説明

腐食センサ装置、腐食センサ装置の製造方法、腐食検出方法、センサおよびセンサの製造方法

【課題】細線の切断を検出する考え方を踏襲しながらも、製造上の問題を解決し、感度を高く、設計自由度を大きくする。
【解決手段】コンクリート構造物中の鋼材の腐食進行状況を検出する腐食センサ装置1であって、鉄を圧延することにより作製した鉄箔材で形成された導体パターン部10aと、導体パターン部10aを保持する基板10bと、導体パターン部10aの電気的特性を測定し、測定した導体パターン部10aの電気的特性に基づいて、コンクリート構造物中の鋼材腐食因子を検出する腐食検出部2と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンクリート構造物中の鋼材の腐食進行状況を検出する技術に関する。
【背景技術】
【0002】
コンクリート構造物中の鋼材は、コンクリートがアルカリ性環境を保持していることで鋼材表面に不動態皮膜を形成し、腐食から保護されている。しかしながら、例えば、空気中の二酸化炭素、下水道施設における硫酸、あるいは塩化物イオンなどの腐食因子がコンクリート中に浸入すると、この不動態皮膜が破壊され、コンクリート中にある水と酸素によって鋼材の腐食が開始する。
【0003】
コンクリート構造物の鋼材が腐食すると、鋼材の体積膨張を生じ、その膨張圧でコンクリートにひび割れを生じ、ひび割れを通じてさらに腐食因子の浸入と外部からの水と酸素の供給によって鋼材の腐食は加速的に進行し、ついにはコンクリート構造物としての機能が保持できなくなる。
【0004】
従って、鋼材の腐食が開始する前に腐食因子の侵入や鋼材の腐食開始を検知し、例えば、表面被覆などの対策で腐食因子や水と酸素のさらなる浸入を阻止して鋼材を腐食から守り、コンクリート構造物の予防的な保全を図ることが重要となる。この問題に対し、従来から種々の腐食診断方法が提案されている。例えば、コア抜きを行なって腐食因子を分析する方法や、非破壊的に鋼材の自然電位や分極抵抗を測定する手法、化学センサやガスセンサにより腐食因子を検出する手法、鉄製の細線を模擬腐食部材としてコンクリートに埋設し、細線が断線したときに腐食を検出する手法などが知られている。
【0005】
これらの腐食診断手法のうち、細線の断線によって腐食を検知する方法は、(1)予めセンサを埋設することでコア抜きなどコンクリートを傷めることがない、(2)コンクリート表面と鋼材の間に細線を深さに応じて数本設置することで表面からの腐食因子の浸入の時間依存性をモニタリングでき維持管理計画の立案を容易とする、(3)直接的に鉄の腐食を捉えるので腐食因子だけでなく水や酸素の供給状態をも含めた腐食の可能性を検知できる、(4)電気抵抗の変化を捉えるので極めて低消費電力での検出が可能で長期モニタリングに適する、というメリットがあり、細線切断を検出することによる腐食診断方法が、種々提案されている(例えば、特許文献1〜3)。
【特許文献1】特開平8−094557号公報
【特許文献2】特開平8−233896号公報
【特許文献3】特許3205291号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、細線の使用には問題点もある。まず、検出感度について以下に述べる。細線による検知では腐食によって切断することで達成されるものであり、僅かな腐食で切断が生じる必要があり、検出感度の観点からはなるべく細いことが望ましい。しかしながら、鉄は他の金属と比較して伸ばしにくく、径が0.1mmよりも細い線を作製することは非常に難しい。鉄以外の金属を混ぜることで細くできるが金属の性質が変わってしまうので鋼材腐食検知センサとして適さなくなるという問題がある。また、腐食は確率的に生じるものであり一様に生じることはなく、また腐食には理論的にも腐食部における腐食電池の形成が必要である。従って、細線の長さが短いとコンクリート中の環境が腐食環境となっても確率的に必ずしも細線が腐食切断されない場合も生じ、細線の断面積や表面積に応じて細線には適当な長さがないと腐食速度が遅くなり、何れも結果として腐食検出感度を低下させることとなる。
【0007】
また、鉄の細線は、取り扱いが容易ではないという問題がある。細線を回路にハンダ付けする際にも手間がかかり、また、簡単に折れてしまう。これでは大量生産が難しく、産業上望ましくないだけでなく、直線の状態以外では利用が困難である。例えば、感度の向上を図るために細線を長くするとコンクリート内で容易に設置できなくなり、細線の配置形状を変えて設置することも検討されたが、細線は加工しにくいため、複雑な形状の実現は難しい。一方で、コンクリート内へ設置された細線は、コンクリートの打設時にコンクリートの骨材などによって物理的に破損してしまう可能性もある。この問題を解決するために予め硬化したモルタルにみぞを掘っておいて、溝に沿わせて細線を巻いてセンサとしてコンクリート内に設置する手法などが必要となるが、細線の加工やモルタルへの配置が煩雑となる。
【0008】
一方、このように加工性の低い細線の問題を解決するために、鉄メッキを行なう手法も提案されている。これは、アルミニウムのシートをエッチングして、パターンを形成し、その上に鉄メッキを行なうことにより、センサ部を作製する手法である。アルミニウムに鉄がメッキされた状態でコンクリート内部に埋設されるが、アルミニウムはアルカリ環境下ではすぐに解けるため、鉄のセンサを実現することができる。また、エッチングにより複雑な導体パターンを構成することができると共に、大量生産が可能であり、メッキであるため、鉄の厚さも制御することができる。
【0009】
このように、鉄メッキを利用する手法は、センサとしての感度が向上し、設計の自由度も高いが、実際に実験をしてみると、問題点があることが判明した。すなわち、鉄のメッキをアルミニウム上に均一にメッキすることが困難なのである。エッチングで、母材のアルミニウムパターンのエッジが基板に対して鉛直にならず、えぐれるようなサイドエッチングが生じる場合があり、この部分には鉄メッキ被覆が十分に行なわれず、アルミニウム母材が露出してしまうことがある。また、メッキでピンホールが生じる場合がある。これらのケースではコンクリート内でアルミニウムが腐食因子によらずに溶解し、アルミニウムが溶ける際に鉄メッキを割るために結果として断線してしまう。これは、鉄メッキの厚さが20μm程度の場合に確認されている。このように、鉄メッキがうまくいかないため、センサとしてうまく機能しないという製造上の問題点が確認された。
【0010】
本発明は、このような事情に鑑みてなされたものであり、細線の切断を検出する考え方を踏襲しながらも、製造上の問題を解決し、感度が高く、設計自由度が大きい腐食センサ装置、腐食センサ装置の製造方法、腐食検出方法、センサおよびセンサの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の腐食センサ装置は、コンクリート構造物中の鋼材の腐食進行状況を検出する腐食センサ装置であって、鉄を圧延することにより作製した鉄箔材で形成された導体パターン部と、前記導体パターン部を保持する基板と、前記導体パターン部の電気的特性を測定し、前記測定した導体パターン部の電気的特性に基づいて、コンクリート構造物中の鋼材腐食因子を検出する腐食検出部と、を備えることを特徴としている。
【0012】
このように、鉄を圧延することにより作製した鉄箔材によって、導体パターン部を形成するので、従来の細線を用いた場合よりも、設計の自由度が高くなり、製造が容易となる。その結果、複雑な形状を容易に構成することが可能となる。また、鉄箔材の厚さは、非常に薄いため、細線よりも断線するまでの時間を短くすることができ、その結果、センサとしての感度を高めるとともに、導体パターン部が基板で保持されるのでコンクリート打設時の強度を確保することが可能となる。
【0013】
(2)また、本発明の腐食センサ装置において、前記導体パターン部は、前記基板からの厚さが0.1mm未満であって、前記基板上で、二次元的な凹凸形状または渦巻き形状の回路を構成することを特徴としている。
【0014】
このように、導体パターン部の基板からの厚さが0.1mm未満であるため、細線よりも断線するまでの時間を短くすることができ、その結果、センサとしての感度を高めることが可能となる。また、基板上で、二次元的な凹凸形状または渦巻き形状の回路を構成するので、センサ全体をできるだけ小さいものにすると共に、導体パターン部の面積を大きくすることができる。その結果、腐食因子を接触する確率を高めてセンサの感度を向上させ、小型化によってコンクリート表面と鋼材との間に設置が可能となり、これにより鋼材に腐食因子が到達する前に腐食因子の検知が可能となる。腐食が確率的に生じるため線は長いことが必要であり、基板上での二次元的な凹凸形状または渦巻き形状の回路の形成は、線の長さを伸長するのと同じ効果を少ないスペースで実現可能である。
【0015】
(3)また、本発明の腐食センサ装置の製造方法は、コンクリート構造物中に埋設される鋼材腐食因子を検出する腐食センサ装置の製造方法であって、鉄を圧延することにより作製した鉄箔材と基板とを一体化させて鉄箔シートを作製する工程と、前記鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成する工程と、前記レジスト膜が形成された鉄箔シートをエッチングする工程と、前記エッチング後の鉄箔シートのレジスト膜を除去する工程と、前記鉄箔シートの回路パターンに導線を接続する工程と、前記導線と、前記回路パターンの電気的特性を測定して前記回路パターン部の腐食を検出する腐食検出部とを接続する工程と、を少なくとも含むことを特徴としている。
【0016】
このように、鉄箔材と基板とを一体化させて鉄箔シートを作製し、鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成して、エッチングするので、二次元的に複雑な形状のパターンを形成することができる。これにより、センサ全体をできるだけ小さいものにすると共に、導体パターン部の面積を大きくすることができる。その結果、腐食因子を接触する確率を高め、センサの感度を向上させることが可能となる。また、エッチングにより、導体パターン部と共に回路部分も同時に作ることができるので、製造工程を簡略化することが可能となる。
【0017】
(4)また、本発明の腐食検出方法は、上記いずれかに記載の腐食センサ装置をコンクリート構造物中に埋設して、前記導体パターン部の電気的特性を測定し、前記測定した導体パターン部の電気的特性に基づいて、コンクリート構造物中の鋼材腐食因子を検出することを特徴としている。
【0018】
このように、導体パターン部を鉄箔材で形成するため、厚さを非常に薄くすることができ、細線よりも断線するまでの時間を短くすることができる。その結果、センサとしての感度を高めることが可能となるだけでなく、省電力での検出を可能とする。さらに形成した導体パターン部は、細線と比較して平坦となるため、糊付きのプラスチックフィルムなどで製造後に保護フィルムで保護しておくことが可能で、細線がコンクリートへの設置前に腐食することがあったのに対し、設置まで腐食することなく運搬やコンクリート型枠内に設置でき、打設前に保護フィルムを除去することで、品質確保を容易とすることができる。また、鉄メッキの手法でも母材であるアルミの機械的強度が不足するために保護フィルムの使用は困難であった。
【0019】
(5)また、本発明のセンサは、コンクリート構造物中の鋼材の腐食進行状況を検出する腐食センサ装置に用いられるセンサであって、鉄を圧延することにより作製した鉄箔材で形成された導体パターン部と、前記導体パターン部を保持する基板と、を備え、コンクリート構造物中の鋼材腐食因子によって、前記導体パターン部の電気的特性が変化することを特徴としている。
【0020】
このように、鉄を圧延することにより作製した鉄箔材によって、導体パターン部を形成するので、従来の細線を用いた場合よりも、設計の自由度が高くなり、製造が容易となる。その結果、複雑な形状を容易に構成することが可能となる。また、鉄箔材の厚さは、非常に薄いため、細線よりも断線するまでの時間を短くすることができ、その結果、センサとしての感度を高めるとともに、パターン部の保持によってコンクリート打設時の強度を確保することが可能となる。
【0021】
(6)また、本発明のセンサの製造方法は、コンクリート構造物中に埋設される鋼材腐食因子を検出する腐食センサ装置に用いられるセンサの製造方法であって、鉄を圧延することにより作製した鉄箔材と基板とを一体化させて鉄箔シートを作製する工程と、前記鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成する工程と、前記レジスト膜が形成された鉄箔シートをエッチングする工程と、前記エッチング後の鉄箔シートのレジスト膜を除去する工程と、を少なくとも含むことを特徴としている。
【0022】
このように、鉄箔材と基板とを一体化させて鉄箔シートを作製し、鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成して、エッチングするので、二次元的に複雑な形状のパターンを形成することができる。これにより、センサ全体をできるだけ小さいものにすると共に、導体パターン部の面積を大きくすることができる。その結果、腐食因子を接触する確率を高め、センサの感度を向上させることが可能となる。
【発明の効果】
【0023】
本発明によれば、導体パターン部を鉄箔材で形成するため、厚さを非常に薄くすることができ、細線よりも断線するまでの時間を短くすることができる。その結果、センサとしての感度を高めることが可能となる。
【発明を実施するための最良の形態】
【0024】
次に、本発明に係る実施形態について、図面を参照しながら説明する。本発明者は、一部の磁性薄膜や磁気デバイス等の特殊用途に用いられる鉄箔材に着目して、これをコンクリート構造物中の鋼材の腐食を診断するために用いることを見出し、本発明をするに至った。鉄箔材は、鉄を電気分解して純鉄にし、それから圧延するため、鉄を非常に薄くすることができる。この鉄箔材であれば、レジストを印刷してエッチングをすることができる。従って、鉄箔材を用いることにより、細線や鉄メッキではできなかった小型で複雑なセンサを構成することが可能となる。なお、本明細書では、鉄箔材と細線との相違を次のように定義する。すなわち、細線は、鉄に張力を与えて引っ張ることにより作製されるものであるのに対し、鉄箔材とは、鉄を圧延することにより作製されるものである。その結果、細線は、最も細くても径が0.1mm以上であるのに対し、鉄箔材は、厚さが0.1mm未満である。
【0025】
コンクリート構造物中の鋼材の腐食進行状況を検出するセンサとしてのより好適な鉄箔材の厚さは3μm以上、0.1mm未満である。鉄箔の厚さが0.1mm以上ある場合にはエッチングに時間を要し、この間に鉄が酸化されることで膨張を生じてレジスト膜を損傷させ、一様な線幅が確保できない場合がある。一方、鉄箔材の厚さは3μm以上であることが好ましい。3μmより薄いとコンクリート打設時に物理的な強度が不足して断線することがある。物理的強度と腐食検知の感度を考慮すると、5μm以上25μm以下とすることがより好ましい。
【0026】
また、鉄箔の線幅に関しては、0.1mm未満の線幅の場合にはエッチング中に断線を生じる場合もあり、一方で、下地材との付着力が弱く、製造あるいはコンクリートの打設で損傷を受けやすくなる。エッチングやコンクリート打設、設置、フィルムによる保護の観点からは0.1mm以上が望ましく、さらに線幅が太い場合には腐食切断による感度が低下するため、線幅が2.0mm以下であることが好ましい。
【0027】
図1は、本実施形態に係る腐食センサ装置の概略構成を示す図である。この腐食センサ装置1は、鉄箔材で形成された導体パターン部10aが基板10bに保持されており、導体パターン部10aが腐食検出部2に電気的に接続されている。導体パターン部10aは、鉄箔材により形成されているため、厚さが0.1mm未満である。導体パターン部10aおよび基板10bは、センサを構成する。
【0028】
図1において、導体パターン部10aは、二次元的に複雑な形状を取ることが可能である。例えば、図2(a)は、二次元的な凹凸形状の導体パターン部10aを示す図であり、図2(b)は、二次元的な渦巻き形状の導体パターンを示す図である。このように、鉄箔材を用いるため、細線では不可能な複雑な形状の導体パターン部10aを構成することが可能となる。
【0029】
基板上での二次元的な凹凸形状または渦巻き形状の回路の形成は、線の長さを省スペースで実現可能とするものである。線の長さについて、厚さ5〜25μm、線幅1.0mmでの鉄箔を用いた検討では、線の長さ20mmでは塩分含有コンクリートに対して切断しないセンサが約1割認められ、線の長さは50mm以上とすることですべての線が断線した。線の長さは、用いる鉄箔の厚さ、線幅、設置可能スペースに依存するが、線長さとしては50mm以上が望ましい。一方、線長さが1000mmを超えると、パターン部の面積が大きくなり、構造物中に埋設する上で好ましくない。本実施形態では、例えば、鉄箔の厚さ20μmを用い、導体パターン部の線幅1.0mm、線の長さは総計で250mmである。
【0030】
上記センサにリード線を接続し、コンクリート構造物に埋設し、センサに接続されたリード線のもう一方をコンクリート構造物の外部に引き出して、インタフェース回路および検出回路から構成される腐食検出部と接続して、腐食センサ装置を構成することができる。この腐食検出部により、リード線に接続されたセンサ部の電気的特性を把握することによって断線を検知することが可能となる。しかし、図1に示すように、腐食検出部を無線モジュールで構成し、腐食センサ装置全体をコンクリート構造物に埋設することがより好ましい。無線モジュールを構成することによって、センサに接続されたリード線を伝達して腐食因子がコンクリート内部に侵入する可能性を排除すると共に、リード線自体が腐食により劣化することを回避することができる。さらに、本腐食センサ装置自体をもコンクリート中に埋設することによって、腐食検出部の腐食因子による劣化を防ぐ効果を有する。腐食センサ装置は、腐食環境にあるコンクリートの検知に使用される場合が多いため、無線モジュールで腐食センサ装置を構成してコンクリート構造物に埋設することは本装置自体の耐久性確保の観点から見ると効果が大きい。
【0031】
図1に示すインタフェース回路12は、導体パターン部10aと、無線モジュール13とを接続する回路であり、電圧(電位差)、電気抵抗、インピーダンス、静電容量など導出パターン10aの電気的特性を、電圧値などを出力値として無線モジュールに受け渡すものである。例えば、一定の電圧を印加して導出パターン10aの電気的特性である抵抗値を取得して抵抗値に応じた値を電圧値として出力することで、腐食断線によって生じる抵抗値の低下を印加電圧に対する比率で断線を検知することを可能とする。無線モジュール13は、特定小型小電力無線、RFID、無線LANなど、無線による送受信で外部に検知情報を伝達するものであり、検出回路13aおよび無線通信回路13bを有している。検出回路13aは、インタフェース回路12からの信号を読取るもので、アナログ/デジタル変換回路などが相当する。本実施形態では、導体パターン部10aの電圧を検出することとする。無線通信回路13bは、検出回路13aの検出結果を、アンテナ14を介して、外部の読取装置に対して無線送信する。ここで、インタフェース回路12、無線モジュール13、およびアンテナ14は、腐食検出部を構成する。
【0032】
また、図1において、無線モジュール13の無線通信回路13bは、変調回路、充電/電源部、メモリなどから構成される。この電源部では、バッテリを搭載するタイプのものであっても良いし、いわゆるバッテリーレス、すなわち、蓄電機能を有し、外部から供給される電磁波による誘導電圧を一時的に蓄えるものであっても良い。無線通信回路13bに含まれるメモリは、全体の制御を行なうオペレーティングシステム、構造物の状態を検知するプログラム、検知した情報の記録などに用いるROMやRAMなどで構成される。メモリにはセンサのID番号を搭載してもよく、また、読取装置から構造物の埋め込み位置に関する情報をRAMに書き込み、これら情報をセンサで検知した情報と共に読み取り装置で読み取ってもよい。
【0033】
また、図1におけるアンテナ14は、金属類、カーボンファイバーやフェライトなどが用いられ、中空の巻き線、あるいは磁性体巻き線、あるいは基板上にプリント技術を利用して成形したものを用いることが望ましく、PETなどのフィルム間にこれら材料を挟み込んで使用してもよく、またその形状はリング状、棒状、円盤状など適当な形に成型して用いてもよい。
【0034】
また、導体パターン部10aは、例えば、腐食因子が進行する方向とほぼ直交する面上を設けると、腐食因子を捉える確率を上げることができる。さらに、複数の導体パターン部10aを深さ方向に平行に設ける。これにより、コンクリート内部に浸透する腐食因子を経時的に捉えることが可能であり、これにより、鋼材に腐食因子が到達するまでの期間を拡散の理論に基づいて精度よく予測することができ、コンクリート構造物の維持管理では有用な情報となる。例えば、腐食因子が拡散によってコンクリート表面から内部へ浸透するとすれば、コンクリート表面から導体パターン部10aまでの距離をA、コンクリート表面から鋼材までの距離をB、コンクリート構造物建設から腐食センサ装置が腐食因子を検知した時間をTAとすると、コンクリート構造物建設から鋼材の腐食が生じるまでの時間TBは、TB=TA・(B/A)として予測することができ、腐食センサ装置で検知した情報に基づいて、コンクリート構造物を劣化から守る対策を劣化が生じる前に施すことが可能となる。
【0035】
本発明者は、鉄箔材によるセンサを製作し、検知確率の実験を行なった。図3は、本実施形態に係る腐食センサ装置の実験の様子を示す図である。センサ(導体パターン部)の形状は、上記のように、二次元的な凹凸形状や渦巻き形状とする。これは、コンクリートの外部から侵入した腐食因子を検知しやすくするためである。本実施形態では、基板10bを横40mm、縦50mmのサイズとした。ただし、本発明はこれに限定されるわけではなく、例えば、横を20mm〜100mmとすることもでき、縦を20mm〜100mmとすることもできる。図3において、腐食因子を塩化物イオンとしたときに、曝露面を塩化物イオンの進入方向とした。曝露面には被覆はせず、他の5面については樹脂による被覆を行なった。また、センサの設置位置は、曝露面からの深さが15mmの場合と35mmの場合とを行なった。この試験体を、15%の塩化ナトリウム水溶液中に浸漬し、コンクリートへの塩分浸透試験を行なった。そして、腐食因子である塩化物イオンによって、導体パターン部の鉄箔の腐食による抵抗変化を検知した。
【0036】
図4は、実験結果を示す図である。図4に示すように、塩分の浸漬面(曝露表面)から近い、15mmの位置に設置したセンサから断線による抵抗変化が検知された。これにより、明確に腐食因子が浸透していることが把握できた。また、その後、塩分の浸漬面(曝露表面)から35mmの位置に設置したセンサからも断線による抵抗変化が検知された。その結果、鉄箔材によりセンサ(導体パターン部)を構成したときは、感度が高く、断線時差が他の種類と比較して小さく、設計自由度が大きく、そして、製造難易度が低いことを確認することができた。
【0037】
次に、本実施形態に係る腐食センサ装置の作製方法について説明する。図5は、本実施形態に係る導体パターン部の作製方法の手順を示すフローチャートである。まず、鉄箔材と下地材とを一体化させて、鉄箔シートを作製する(ステップS1)。ここでは、下地材となる樹脂フィルム(例えば、PET、ポリイミド材等の樹脂フィルム)に、接着剤を塗布し、ローラ等を用いて、鉄箔材と下地材とを張り合わせる。これにより、鉄箔シートが作製される。
【0038】
次に、ステップS1で作製した鉄箔シートの鉄箔上に、導体パターンのレジスト膜を形成する(ステップS2)。すなわち、鉄箔シートの鉄箔上に、センサ(導体パターン部)および回路の形状のレジスト膜を、スクリーン印刷やフォト印刷等によって形成する。これに併せて、完成後にセンサを抜き型によって個々に切断・分離するためのガイド等も印刷する。
【0039】
次に、エッチングを行なう(ステップS3)。ここでは、レジスト印刷した鉄箔シートを、エッチング槽にてエッチングする。これにより、レジスト膜が施されていない露出した鉄箔は、エッチング液(例えば、塩化第2鉄溶液)によって溶解する。エッチング終了後、鉄箔シートをエッチング槽から取り出して、付着液を洗浄する。その後、レジスト被膜を溶剤等によって除去し、導体パターン部および回路の外形が完成する。
【0040】
次に、成形後の分割を行なう(ステップS4)。接続するための回路と一体成形したセンサ(導体パターン部)において、それ以外の回路の防水・保護のため、耐水塗料の印刷や、保護フィルムの貼付を行なう。その後、抜き型を用いて、保護処理を施したセンサを個々に切断・分離する。ここで、樹脂シートは耐熱性が小さいため、ハンダを用いることが難しい。このため、嵌合端子を用いて接続部を形成しても良い。端子は、回路の接続用グラウンド部に、嵌合端子を用いてかしめることにより設ける。そして、コネクタ・リード線により、腐食検出部と接続する。
【0041】
以上説明したように、本実施形態によれば、導体パターン部の基板からの厚さが0.1mm未満であるため、細線よりも断線するまでの時間を短くすることができ、その結果、センサとしての感度を高めることが可能となる。また、基板上で、二次元的な凹凸形状または渦巻き形状の回路を構成するので、センサ全体をできるだけ小さいものにすると共に、導体パターン部の面積を大きくすることができる。その結果、腐食因子を接触する確率を高め、センサの感度を向上させることが可能となる。
【図面の簡単な説明】
【0042】
【図1】本実施形態に係る腐食センサ装置の概略構成を示す図である。
【図2】(a)は、二次元的な凹凸形状の導体パターン部を示す図であり、(b)は、二次元的な渦巻き形状の導体パターン部を示す図である。
【図3】本実施形態に係る腐食センサ装置の実験の様子を示す図である。
【図4】実験結果を示す図である。
【図5】本実施形態に係る導体パターン部の作製方法の手順を示すフローチャートである。
【符号の説明】
【0043】
1 腐食センサ装置
2 腐食検出部
10a 導体パターン部
10b 基板
12 インタフェース回路
13 無線モジュール
13a 検出回路
13b 無線通信回路
14 アンテナ

【特許請求の範囲】
【請求項1】
コンクリート構造物中の鋼材の腐食進行状況を検出する腐食センサ装置であって、
鉄を圧延することにより作製した鉄箔材で形成された導体パターン部と、
前記導体パターン部を保持する基板と、
前記導体パターン部の電気的特性を測定し、前記測定した導体パターン部の電気的特性に基づいて、コンクリート構造物中の鋼材腐食因子を検出する腐食検出部と、を備えることを特徴とする腐食センサ装置。
【請求項2】
前記導体パターン部は、前記基板からの厚さが0.1mm未満であって、前記基板上で、二次元的な凹凸形状または渦巻き形状の回路を構成することを特徴とする請求項1記載の腐食センサ装置。
【請求項3】
コンクリート構造物中に埋設される鋼材腐食因子を検出する腐食センサ装置の製造方法であって、
鉄を圧延することにより作製した鉄箔材と基板とを一体化させて鉄箔シートを作製する工程と、
前記鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成する工程と、
前記レジスト膜が形成された鉄箔シートをエッチングする工程と、
前記エッチング後の鉄箔シートのレジスト膜を除去する工程と、
前記鉄箔シートの回路パターンに導線を接続する工程と、
前記導線と、前記回路パターンの電気的特性を測定して前記回路パターン部の腐食を検出する腐食検出部とを接続する工程と、を少なくとも含むことを特徴とする腐食センサ装置の製造方法。
【請求項4】
請求項1または請求項2記載の腐食センサ装置をコンクリート構造物中に埋設して、前記導体パターン部の電気的特性を測定し、前記測定した導体パターン部の電気的特性に基づいて、コンクリート構造物中の鋼材腐食因子を検出することを特徴とする腐食検出方法。
【請求項5】
コンクリート構造物中の鋼材の腐食進行状況を検出する腐食センサ装置に用いられるセンサであって、
鉄を圧延することにより作製した鉄箔材で形成された導体パターン部と、
前記導体パターン部を保持する基板と、を備え、
コンクリート構造物中の鋼材腐食因子によって、前記導体パターン部の電気的特性が変化することを特徴とするセンサ。
【請求項6】
コンクリート構造物中に埋設される鋼材腐食因子を検出する腐食センサ装置に用いられるセンサの製造方法であって、
鉄を圧延することにより作製した鉄箔材と基板とを一体化させて鉄箔シートを作製する工程と、
前記鉄箔シートの鉄箔上に、凹凸形状または渦巻き形状の回路パターンのレジスト膜を形成する工程と、
前記レジスト膜が形成された鉄箔シートをエッチングする工程と、
前記エッチング後の鉄箔シートのレジスト膜を除去する工程と、を少なくとも含むことを特徴とするセンサの製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−236524(P2009−236524A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−79788(P2008−79788)
【出願日】平成20年3月26日(2008.3.26)
【出願人】(000000240)太平洋セメント株式会社 (1,449)
【Fターム(参考)】