説明

粉粒体状態評価装置

【課題】詰まりなどの粉粒体の流動状態を評価する際に用いられる判定条件を状況に応じて設定することができる粉粒体状態評価装置を提供する。
【解決手段】粉粒体が検出面に衝突した際に検出信号を出力する衝撃検出センサ1と、頻度条件を参照して前記検出信号の検出頻度を評価する頻度評価部32と、頻度評価部32による頻度評価結果に基づいて粉粒体の流動状態を評価する流動状態評価部33と、頻度条件を生成して前記頻度評価部に与える衝突頻度条件生成部34と、頻度条件を生成するために必要な関連情報を管理して前記衝突頻度条件生成部34に与える情報管理部4とが備えられている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、穀粒、種籾、粒状肥料などの粉粒体が流れ経路上を流動する状態を評価する粉粒体状態評価装置に関する。このような粉粒体状態評価装置は、粉粒体の流れ経路における粉粒体の流れ量や詰まりの検出に用いられている。
【背景技術】
【0002】
例えば、施肥ホースを通じて供給される粒状肥料を圃場に送り出す管状の作溝器の壁面に肥料詰まりセンサが配置されている施肥装置を搭載した乗用型田植機が知られている(例えば、特許文献1参照)。この肥料詰まりセンサは一対の間隔をあけて設けられた電極の間の導通レベルが肥料の介在によって高くなることを利用して、作溝器内での肥料詰まりを検出するものである。しかしながら、このような抵抗型の詰まりセンサでは、水分の含み具合などによっても電気抵抗が変化することから、検出信号にノイズ成分が多く、正確な詰まり検出が困難である。
【0003】
また、収穫した穀粒をタンクに蓄えるコンバインにおいて、穀粒タンクの天板下面等に下向きに突設した基台に装着した圧電素子からなる流量センサに、穀粒タンクへ向かって放出された穀粒を衝突させることにより、穀粒の放出量に比例した検出値(電圧値)を出力させ、穀粒流量を測定する技術が知られている(例えば、特許文献2参照)。圧電素子は穀粒や種籾などの粉粒体の衝突による衝撃(振動)の大きさに比例した電圧を発生するので、粉粒体の粒単位の流量、つまり流れ状態を検出することができる。例えば、粉粒体の衝突による検出信号が発生しないことで粉粒体が詰まっているとみなすことができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2000‐324916号公報(段落番号〔0011−0018〕、図3)
【特許文献2】特開2000‐60281号公報(段落番号〔0030−0031〕、図9)
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の技術では、粉粒体の衝突を検出する衝撃検出センサからの検出信号が所定時間以上入力されない場合、粉粒体の詰まりが発生したと判定することになるが、そのような詰まりの発生を判定するための所定時間が固定されていると、詰まりの検出を発生後速やかに評価したいという要望に答えることができない。また、粉粒体の流れ量が変化する場合には正確な詰まり検出が困難となる。
【0006】
本発明の目的は、詰まりなどの粉粒体の流動状態を評価する際に用いられる判定条件を状況に応じて設定することができる粉粒体状態評価装置を提供することである。
【課題を解決するための手段】
【0007】
上記目的を達成するため、本発明による、粉粒体の流動状態を評価する粉粒体状態評価装置は、前記粉粒体が検出面に衝突した際に検出信号を出力する衝撃検出センサと、頻度条件を参照して前記検出信号の検出頻度を評価する頻度評価部と、前記頻度評価部による頻度評価結果に基づいて前記粉粒体の流動状態を評価する流動状態評価部と、前記頻度条件を生成して前記頻度評価部に与える衝突頻度条件生成部と、前記頻度条件を生成するために必要な関連情報を管理して前記衝突頻度条件生成部に与える情報管理部とが備えられている。
【0008】
この構成によれば、粉粒体の衝突による衝撃検出センサからの検出信号に基づいて粉粒体の流動状態を評価する際に用いられる検出信号の頻度条件は衝突頻度条件生成部で生成され、この衝突頻度条件生成部が当該頻度条件を生成するのに必要な関連情報は情報管理部によって与えられる。従って、この関連情報によって頻度条件を適切に設定することで、検出信号の検出頻度に基づく、状況に応じた粉粒体の流動状態を評価することが可能となる。
【0009】
本発明の好適な実施形態の1つでは、前記情報管理部は、操作者によって操作されるマニュアル設定器の状態を関連情報として管理している。この構成では、操作者による頻度条件、たとえば詰まり判定時間の調整などが任意に行えるため、作業状態や操作者の好みに応じた詰まり評価が可能となる。その際、デフォルト値を一般的な稼動時における最低レベルの粉粒体流量に合わせておき、後は操作者の自由判断で調整できるような操作が好適である。
【0010】
本発明の別な好適実施形態の1つでは、前記情報管理部が前記粉粒体の流量に関する粉粒体流量関連情報を管理しており、前記衝突頻度条件生成部は前記粉粒体流量関連情報に基づいて前記頻度条件を生成する。この構成では、流量センサ等による粉粒体の流量情報そのものや、粉粒体の流量に影響を及ぼす種々の情報、例えば関連作業装置における粉粒体の取得速度や粉粒体の投与速度の情報に基づいて粉粒体が衝撃検出センサに衝突する標準的な頻度を推定できるので、それを基準として頻度条件を生成することで、粉粒体の流動状態を適切に評価することができる。
【0011】
特に、前記衝撃検出センサが作業走行車両に搭載されている場合、前記情報管理部が作業走行車両の作業速度に関する作業速度関連情報を管理しており、前記衝突頻度条件生成部は前記作業速度関連情報に基づいて前記頻度条件を生成するように構成すると好適である。この構成により、車速が比較的速い場合、あるいは変速レンジが比較的高速に入っている場合に、より短い詰まり判定時間を頻度条件とするような制御が可能となり、適切なつまり検出などの流動状態評価が可能となる。
【0012】
また、前記情報管理部が前記作業走行車両の非作業状態を示す非作業関連情報を管理し、前記衝突頻度条件生成部は前記非作業関連情報に基づいて常時非成立となる頻度条件を生成する構成を採用することも好適である。この構成により、粉粒体が供給経路を流れなくなるような状況下においては、詰まり誤検出といった誤った流動状態評価に基づく誤警報をなくすことができる。常時非成立となる頻度条件の一例としては、つまり判定時間、つまり衝突検出信号の検出間隔のしきい値を無限大とすることが挙げられる。
【0013】
本発明による粉粒体状態評価装置のさらに別な好適実施形態として、前記情報管理部が操作者によって操作されるマニュアル設定器として構成され、前記マニュアル設定器から前記関連情報が前記衝突頻度条件生成部に与えられるものも可能である。この構成では、衝突頻度条件の調整をマニュアル設定器によるマニュアル調整だけにすることができ、簡単化された粉粒体状態評価装置を提供することができる。
【0014】
圧電素子などを用いた衝撃検出センサでは、衝撃検出面に直接粉粒体が衝突することによって生じる検出信号は、使用されているセンサ素子とその周辺回路特性によって規定される特定の周波数成分を持つことになるが、周辺環境振動の結果圧電素子に生じる検出信号はそのような特定の周波数成分とは異なる周波数成分を持つ傾向がある。従って、本発明の好適な実施形態として、前記衝撃検出センサから出力された検出信号の特定周波数成分だけが評価のために用いられるような構成を採用することで、得られた検出信号から粉粒体の衝突によって生じる特定周波数成分以外の周辺環境振動に起因する周波数成分をカットされると、従来技術より高いS/N比をもつ検出信号を取得できる。その結果、S/N比をもつ検出信号を評価するので、信頼性の高い粉粒体の流動状態評価が可能となる。
【図面の簡単な説明】
【0015】
【図1】本発明による粉粒体状態評価装置の基本的な構成と動作原理を説明する模式図である。
【図2】本発明による粉粒体状態評価装置を施肥装置に搭載した田植機の斜視図である。
【図3】図2による田植機の施肥装置領域を示す側面図である。
【図4】圧電センサの取り付けた施肥装置を示す断面図である。
【図5】圧電センサの取り付けた播種装置を示す断面図である。
【図6】粉粒体状態評価装置の1つの実施形態における前処理と信号評価に関する機能を示す機能ブロック図である。
【図7】粒状肥料や種籾などの粉粒体の衝突によって生じる検出信号から特定周波数成分以外の周辺環境振動に起因する周波数成分をカットすることによる効果を説明する説明図である。
【図8】粉粒体状態評価装置の1つの実施形態における作業状態情報作成に関する機能を示す機能ブロック図である。
【図9】衝突判定部の別実施形態を説明する機能ブロック図である。
【発明を実施するための形態】
【0016】
まず、図1を用いて本発明に係る粉粒体状態評価装置の基本的な構成と動作原理を説明する。
【0017】
供給経路を流れる粉粒体が衝撃検出センサ1の検出面に衝突すると、検出面に生じた衝撃(振動)は圧電素子を振動させ、よく知られたパルス波形状の検出信号を出力する(#01)。衝撃検出センサ1から出力された検出信号は、前処理部2によって後段の信号評価を行う評価手段での信号処理に適した形態となるように前処理される(#02)。
【0018】
信号評価のプロセスでは、衝突判定部31によって、前処理部2から送られてきた検出信号のパルス波形が検出面への物体の衝突に起因するものであるかどうかの一次的な評価のため、所定の判定条件を用いて判定される(#03)。最も簡単なものは、最大振幅が前もって設定されたしきい値を越えているかどうかを判定して、超えている場合そのパルス波形が何らかの衝突に起因するものとみなすしきい値判定処理である。その際、連続してしきい値を越えるパルスの数といった付加条件を加えることでその判定信頼度を向上させることも可能である。
【0019】
検出信号から取り出された1つのパルス波形が検出面への物体の衝突によるものであると判定されると、その判定結果が頻度評価部32に与えられる。頻度評価部32は、衝突頻度条件生成部34で生成されて送られてきた頻度条件を参照して検出信号の検出頻度、つまり粉粒体の衝突に起因するパルス波形の時間軸に沿った挙動、例えば時系列的に検出されるパルス波形のピーク値の時間間隔を評価する(#04)。頻度条件としての所定時間間隔範囲に連続する2つの衝突検出信号の時間間隔が入っていれば、各パルス波形の頻度条件が満たされ、そのパルス波形は粉粒体の衝突によるものであると評価される。
【0020】
粉粒体の検出面への流れ状態は、この粉粒体を処理している装置の動作状況によって異なるので、その動作状況に基づいて頻度評価部32で用いられる頻度条件を変更する必要がある。衝突頻度条件生成部34は、そのような装置の動作状況に基づいて頻度条件を生成する機能を有する。特定の装置動作や粉粒体流れ動作を示す種々の動作情報が入力される情報管理部4は、それらの動作情報から衝突頻度条件生成部34にとって必要とされる関連情報を生成して衝突頻度条件生成部34に転送する(#05)。衝突頻度条件生成部34は受け取った関連情報からキーとなるパラメータを読み取り、このパラメータによって導かれる頻度条件が頻度評価部32に与えられる(#06)。
【0021】
頻度評価部32での評価結果は流動状態評価部33に送られ、その評価結果から流動状態評価部33が供給経路を流れる粉粒体の流動状態が特定の状態、例えば、詰まり状態と評価されると、詰まり検出信号が生成され報知部5に送られる(#07)。報知部5は、詰まり検出信号に応答して作業者に粉粒体の詰まりを報知するため警告音や警告光を発する。
【0022】
上述した基本的な動作原理を備えた粉粒体状態評価装置を作業走行車両、この実施形態では粒状肥料や種籾の供給機能を有する乗用型田植機に採用した例を、図2、図3、図4を用いて説明する。図2は圃場で苗植え付け作業と施肥作業を同時に行っている田植機の斜視図であり、図3は側面図である。この田植機には苗植え付け装置60と、粉粒体としての粒状肥料を供給する施肥装置70とが搭載されている。施肥装置70を取り出して模式的に図示している図4から明らかなように、施肥装置70の粒状肥料(粉粒体)繰り出しユニット71は粒状肥料ホッパ71bに貯留された粒状肥料を適量配給するものであり、横軸心周りに間欠回転する毎に繰り出しロール71aの周面に設けられた適量配給凹部から排出された粒状肥料がブロアによる温風流とともに供給管路72に送り出される。供給管路72の終端は粒状肥料を圃場に埋設する作溝ユニット73として形成されており、この作溝ユニット73の周壁73aの一部に圧電センサ1がはめ込まれている。このように粒状肥料供給管路72内に衝撃検出センサ1が設置されることにより、上述した粉粒体流動状態認識アルゴリズムに基づいて、粒状肥料の供給管路72内での詰まりを検出することが可能となる。このような田植機では、一般的に、苗植え付け装置60に代えて、あるいは苗植え付け装置60に付加して、播種装置を搭載することで、播種作業と施肥作業を同時に行うことも可能である。播種装置は、図示は省略するが、施肥装置70と類似する構成を有し、種籾ホッパから送り出された種籾を圃場に供給する種籾供給管路に衝撃検出センサ1が設置され、本発明による粉粒体状態評価装置により種籾の供給管路での流動状態、特に詰まりが検出される。
【0023】
なお、このような田植機では、一般的に、苗植え付け装置60に代えて、あるいは苗植え付け装置50に付加して、播種装置80を搭載することで、播種作業と施肥作業を同時に行うことも可能である。図5は、苗植え付け装置60に代えて、播種装置80を取り付けた場合における、播種装置80の種籾ホッパ85から送り出された種籾を圃場に供給する種籾供給管路82と、この種籾供給管路82内に設置された圧電センサ1とを詳しく図示した断面図である。図5から明らかなように、この播種装置80でも、粉粒体(種籾)繰り出しユニット81は種籾ホッパ81bに貯留された種籾を適量配給するものであり、横軸心周りに間欠回転する毎に繰り出しロール81aの周面に設けられた適量配給凹部から排出された種籾が供給管路82に送り出される。供給管路82の終端は種籾を圃場に播く播種ユニット83として形成されており、この播種ユニット83の周壁83aの一部に圧電センサ1がはめ込まれている。この圧電センサ1からの検出信号により、播種の供給管路82内での詰まりを検出することが可能となる。
【0024】
次に粉粒体状態評価装置の制御処理機能を説明する。図6は、粒状肥料などの粉粒体の衝突によって衝撃検出センサ1に生じる検出信号の前処理とその信号評価に関する機能を示す機能ブロック図である。図7は検出信号から特定周波数成分以外の周辺環境振動に起因する周波数成分をカットすることによる効果を説明する説明図である。図8は作業状態情報作成に関する機能を示す機能ブロック図である。
【0025】
これらの図から明らかなようにこの粉粒体状態評価装置の主構成要素は、衝撃検出センサ1としての圧電式衝撃検出センサ(以下単に圧電センサと略称する)、前処理部2、評価手段3、情報管理部4としての作業状態管理コントローラ4、報知部5としての報知コントローラ5である。
【0026】
圧電センサ1の周辺、またはこの粉粒体状態評価装置の中核コントローラである評価コントローラCU内に圧電センサ1の出力信号を増幅する増幅器21が前処理部2の構成要素の1つとして備えられている。この増幅器21は、プレアンプ部とメインアンプ部に分割構成することができ、その際プレアンプ部は圧電センサ1の周辺に配置し、メインアンプ部は評価コントローラCUに配置される。
【0027】
前処理部2には、さらに圧電センサ1の出力信号に含まれている周波数成分を調整する周波数調整手段の一例としてのハイパスフィルタ22、振幅シフト部23、オフセット量生成部24が備えられている。これらの機能部は、ハードウエアまたはソフトウエアあるいはその両方によって構築可能である。
【0028】
この実施形態のように、田植機のような作業走行車両に取り付けられた、周辺環境振動の受ける供給管路における種籾や粒状肥料の詰まり検出では、ハイパスフィルタ22の適切な選択は重要である。そのことを、図7を用いて以下に説明する。
【0029】
図7の上左側の信号波形は圧電素子の検出面に粉粒体が間隔をあけて個別に衝突した際の検出信号を示している。ここでは、5個の粉粒体が検出面に順次衝突することで、5個の区分けされるパルス状波形が示されている。このパルス状波形のピークを検出し、このピークが所定時間間隔で発生していることに基づいて粉粒体が供給管路を詰まることなく順調に流れていると評価することが可能である。図7の上右側の信号波形は、供給管路に詰まりが生じ、圧電素子の検出面に粉粒体が堆積している状態での検出信号を示している。ここで示された信号波形は、検出面上に堆積した粉粒体が全体的に揺すられて検出面に与える振動などによるものとみなされる。そのような堆積した塊としての粉粒体の揺れは、この圧電センサ1を取り付けている装置の振動を起因とするもので、圧電センサ1が走行車両などに設置されていたり、動力装置を備えた定置機械に設置されていたりすると、その振動は、回避が困難な周囲環境振動である。その信号波形の平均的な振幅値は、粉粒体の個別衝突によって生じる信号波形のピーク値より低いが、突発的にかなり高い振幅値を示す突発波形が生じることがあり、その突発波形のピークが粉粒体の個別衝突によって生じる信号波形のピークであると誤評価される可能性がある。このような粉粒体の塊が揺れることによって生じる信号波形が粒体の個別衝突によって生じる信号波形に較べて低周波数成分を多く含んでいるという、本願発明者の知見に基づいて、圧電センサ1から出力された、いわゆる生の検出信号に対して低周波成分がカットされる。
【0030】
この低周波成分カット処理を施された後の、いわゆるハイパス検出信号が図7の下側に示されている。図7の下左側の信号波形は粉粒体が詰まることなく圧電素子の検出面に間隔をあけて個別に衝突した際の検出信号のハイパス検出信号を示している。この個別衝突の波形に含まれている主な周波数成分はカットされないので、生の検出信号に較べてハイパス検出信号の振幅値の低下は無視できる程度である。これに対して、図6の下左側に示された、粉粒体詰まり時の信号波形は、その振幅値を低下させており、前述した突発波形のピークが粉粒体の個別衝突時の信号波形のピークであると誤評価される可能性はほとんどなくなる。
【0031】
なお、図6のブロック図では、周波数を調整する機能部としてハイパスフィルタ22だけが示されているが、通常圧電センサ1などのセンサ信号には有害な高周波ノイズ成分が含まれているので、これを除去する目的のローパスフィルタを備えることも好適である。
【0032】
また、圧電素子は内部インピーダンスが高くローパスフィルタが受動素子のためゲイン特性をもつが、粉粒体の衝突に起因する検出信号は高周波成分に偏り、機体振動のような周辺環境振動に起因する検出信号は低周波成分に偏ることから、ノイズが増幅される傾向となる。このため、圧電センサを出た回路は抵抗器のみとしてインピーダンス変換の後段にフィルタが配置されるようにする構成が好ましい。その際、その抵抗器と圧電素子の内部インピーダンスで構成されるハイパスフィルタの遮断域に検出信号の周波数がかからないような抵抗値を選定することも好適である。
【0033】
上述した目的で備えられたハイパスフィルタ22を含む前処理部2における信号処理を説明する。まず、処理対象となる信号を生成する圧電センサ1は、圧電素子10と、圧電素子10を保護するとともに検出面として機能する保護プレート11と、圧電素子10とその他の圧電回路素子をカバーするハウジング12を備えており、供給管路内を流れる粉粒体が供給管路で保護プレート11と衝突するような姿勢で配置されている。
【0034】
保護プレート11の材料としては、一般的に良く用いられているアクリル樹脂や合成ゴムなどを使用することも可能であるが、この圧電センサ1が周辺環境振動にさらされるような装置ハウジング壁や供給管路などに設置される場合、圧電センサ1に達する周辺環境振動よりも高い固有振動数をもつ材料が適している。例えば、この圧電センサ1を田植機やコンバインといった作業走行車両に取り付けるケースでは、作業中の車両機体の振動数が数百Hzであることからそれよりは固有振動数が金属や樹脂が好適であり、例えばステンレス鋼などが好ましい。
【0035】
保護プレート11に粉粒体が衝突すると、保護プレート11に生じた衝撃(振動)はその直下の圧電素子10に伝達される。圧電素子10に伝達された衝撃は圧電素子10を振動させ、その結果圧電センサ1は図6の(a)で示されるような波形を有する検出信号を出力する。圧電センサ1から出力された検出信号が後段の信号処理に適した信号レベルとなるように増幅器によって増幅される(図6の(b)を参照)。適当な信号レベルまで増幅された検出信号はハイパスフィルタ22によって上述した効果を得るために、特定低周波帯域がカットされる。ただし、この例では、粉粒体が個別に圧電センサ1に衝突している流動状態での検出信号が示されており、その検出信号及びその周辺信号には上記特定の低周波成分がほとんど含まれていないで、図6の(c)の波形図から理解できるように、低周波成分のカット前とカット後ではその波形に際立った違いはない。
【0036】
続いて、周波数調整された検出信号に対して、振幅シフト部23がこの検出信号に対して所定のオフセット量を付与して、クランプする。オフセット量は、入力されうる検出信号の負のピーク値が完全に正の領域となるに十分な量である。例えば、正と負のピーク値がそれぞれ+3vと−3v程度とすると、オフセット量を5vとし、全波の信号成分を全て正の値とする。そのような振幅シフト処理後の検出信号波形が図6の(d)の波形図で示されている。この振幅シフトされた検出信号を用いて実質的な信号評価が評価手段3で行われる。
【0037】
この評価手段3には、しきい値生成部30、衝突判定部31としての比較部31、頻度評価部32、流動状態評価部33、衝突頻度条件生成部34が備えられている。これらの機能部も、ハードウエアまたはソフトウエアあるいはその両方によって構築可能である。比較部31は、しきい値生成部30から与えられたしきい値を用いた粉粒体の衝突の判定を行う。前処理部2から送られてくる検出信号は、全波の波形をもっているので、しきい値として、高レベルの高しきい値H-SHと低レベルの低しきい値L-SHとが用いられる。つまり、粉粒体の衝突結果と推定されるパルス状の検出信号の高い方のピーク値を高しきい値H-SHと比較して、そのピーク値が高ければ、高しきい値H-SH条件の成立H-ONとなる。また、低い方のピーク値を低しきい値L-SHと比較して、そのピーク値が低ければ、低しきい値L-SH条件の成立L-ONとなる。このため、しきい値生成部30は、前述したように、振幅シフトされた検出信号の高い方のピーク値に対してしきい値判定するための高しきい値H-SHと、低い方のピーク値に対してしきい値判定するための低しきい値L-SHを生成するように構成されている。比較部31は、これらのしきい値を用いてしきい値判定を行い、高しきい値判定において条件成立するとのH-ON信号を出力し、低しきい値判定において条件成立するとL-ON信号を出力する(図6の(e)参照)。
【0038】
この実施形態での頻度評価部32は、2つの重要な機能を有し、そのひとつは、比較部31からH-ON信号とL-ON信号が同時に送られてくると、つまりH-ON信号とL-ON信号のアンド条件が成立すると、その対象となった検出信号が種籾の圧電センサ1への衝突に起因するものであると判断する機能である。他のひとつは、種籾の圧電センサ1への衝突に起因するものと判断された検出信号が衝突頻度条件生成部34で生成された衝突頻度条件を満たすかどうかをチェックする機能である。もっとも簡単な衝突頻度条件としては、連続する2つの衝突検出信号のパルス波形のピーク時間間隔が所定時間間隔範囲に入っていれば、そのパルス波形は粉粒体の衝突によるものとするものが挙げられる。その際、その所定時間間隔は、種籾の流量、繰り出しユニットにおける種籾繰り出し時間間隔、田植機の走行速度などをパラメータとして導出することができる。また、操作者によって操作されるマニュアル設定器としての詰まり判定時間設定器100からの操作信号によって直接衝突頻度条件としての所定時間間隔を決定することも可能である。
【0039】
このようにして頻度評価部32で粉粒体の衝突によるパルス波形をもった検出信号が時系列的に生じている、またはそのような検出信号が生じていないとみなす評価結果が生成されると、この評価結果は流動状態評価部33に送られる。流動状態評価部33は、頻度評価部32での評価結果、及び必要に応じて設定された重み係数や信頼係数などを加味して、供給管路72、82内での粒状肥料または種籾の詰まりを判断する。例えば、頻度評価部32から1つまたは複数の衝突頻度条件の成立を示す評価結果を受け取ると、詰まりのない流れと判断し、それ以外では詰まり等のエラーが生じていると判断するようなルールが利用される。
【0040】
流動状態評価部33によって、供給管路72や82内での流動状態として粒状肥料または種籾の詰まり状態が判定されると、詰まり検出信号が報知部として構成されている報知コントローラ5に出力される。詰まり検出信号を車載LANを介して受け取った報知コントローラ5は、ブザーやランプなどを通じて操作者に粉粒体の詰まりを報知して詰まり回復の処理を促したり、その他のコントローラにエラー発生信号を転送することで機械的なエラー処理の実行を要求したりする。このため、報知コントローラ5には、報知信号生成部51が構築されており、詰まり検出信号に応答して、詰まりを報知する警報をスピーカ52から鳴らす駆動信号や、詰まりを報知する警告光をランプ53から発する駆動信号を生成して出力する。
【0041】
衝突頻度条件生成部34で衝突頻度条件を生成するのに用いられる、種籾の流量、繰り出しユニットにおける種籾繰り出し時間間隔、田植機の走行速度などの関連情報は、情報管理部としての作業状態管理コントローラ4によって生成される作業状態情報として車載LANを介して送られてくる。このため、作業状態管理コントローラ4には、図8に示すように、作業状態情報作成部40が構築されている。さらに、各種センサの状態を示すセンサ情報を作成するセンサ情報作成部90を構築しているセンサコントローラ9と車載LANで接続されており、そのセンサ情報の取得が可能となっている。センサコントローラ9は、例えば、車速センサ、繰り出しユニットの繰り出し軸回転検出センサ、車軸回転検出センサ、ペダル操作量検出センサ、変速操作量検出センサ、変速位置検出センサ、ハンドル切れ角検出センサ、前輪切れ角検出センサ、クラッチ状態検出センサ、作業装置昇降位置検出センサなどのセンサ群Sの検出信号が入力できるように構成されている。このようなセンサ群Sの中から予め選択されたセンサの状態を示す特定のセンサ情報がセンサコントローラ9から作業状態管理コントローラ4に転送される。作業状態情報作成部40は、受け取ったセン
サ情報に基づいて、車速、機体停止状態、旋回状態、肥料繰り出し量、種籾繰り出し量、施肥装置ブロア動作状態、植え付けクラッチ動作状態、施肥クラッチ動作状態などの作業状態を示す作業状態情報を生成し、衝突頻度生成部34に関連情報として転送する。
【0042】
このように、衝突頻度生成部34には必要な作業状態を示す情報や詰まり判定時間設定器100からの直接的な所定時間間隔値(例えば、標準:5秒、最敏感:3秒、最鈍感:10秒)などが適時入力されるように構成すれば、種々の衝突頻度条件を生成することができる。衝突頻度条件の一例を列挙すると;
(1)車速が速い場合、詰まり判定時間としての所定時間間隔値を長くする。例えば、変速が1速と2速で10秒、3速と4速で5秒、5速から8速で3秒とする。
(2)繰り出し量が少ない場合、詰まり判定時間を長くする。
(3)粒状肥料や種籾等の粉粒体繰り出しが非作動状態である場合、所定時間間隔値を無限大に設定する。粉粒体繰り出しの非作動状態は繰り出し量センサから直接得ることができるし、その他の状態、例えば、機体停止、旋回状態、ブロア停止、などから作業走行車両の非作業状態を推定することが可能である。
【0043】
作業走行車両の非作業状態の推定方法としては、例えば、ハンドル切れ角センサ又は前輪切れ角センサからの検出に基づいて畦際旋回時等に前輪を所定角度以上操向操作した場合に、作業走行車両が非作業状態であると推定してもよく、例えば、作業装置昇降位置検出センサからの検出に基づいて作業装置を上昇させた場合に作業走行車両が非作業状態であると推定してもよく、例えば、クラッチセンサからの検出に基づいて、クラッチ(植付クラッチや施肥クラッチ等の作業クラッチ)が切り操作された場合に作業走行車両が非作業状態であると推定してもよい。もちろん、その他のセンサによって推定することも本願では除外されていない。
【0044】
つまり、衝突頻度生成部34は、この作業走行車両としての田植機の種々の作業状態や動作状態から所定のルールに基づいて衝突頻度条件を導出して、頻度評価部32に与えることができるので、自在性のある粉粒体流動状態評価が可能となる。
〔別実施の形態〕
(1)上述した実施形態の説明では、操作者によって衝突頻度条件をマニュアル設定するための判定時間測定器100からの信号は、直接衝突頻度条件生成部34に送られるように構成されていた。これに代えて、この判定時間測定器100からの信号をセンサコンとロータ9を介して、あるいは直接作業状態管理コントローラ4に入力し、作業状態情報の1つとして、情報管理部としての作業状態管理コントローラ4から衝突頻度条件生成部34に送られるような構成を採用してもよい。
(2)上述した実施形態の説明では、衝突判定部としての比較部31は、しきい値生成部30によって生成されたしきい値を用いてしきい値判定処理を行っていたが、次のような処理を行うように構成することもできる。まず、正常状態(粉粒体が詰まっておらず、定期的に粉粒体が検出面に衝突する状態)においても発生頻度が少ない高レベルのしきい値を超えるかいなかで粉粒体が衝突したと判定した場合は、正常状態で高頻度に発生しうる低レベルのしきい値に切り換えてしきい値判定を行う。その後、所定時間間隔内で低レベルのしきい値を超えない状態が発生すると、再び高いしきい値に戻してしきい値判定を行う。この較正により、正常にもみが当たった場合には確実に検出判断でき、詰まった粉粒体がセンサ検出面を揺することでパルス波形が発生する異常状態の場合でも誤検出しやすいパルス波形が発生しにくいという利点がえられる。
(3)衝突判定部として、しきい値判定処理を行うように構成されていた比較部31に、衝撃検出センサ1のセンサ感度を検査するための機能を付与することが可能である。図9にそのように構成された比較部31の機能ブロック図が示されている。比較部31には、しきい値判定するためにパルス波形のピークを保持するピークホールド部31aの機能が備えられているが、この形態では、そのピークホールド部31aの信号を外部に取り出すことができる検査出力信号線31Aが設けられている。この検査出力信号線31Aには、ピーク電圧が所定時間(例えば2秒程度)保持されるように構成すると、この検査出力信号線31Aに電圧測定器を接続することで衝撃検出センサ(圧電センサ)1のセンサ感度特性を簡単に検査することができる。
(4)衝撃検出センサとして圧電センサ以外にひずみセンサなど衝撃を感知するその他のセンサを利用することも可能である。
(5)評価すべき流動状態として単なる供給流路での詰まり検出だけなら、頻度評価部32と流動状態評価部33は一体化可能で、詰まり検出部として構成することができる。その他の機能部も同一または類似の機能を果たす限りにおいて、任意に組み合わせや分離を行うことが可能である。例えば、作業状態管理コントローラ4の機能を実行する機能部をそのまま評価手段3内に構築してもよい。
(6)施肥装置は、播種装置などの作業装置の非作業状態が検出されたことを示す非作業関連情報は直接報知部にも転送され、この非作業関連情報に基づいて報知部は報知信号の出力を停止する構成を採用することができる。作業装置が作業していないときは実際の詰まりは発生しないので、外乱によるブザーやランプによる誤警報を抑制することができる。
【産業上の利用可能性】
【0045】
本発明は、粉粒体の流れ経路上の流動状態の評価が要求される、種々の粉粒体取り扱い機器に適用することができる。
【符号の説明】
【0046】
1:圧電センサ(衝撃検出センサ)
2:前処理部
4:作業状態管理コントローラ(情報管理部)
5:報知部
22:ハイパスフィルタ
31:比較部(衝突判定部)
32:頻度評価部
33:流動状態評価部
34:衝突頻度条件生成部

【特許請求の範囲】
【請求項1】
粉粒体の流動状態を評価する粉粒体状態評価装置において、
前記粉粒体が検出面に衝突した際に検出信号を出力する衝撃検出センサと、
頻度条件を参照して前記検出信号の検出頻度を評価する頻度評価部と、
前記頻度評価部による頻度評価結果に基づいて前記粉粒体の流動状態を評価する流動状態評価部と、
前記頻度条件を生成して前記頻度評価部に与える衝突頻度条件生成部と、
前記頻度条件を生成するために必要な関連情報を管理して前記衝突頻度条件生成部に与える情報管理部と、
が備えられている粉粒体状態評価装置。
【請求項2】
前記情報管理部は、操作者によって操作されるマニュアル設定器の状態を関連情報として管理している請求項1に記載の粉粒体状態評価装置。
【請求項3】
前記情報管理部が前記粉粒体の流量に関する粉粒体流量関連情報を管理しており、前記衝突頻度条件生成部は前記粉粒体流量関連情報に基づいて前記頻度条件を生成する請求項1または2に記載の粉粒体状態評価装置。
【請求項4】
前記衝撃検出センサが作業走行車両に搭載され、前記情報管理部が作業走行車両の作業速度に関する作業速度関連情報を管理しており、前記衝突頻度条件生成部は前記作業速度関連情報に基づいて前記頻度条件を生成する請求項1から3のいずれか一項に記載の粉粒体状態評価装置。
【請求項5】
前記衝撃検出センサが作業走行車両に搭載され、前記情報管理部が前記作業走行車両の非作業状態を示す非作業関連情報を管理しており、前記衝突頻度条件生成部は前記非作業関連情報に基づいて常時非成立となる頻度条件を生成する請求項1から4のいずれか一項に記載の粉粒体状態評価装置。
【請求項6】
前記情報管理部が操作者によって操作されるマニュアル設定器として構成され、前記マニュアル設定器から前記関連情報が前記衝突頻度条件生成部に与えられる請求項1に記載の粉粒体状態評価装置。
【請求項7】
前記衝撃検出センサから出力された検出信号の特定周波数成分だけが評価のために用いられる請求項1から6のいずれか一項に記載の粉粒体状態評価装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−83246(P2011−83246A)
【公開日】平成23年4月28日(2011.4.28)
【国際特許分類】
【出願番号】特願2009−239612(P2009−239612)
【出願日】平成21年10月16日(2009.10.16)
【出願人】(000001052)株式会社クボタ (4,415)
【Fターム(参考)】