量を取得し、記録する制御手段と、を備えたことを特徴とする。
【0009】
また、この発明にかかる立体形状記録装置は、三角形の各辺上に配置され、機械的変位量を電気的変位量に変換する検出素子と、各検出素子が検出した電気的変位量を取得し、記録する制御手段とが面的に連続配置された面検出手段と、各制御手段に対して検出指示を行い、各検出素子の該検出結果を取得する制御を行う全体制御手段と、を備えたことを特徴とする。
【0010】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記制御手段は、前記三角形の同一辺方向に延びる制御信号線によって接続されることを特徴とする。
【0011】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記三角形の同一辺方向毎に層を形成して積層するとともに、各三角形の頂点位置において各層間の電位差を検出する電位差検出素子を設け、前記制御手段は、前記制御信号線からの信号と前記電位差検出素子の値とをもとに自制御手段が制御する検出素子に対する検出指示であるか否かを判断することを特徴とする。
【0012】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記全体制御手段は、各制御手段に対してアドレスを用いて前記電気的変位量を取得することを特徴とする。
【0013】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記検出素子が検出した検出結果を格納するメモリを各制御手段に対応して設け、前記全体制御手段は各メモリに格納された検出結果を取得することを特徴とする。
【0014】
また、この発明にかかる立体形状記録装置は、上記の発明において、 前記検出素子および前記制御手段は、可撓性部材によって覆われていることを特徴とする。
【0015】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記三角形を形成する骨部分である各辺および各頂点近傍の領域の剛性に比して、該三角形によって囲まれた内部領域の剛性が小さいことを特徴とする。
【0016】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記内部領域は、空間によって形成されることを特徴とする。
【0017】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記面検出手段は複数であり、各面検出手段は、各面検出手段を機械的に連動させる連結部材によって結合されていることを特徴とする。
【0018】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記面検出手段と前記全体制御手段とは無線接続されることを特徴とする。
【0019】
また、この発明にかかる立体形状記録装置は、上記の発明において、前記検出素子は、差動変圧器であることを特徴とする。
【発明の効果】
【0020】
この発明によれば、移動物体に対しても適用可能であり、精度の高い立体形状を簡易かつ迅速に測定することができるという効果を奏する。
【発明を実施するための最良の形態】
【0021】
以下、添付図面を参照し、この発明にかかる立体形状記録装置の好適な実施の形態を詳細に説明する。なお、この実施の形態によって、この発明が限定されるものではない。
【0022】
(実施の形態1)
図1は、この発明の実施の形態1である立体形状記録装置101の概要構成を斜めからみた模式図である。図1において、この立体形状記録装置101は、リンク102〜110の各両端が、球状継手111〜116によって回動自在に連結されている。球状継手114〜116は、台座117上にそれぞれ固定配置される。摺動抵抗器118〜120は、三角形の辺を形成する各リンク102〜104の中央近傍に、各リンク102〜104を分離して埋め込まれており、伸縮することによって抵抗値変化を検知する。各摺動抵抗器118〜120は、制御装置122に接続され、各摺動抵抗器118〜120が検出した抵抗値変化は制御装置122に送られる。なお、制御装置122には、制御装置122に対する入出力を行う入出力装置123が接続されている。
【0023】
制御装置122は、入力される抵抗値変化を記憶部122aに記憶し、この記憶した抵抗値変化によって形状の変化を記録する。図2は、形状変化の一例を示す図である。図2に示すような形状変化が生じると、摺動抵抗器118〜120の抵抗値が変化し、たとえば、摺動抵抗器118は伸長することによって抵抗値が小さくなる変化を示す。
【0024】
このような形状変化は、たとえば摺動抵抗器118〜120および球状継手111〜113が形成する三角形の平面に垂直な軸の傾き変化として捉えることができる。この傾き変化は、たとえば三角形の平面に垂直な軸をジョイスティック機構の動きとして捉えれば、この立体形状記録装置は、入力装置として機能することになる。
【0025】
この実施の形態1では、単純な三角形構造を持たせ、この各辺に検出素子としての摺動抵抗器118〜120を設け、三角形の各辺の伸縮変化を三角形の面の変化として検出するようにしている。
【0026】
(実施の形態2)
つぎに、実施の形態2について説明する。上述した実施の形態1では、1つの三角形の形状変化を求め、これによって三角形の面の変化を検出するために、この三角形を支えるリンク105〜110および球状継手114〜116を設けていたが、この実施の形態2では、複数の三角形を、各辺を共有しつつメッシュ状に隣接配置し、リンク105〜110および球状継手114〜116を設けず、自由立体形状を成す面の最小要素を三角形として捉えるようにしている。
【0027】
図3は、この発明の実施の形態2である立体形状記録装置の概要構成を示す模式図である。図3において、この立体形状記録装置201は、変形部202、制御装置222、および入出力装置223を有している。変形部202は、実施の形態1に示した検出素子としての摺動抵抗器118〜120および球状継手111〜113が形成する三角形が各辺を共有しつつ隣接してメッシュ状に連続配置されている。換言すれば、6つの正三角形によって形成された正六角形がハニカム状に密に形成されているとも言える。この変形部202は、可撓性を有したエストラマーなどの絶縁材204で覆われている。
【0028】
ここで、図4および図5を参照して、具体的な変形部202の構成について説明する。図4は、立体形状記録装置201の変形部の一部を示す平面図であり、図5は、図4に示した変形部のA−A線断面図である。図4および図5において、変形部202は、裏面絶縁層234,絶縁層233b、第3導体パターン層233a、絶縁層232b、第2導体パターン層232a、絶縁層231b、第1導体パターン層231a、表面絶縁層230が順次積層された構造を有する。
【0029】
第1〜第3導体パターン層231a,232a,233aのそれぞれには互いに平行で同じ線間幅をもつ導体パターンが形成される。第1導体パターン層231aの導体パターンと第2導体パターン層232aの導体パターンとは互いに60度の角度をもち、第1導体パターン層231aの導体パターンと第3導体パターン層233aの導体パターンとは互いに−60度の角度をもって配置される。したがって、第2導体パターン層232aの導体パターンと第3導体パターン層233aの導体パターンとは、互いに60度の角度をもつことになる。各層の導体パターンは、各層に形成されるため、交わることがない。ただし、図4に示すように、三角形の頂点に対応する交点CL1,CL2,CL3,…(CL)に形成されたスルーホールで一つに交わる。
【0030】
第1〜第3導体パターン層231a〜233aの交点間の導電パターンであるセグメントには、検出素子としての直流差動変圧器D11,D12,D21,D22,D31,D32,…(D)が設けられる。直流差動変圧器Dは、セグメントの伸縮に応じた電圧を生成する。
【0031】
絶縁層231b,232bの交点CLには、スルーホールを介して各絶縁層231b,232bの上下層間の電圧を検出する層間電圧検出素子VD11,VD12,VD21,VD22,…(VD)が設けられる。さらに、絶縁層231b〜233bには、上層の第1〜第3導体パターン層231a〜233aに設けられた直流差動変圧器Dに接続されるセグメント制御部C11,C12,C13,C21,C22,C31,C32,…(C)が設けられる。各セグメント制御部Cには、メモリM11,M12,M13,M21,M22,M31,M32,…(M)が接続されるとともに、上層の導体パターンに平行に制御信号線L11,L12,L21,L22,L31,L32,…(L)が設けられる。さらに、制御部Cは、上層のセグメントの両端の位置に設けられた層間電圧検出素子VDに接続され、層間電圧検出素子VDが検出した電圧値を取得する。
【0032】
制御装置222は、各層の各導電パターンに接続されるパターン線群P1〜P3を接続するとともに、各層の制御信号線群L1〜L3を接続する。また、制御装置222は、内部に取得した検出値を格納する記憶部222aを有する。さらに、制御装置222は、各種指示の入力や検出結果などの出力を行う入出力装置223が接続される。
【0033】
ここで、図6に示すシーケンス図を参照して、立体形状記録装置201の動作処理手順について説明する。図6において、まず制御装置222は、立体形状を取得するための検出指示があったか否かを判断する(ステップS101)。検出指示がない場合(ステップS101,No)にはこの判断処理を繰り返し、検出指示があった場合(ステップS101,Yes)には、この検出命令を、制御信号線L1〜L3を介して各セグメント制御部Cに送出する(ステップS102)。
【0034】
一方、各セグメント制御部Cは、この検出命令を受信したか否かを判断する(ステップS111)。検出命令を受信しない場合(ステップS111,No)には、この判断処理を繰り返し、検出命令を受信した場合(ステップS111,Yes)には、各セグメント制御部Cが制御する検出素子である直流差動検出器Dを差動させ(ステップS112)、各直流差動検出器Dから、現在の機械的変化(伸縮)量に対応する電気的変化量である検出値を取得し、この検出値を各メモリMに格納する(ステップS113)。この際、アナログ量である各検出値をデジタル値に変換して格納してもよい。
【0035】
制御装置222側では、その後、所定のセグメントの検出値を読み出す読出命令をセグメント制御部Cに送出する(ステップS103)。そして、制御装置222は、セグメント制御部Cから検出値が送られてくると、この検出値を記憶部222aに格納する(ステップS104)。その後、読み出すべきセグメントの検出値がない、すなわち読出が終了したか否かを判断し(ステップS105)、読出が終了していない場合(ステップS105,No)には、ステップS103に移行し、さらに読出命令を送出して、つぎのセグメントの検出値を取得する処理を行い、読出が終了している場合(ステップS105,Yes)には、終了命令を各セグメント制御部Cに送出し(ステップS106)、ステップS101に移行し、上述した処理を繰り返す。
【0036】
一方、各セグメント制御部Cでは、読出命令が自セグメントに対する読出命令であるか否かを判断する(ステップS114)。たとえば、直流差動電圧検出器D12をもつセグメントに対する読出命令である場合、制御装置222は、図7に示すように、パターン線群P1のうちの制御信号線L11の上部に位置するパターン線に電圧を印加するとともに、各パターン線群P2,P3のうちの各制御信号線L21,L22の上部に位置する各パターン線に電圧を印加する。これらのパターン線に対する電圧の印加によって、層間電圧検出素子VD11,VD21の電圧が高くなり、両端の層間電圧素子VD11,VD21の電圧が所定値以上になったことを検出したセグメント制御部C12のみが、自セグメントに対する読出命令であると判断する。
【0037】
自セグメントに対する読出命令でない場合(ステップS114,No)には、ステップS116に移行し、自セグメントに対する読出命令である場合(ステップS114,Yes)には、自セグメント制御部Cに接続されるメモリMから検出値を取り出し、制御信号線L1〜L2を介して制御装置222側に送出する(ステップS115)。
【0038】
その後、各セグメント制御部Cは、制御装置222側から終了命令を受信したか否かを判断し(ステップS116)、終了命令でない場合(ステップS116,No)には、ステップS114に移行し、自セグメントに対する読出命令であるか否かの判断を行って上述した処理を繰り返し、終了命令である場合(ステップS116,Yes)には、対応する検出素子である直流差動電圧検出器Dに対する作動停止の処理を行い(ステップS117)、その後、ステップS111に移行して上述した処理を繰り返す。
【0039】
このような処理手順によって、全てのセグメントの検出値あるいは所望のセグメントの検出値を取得することができる。
【0040】
ここで、布状の変形部202の絶縁層などは、上述したように可撓性かつ絶縁性を有するエストラマーなどの高分子材料で形成するようにしているので、自由立体形状をもつ物体に載せることによって、迅速かつ精度高く、立体形状測定を行うことができる。
【0041】
さらに、各三角形の中央部領域にはセグメント制御部CやメモリM、さらには各種配線がないため、この領域210に三角形の辺や頂点領域に用いられる材料に比して剛性が低い材料を用いることによって、一層、布状の変形部202が物体にフィットし易くなり、さらに簡易かつ精度高く、立体形状測定を行うことができる。また、この領域210を空洞、すなわち空間を形成することによって、さらに簡易かつ精度高く、立体形状測定を行うことができる。
【0042】
(実施の形態3)
つぎに、この発明の実施の形態3について説明する。上述した実施の形態2では、各導電パターンのアクセスと層間電位差とをもとにセグメントを特定するようにしていたが、この実施の形態3では、アドレスを用いて各セグメントの特定、あるいは全セグメントの特定などを行うようにしている。
【0043】
図8は、この発明の実施の形態3である立体形状記録装置の変形部の一部を示す平面図である。また、図9は、図8に示したB−B線断面図である。図8および図9に示した立体形状記録装置301は、変形部302における絶縁層331b,332b,333bに設けられていたスルーホールがなく、層間電圧検出素子VDが削除された構成となっている。また、制御装置322およびセグメント制御部Cの動作処理が、実施の形態2で示した制御装置222およびセグメント制御部Cと異なる。
【0044】
すなわち、ステップS102に示した制御装置222による検出命令は、制御装置322から全セグメント制御部Cに対する共通のアドレスを送出することによって行われ、この共通のアドレスを受けた全セグメント制御部Cは、全てのセグメントの直流差動電圧検出器Dを動作させ、この動作による検出結果が、対応するメモリMに格納される。
【0045】
また、ステップS114におけるセグメント制御部Cによる判断は、各セグメント制御部Cに対して固有のアドレスを与え、この固有のアドレスを各メモリに保持し、制御装置322側は、この固有のアドレスを制御信号線群L4〜L6を介して全てのセグメント制御部Cに送出し、自アドレスと一致したセグメント制御部Cのみが自アドレスに対する読出命令を受けたものと判断するようにしている。その他の構成は、実施の形態2とほぼ同じである。
【0046】
この実施の形態3では、アドレスを用いて所望のセグメントをアクセスするようにしているので、変形部の構成がさらに簡易になる。
【0047】
(実施の形態4)
つぎに、この発明の実施の形態4について説明する。この実施の形態4では、上述した変形部202,302を複数重ね、変形部の変形方向を判断できるようにしている。
【0048】
図10は、この発明の実施の形態4である立体形状記録装置の概要構成を示す模式図である。図10において、この立体形状記録装置401の変形部402は、上述したように、変形部202あるいは変形部302に対応した変形部202a,202bを2段重ねにした構成としている。この変形部202a,202bの間には、それぞれ対応するセグメントの両端である交点間をそれぞれ機械的に連結する連結部材130を設けている。この連結部材130は、変形部202a,202bのセグメント位置あるいは交点位置の対応関係がずれないようにしている。
【0049】
図11に示すように、変形部402が、変形部202a側に凸となる褶曲が生じた場合、外側の変形部202aにおけるセグメントの長さLaは、内側の変形部202bにおけるセグメントの長さLbに比して長くなる。したがって、制御装置222は、このセグメントに対する2つの直流差動変圧器D12a,D12bとの変形量の違いをもとに、変形部402がどちら側の面に変形したかを判断することができる。たとえば、直流差動変圧器D12aの変形量が、直流差動変圧器D12bの変形量に比して大きい場合、このセグメント部分は、変形部202a側に凸となる変形が生じたものと判断することができる。
【0050】
この実施の形態4では、布状という2次元形状であるがゆえに生ずる、表裏の曖昧な方向性を、簡易に峻別することができる。
【0051】
(実施の形態5)
つぎに、この発明の実施の形態5について説明する。上述した実施の形態1〜4は、各セグメントの変形を検出するものであったが、この実施の形態5では、上述した実施の形態1〜4に類似する構成を用いて、立体形状を再生しようとするものである。ここでは、実施の形態3に対応した構成について説明する。
【0052】
図12は、この発明の実施の形態5である立体形状再生装置の概要構成を示す平面図であり、図13は、図12に示したC−C線断面図である。図12および図13において、この立体形状再生装置501は、実施の形態3の変形部302に配置された直流差動変圧器Dと同じに位置に、駆動素子としての電磁プランジャーA41,A42,A43,A51,A52,A61,A62,…(A)が代わって設けられている。各層530〜534は、実施の形態3に示した各層330〜334に対応する。セグメント制御部Cは、制御装置522から指示された処理を行う。メモリMは、自セグメントに対応する固有のアドレスや共通のアドレスを保持するとともに、駆動情報などの変形量を保持する。
【0053】
ここで、図14に示すシーケンス図を参照して、制御装置522およびセグメント制御部Cの制御処理手順について説明する。まず、制御装置522は、入出力装置523から転送指示があったか否かを判断する(ステップS201)。転送指示がない場合(ステップS201,No)には、この判断処理を繰り返し行い、転送指示があった場合(ステップS201,Yes)には、指示されたセグメントに対するアドレスを指定し、駆動変形量を示す駆動情報を、制御信号線群L4〜L6を介してセグメント制御部Cに送出する(ステップS202)。
【0054】
その後、制御装置522は、全ての駆動情報の送出が終了したか否かを判断する(ステップS203)。全ての駆動情報の送出が終了していない場合(ステップS203,No)には、ステップS202に移行し、残りの駆動情報の送出処理を行い、全ての駆動情報の送出が終了している場合(ステップS203,Yes)には、駆動命令の送出を行う(ステップS204)。
【0055】
さらに、制御装置522は、変形部502の駆動変形が終了したか否かを判断し(ステップS205)、駆動終了でない場合(ステップS205,No)には、ステップS202に移行し、さらに駆動処理を繰り返し行い、駆動終了である場合(ステップS205,Yes)には、セグメント制御部C側に駆動処理の終了命令を送出し(ステップS206)、ステップS201に移行し、上述した処理を繰り返す。
【0056】
一方、セグメント制御部Cは、制御装置522から受信した情報が駆動情報であるか否かを判断し(ステップS211)、駆動情報でない場合(ステップS211,No)には、この判断処理を繰り返し、駆動情報である場合(ステップS211,Yes)には、さらにこの駆動情報が自セグメントに対するものであるか否かを判断する(ステップS212)。この判断処理は、駆動情報に付されたアドレスが、自セグメントに対するアドレスであるか否かをもとに判断する。
【0057】
セグメント制御部Cは、自セグメントに対する駆動情報でない場合(ステップS212,No)には、ステップS211に移行して上述した判断処理を繰り返し、自セグメントに対する駆動情報である場合(ステップS212,Yes)には、この受信した駆動情報を自セグメントのメモリMに格納する(ステップS213)。
【0058】
その後、セグメント制御部Cは、制御装置522側から駆動命令を受けたか否かを判断する(ステップS214)。駆動命令であるか否かは、共通のアドレスあるいは自セグメントに固有のアドレスであって、駆動命令を示すものであるか否かによって判断する。駆動命令でない場合(ステップS214,No)には、この判断処理を繰り返し、駆動命令である場合(ステップS214,Yes)には、メモリMに格納されている駆動情報が示す変位量で駆動素子である電磁プランジャーAを駆動させる(ステップS215)。
【0059】
その後、セグメント制御部Cは、制御装置522側から終了命令を受信したか否かを判断する(ステップS216)。終了命令でない場合(ステップS216,No)には、ステップS211に移行して上述した処理を繰り返し、終了命令である場合(ステップS216,Yes)には、電磁プランジャーAの駆動を停止させる処理を行った(ステップS217)後、ステップS211に移行し、上述した処理を繰り返す。
【0060】
この実施の形態5では、駆動情報に応じて立体自由形状の再生を容易、迅速、しかも精度高く行うことができる。
【0061】
(実施の形態6)
つぎに、この発明の実施の形態6について説明する。上述した実施の形態1〜4では、立体形状の測定のみを行うものであり、実施の形態5では、立体形状の再生のみを行うものであったが、この実施の形態6では、1つの装置で、立体形状の測定も、再生も行うことができるようにしている。
【0062】
図15は、この発明の実施の形態6である立体形状記録再生装置の概要構成を示す模式図である。図15に示すように、この立体形状記録再生装置601の変形部602は、実施の形態2〜4で示した立体形状記録装置の変形部と、実施の形態5に示した立体形状再生装置の変形部とを、それぞれセグメント位置の対応関係を維持しつつ重ね合わせたものである。制御装置622は、立体形状記録装置の制御処理と、立体形状再生装置の制御処理との双方の制御処理を行うことができる。これらの制御処理の指示は、入出力装置623から行うことができる。
【0063】
すなわち、この立体形状記録再生装置601を、立体形状記録装置として機能させる場合には、変形部302に対する制御処理を行い、立体形状再生装置として機能させる場合には、変形部502に対する制御処理を行えばよい。ここで、特に、様々な立体形状の測定をした後、この測定結果の中から、記憶部622aに記憶された所望の立体形状のみを再生することができる。
【0064】
なお、図15では、2つの変形部302,502を重ね合わせるものであったが、これに限らず、図16に示すように、検出素子と駆動素子との双方の機能を達することができる機能素子AD41,AD42,AD43,…(AD)を用いるようにしてもよい。たとえば、検出素子としての直流差動変圧器と、駆動素子としての電磁プランジャーとは、1つの素子で実現することが可能である。ただし、セグメント制御部Cによる制御が異なる。
【0065】
また、検出素子が組み込まれる層と、駆動素子が組み込まれる層とを一つの変形部の中に設けるようにしてもよい。双方の制御処理を1つのセグメント制御部Cによって実現でき、構成が簡易になる。
【0066】
さらに、図15に示した変形部302,502は、それぞれ別個に形成した後、重ね合わせるようにしてもよいし、一連の工程で、変形部502の上部に変形部302を形成して作成するようにしてもよい。
【0067】
(実施の形態7)
つぎに、この発明の実施の形態7について説明する。上述した実施の形態1〜6では、変形部と制御装置との間が有線接続されていたが、この実施の形態7では、変形部と制御装置との間を無線接続するようにしている。
【0068】
図17は、この発明の実施の形態7である立体形状記録再生装置の概要構成を示す模式図である。図17において、この立体形状記録再生装置801は、図15に示した立体形状記録再生装置601と同じ処理を行うことができるが、変形部602と制御装置622との間が無線接続されている。変形部602の入出力端には無線通信部811が設けられ、制御装置622の変形部602側の入出力端に無線通信部812が設けられている。これによって、変形部602と制御装置622との間は、無線通信部811,812を介して無線接続される。
【0069】
この実施の形態7では、変形部602と制御装置622との間が無線接続されるので、変形部602を動体に付けることが可能であり、変化の激しい動体の変形を取得することができるとともに、その再生も容易にできる。
【0070】
なお、上述した実施の形態1〜7において、検出素子によって機械的変位量を電気的変位量に変換し、あるいは駆動素子によって電気的変換量を機械的変位量に変換するようにしていたが、これに限らず、圧力や、温度などの物理量の変位量であってもよい。機械的変位量が伸縮量である場合、検出素子あるいは駆動素子として、たとえばインテリファイバを用いることができる。圧力を検出する場合にはロードセルなどによって検出素子が実現され、駆動素子としては圧電素子あるいは人工筋肉を用いることができる。さらに、温度を検出する検出する検出素子としてはサーミスタなどがあげられ、駆動素子としてはニクロム線などのような発熱素子を用いればよい。また、上述した伸縮量、圧力、あるいは温度の検出素子や駆動素子を適宜組み合わせてもよい。
【0071】
ここで、人工筋肉は、たとえば、イーメックス社のポリピロール膜プランジャーや、トキコーポレーション製のバイオメタルなどを用いることができる。このトキコーポレーション製のものでは、バイオメタルのように電流が流れると収縮する性質ももつ材料を用いて実現している。なお、この人工筋肉を用いる場合、予め初期状態としてバイアス電流を印加しておき、駆動電流がバイアス電流よりも大きい場合、人工筋肉は収縮し、駆動電流がバイアス電流よりも小さい場合、人工筋肉は、延伸する。
【0072】
また、実施の形態1では、1つの三角形の面の変化を記録するものであったが、実施の形態5と同様に検出素子に代えて、駆動素子を設けるようにしてもよい。この場合、三角形の面の傾斜を変化させて、この三角形の面に垂直な法線軸を円錐状に回転する動作を記録し、この記録された動きを再生することによって、任意な回転方向および回転速度の変化をもったモータを形成することができる。
【0073】
さらに、軟性部材と硬性部材とが混在する部材に対しては、変形部によってこの部材を覆い、この変形部の表面側から一定の圧力をかけると、変形部が変形するが、この変形量を測定することによって、この部材の剛性分布を知ることができる。
【0074】
また、上述した実施の形態では、連続した立体形状の測定あるいは立体形状の再生については言及しなかったが、対象となる物体に動きがある場合、制御装置によって、連続的な立体形状の測定あるいは立体形状の再生を行うようにすればよい。
【0075】
(応用例1)
ここで、上述した立体形状記録装置、立体形状再生装置、あるいは立体形状記録再生装置を用いた応用例について説明する。まず、応用例1について説明する。図18は、応用例1の概要を示す模式図である。図18において、立体形状記録装置の変形部502がパーソナルコンピュータなどの制御装置に接続されている。制御装置を用いて入出力装置としての表示部に示されるような3次元CADデータをそのまま、変形部502に送出して各セグメントの駆動素子を駆動させることによって、リアルタイムで表示された3次元モデルを立体形状として再生することができる。
【0076】
これまでの3次元CADデータをもとにしたラピッドプロトタイピングは、光造形、でんぷんラピッドプロトタイピング、ナイロン粉末焼結など、様々なものが開発されているが、少なくとも手配してから1日以上経たなければ、その立体形状を見ることができない。ところが、この応用例1によれば、ほぼリアルタイムで設計途中の3次元モデルの立体形状を手にとってみることができるので、開発期間が一層、短縮化することができる。
【0077】
(応用例2)
つぎに、応用例2について説明する。この応用例2では、立体形状記録再生装置を適用している。図19に示すように、変形部602をベストの形状にし、このベストの上からプロの指圧師に指圧をしてもらう。このときの変形部602の変形を、連続的に検出素子で取得し、モーションキャプチャデータとして記憶部に保存しておく。その後、このモーションキャプチャデータを用いてこのベスト形状の変形部602を駆動させて変形させることができるため、常にプロの指圧師の指圧テクニックが再生されることになる。
【0078】
(応用例3)
つぎに、応用例3について説明する。この応用例3では、図20に示すように、立体形状再生装置を人工心臓に適用している。すなわち、変形部502を用いて、最適な蠕動運動を駆動させ、最も効率の良い血流提供装置を実現することができる。
【0079】
(応用例4)
つぎに、応用例4について説明する。この応用例4では、図21に示すように、立体形状記録装置を型取り装置として実現している。図21に示すように、型を取る対象である石膏像801の表面に変形部202を被せ、変形部202全体を均等に押圧できるように、フォーム部材802を用いて変形部202を圧する。この状態のときに、制御装置によって、変形部202の立体形状を瞬時に得ることができる。
【0080】
(応用例5)
つぎに、応用例5について説明する。この応用例5でも、立体形状記録装置を、モーションキャプチャ装置として実現している。この応用例5では、図22に示すように、変形部202と図示しない制御装置との間が、図17に示すように無線接続されている。この結果、フィギュアスケートなどの演技データをリアルタイムで、しかも動体自身が意識することなく、モーションキャプチャデータを迅速かつ精度良く得ることができる。
【0081】
(応用例6)
つぎに、応用例6について説明する。この応用例6では、図23に示すように、立体形状記録装置が検出した特定部分の変形を入力状態として検出するようにした不定形キー入力装置を実現することができる。この変形部202をもつユーザは、予め、この不定形キー入力装置を用いるコンピュータなどに、握り方とそれに対応したコマンドとの対応関係を保持させておくことが必要である。なお、図23に示した形状に限らず、たとえば熊のぬいぐるみを形成して、耳を曲げる、鼻を叩く、などのような変形を固有のキー入力として扱うことができる。
【0082】
(応用例7)
つぎに、応用例7について説明する。この応用例7では、立体形状記録再生装置を用いている。図24に示すように、まず変形部6をマスク形状として身につけ、言葉を話すときの口の動きを検出して記録する。この記録されたデータと口の動きとを対応づけておくことによって、そのマスクの変形をもとに、そのときの記録されたデータ(音声)が検索され、入出力装置としてのスピーカーからその音声が出力される。このようなマスクは、発声に障害をもっていても、はっきりと声を出力することができることになる。
【0083】
(応用例8)
つぎに、応用例8について説明する。この応用例8では、図25に示すように、まず内視鏡医(外科医)は、映像表示装置を用いる。この映像表示装置は、サングラスのようにかけるだけで、内視鏡が撮像した映像を臨場感あふれる3次元映像として表示する装置である。そして、このシステムでは、立体形状記録装置を用いて、外科医の手の動きを検出し、この検出したデータをもとに、立体形状再生装置を用いて内視鏡処置具のマニピュレータを実現している。ここで、変形部302は、外科医の手の動きを検出し、変形部502は、それに対応してリアルタイムで立体形状を再生している。
【0084】
(応用例9)
つぎに、応用例9について説明する。この応用例9では、折り紙自体を立体形状記録再生装置として実現している。図26に示すように、折り紙を折るときは、立体形状記録装置として折り方を検出し、その後再び折り紙を折る場合には、その模範用として折り紙自体が立体形状再生装置になって折り紙を折っていく。このような教育や趣味などにも多用できる。
【0085】
(応用例10)
つぎに、応用例10について説明する。この応用例10では、自由形状の不定形自律ロボットとして立体形状記録再生装置を適用している。制御装置には自律ロボットとしての機能するための人工知能をもっており、この人工知能を用いて、たとえば図27に示すように、これから登る階段の形状を検出する。この先端の形状の検出は、変形部602の進行方向側に検出機能を持たせることによって実現され。変形部602の後方部分は、再生機能として働き、階段を上るように駆動される。
【図面の簡単な説明】
【0086】
【図1】この発明の実施の形態1である立体形状記録装置の概要構成を斜めからみた模式図である。
【図2】形状変化の一例を示す図である。
【図3】この発明の実施の形態2である立体形状記録装置の概要構成を示す模式図である。
【図4】立体形状記録装置の変形部の一部を示す平面図である。
【図5】図4に示した変形部のA−A線断面図である。
【図6】立体形状記録装置の動作処理手順を示すシーケンス図である。
【図7】この発明の実施の形態2によるセグメント特定の一例を示す図である。
【図8】この発明の実施の形態3である立体形状記録装置の変形部の一部を示す平面図である。
【図9】図8に示した変形部のB−B線断面図である。
【図10】この発明の実施の形態4である立体形状記録装置の概要構成を示す模式図である。
【図11】この発明の実施の形態4による変形部の表裏が判定できることを示す説明図である。
【図12】この発明の実施の形態5である立体形状再生装置の概要構成を示す模式図である。
【図13】図12に示した変形部のC−C線断面図である。
【図14】この発明の実施の形態5である立体形状再生装置の動作処理手順を示すシーケンス図である。
【図15】この発明の実施の形態6である立体形状記録再生装置の概要構成を示す模式図である。
【図16】この発明の実施の形態6の変形例を示す立体形状記録再生装置の断面図である。
【図17】この発明の実施の形態7である立体形状記録再生装置の概要構成を示す模式図である。
【図18】この発明の実施の形態の応用例1の概要構成を示す模式図である。
【図19】この発明の実施の形態の応用例2の概要構成を示す模式図である。
【図20】この発明の実施の形態の応用例3の概要構成を示す模式図である。
【図21】この発明の実施の形態の応用例4の概要構成を示す模式図である。
【図22】この発明の実施の形態の応用例5の概要構成を示す模式図である。
【図23】この発明の実施の形態の応用例6の概要構成を示す模式図である。
【図24】この発明の実施の形態の応用例7の概要構成を示す模式図である。
【図25】この発明の実施の形態の応用例8の概要構成を示す模式図である。
【図26】この発明の実施の形態の応用例9の概要構成を示す模式図である。
【図27】この発明の実施の形態の応用例10の概要構成を示す模式図である。
【符号の説明】
【0087】
101,201,301,401 立体形状記録装置
102〜110 リンク
111〜116 球状継手
117 台座
118〜120 摺動抵抗器
122,222 制御装置
122a,222a 記憶部
123,223 入出力装置
130 連結部材
202,302,402,502,602,702 変形部
204 絶縁材
230 表面絶縁層
231a 第1導体パターン層
231b,232b,233b 絶縁層
232a 第2導体パターン装置
233a 第3導体パターン層
234 裏面絶縁層
501 立体形状再生装置
601,701 立体形状記録再生装置
811,812 無線通信部
D11〜D13,D21,D22,D31,D32,D41〜D43,D51,D52,D61,D62 直流差動変圧器
C11〜C13,C21,C22,C31,C32,C41〜C43,C51,C52,C61,C62 セグメント制御部
M11〜M13,M21,M22,M31,M32、M41〜M43,M51,M52,M61,M62 メモリ
CL1,CL2 交点
L11,L12,L21.L22.L31,L32 制御信号線
VD11,VD12 電圧差検出素子

【特許請求の範囲】
【請求項1】
三角形の各辺上に配置され、機械的変位量を電気的変位量に変換する検出素子と、
各検出素子が検出した電気的変位量を取得し、記録する制御手段と、
を備えたことを特徴とする立体形状記録装置。
【請求項2】
三角形の各辺上に配置され、機械的変位量を電気的変位量に変換する検出素子と、各検出素子が検出した電気的変位量を取得し、記録する制御手段とが面的に連続配置された面検出手段と、
各制御手段に対して検出指示を行い、各検出素子の該検出結果を取得する制御を行う全体制御手段と、
を備えたことを特徴とする立体形状記録装置。
【請求項3】
前記制御手段は、前記三角形の同一辺方向に延びる制御信号線によって接続されることを特徴とする請求項2に記載の立体形状記録装置。
【請求項4】
前記三角形の同一辺方向毎に層を形成して積層するとともに、各三角形の頂点位置において各層間の電位差を検出する電位差検出素子を設け、前記制御手段は、前記制御信号線からの信号と前記電位差検出素子の値とをもとに自制御手段が制御する検出素子に対する検出指示であるか否かを判断することを特徴とする請求項3に記載の立体形状記録装置。
【請求項5】
前記全体制御手段は、各制御手段に対してアドレスを用いて前記電気的変位量を取得することを特徴とする請求項2または3に記載の立体形状記録装置。
【請求項6】
前記検出素子が検出した検出結果を格納するメモリを各制御手段に対応して設け、前記全体制御手段は各メモリに格納された検出結果を取得することを特徴とする請求項2〜5のいずれか一つに記載の立体形状記録装置。
【請求項7】
前記検出素子および前記制御手段は、可撓性部材によって覆われていることを特徴とする請求項1〜6のいずれか一つに記載の立体形状記録装置。
【請求項8】
前記三角形を形成する骨部分である各辺および各頂点近傍の領域の剛性に比して、該三角形によって囲まれた内部領域の剛性が小さいことを特徴とする請求項1〜7のいずれか一つに記載の立体形状記録装置。
【請求項9】
前記内部領域は、空間によって形成されることを特徴とする請求項8に記載の立体形状記録装置。
【請求項10】
前記面検出手段は複数であり、
各面検出手段は、各面検出手段を機械的に連動させる連結部材によって結合されていることを特徴とする請求項2〜9のいずれか一つに記載の立体形状記録装置。
【請求項11】
前記面検出手段と前記全体制御手段とは無線接続されることを特徴とする請求項2〜10のいずれか一つに記載の立体形状記録装置。
【請求項12】
前記検出素子は、差動変圧器であることを特徴とする請求項1〜11のいずれか一つに記載の立体形状記録装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2006−153668(P2006−153668A)
【公開日】平成18年6月15日(2006.6.15)
【国際特許分類】
【出願番号】特願2004−344959(P2004−344959)
【出願日】平成16年11月29日(2004.11.29)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】