説明

荷電粒子線装置

【課題】荷電粒子線装置において、短時間かつ高精度にビーム電流を測定することおよび設定することが可能な計測技術を提供すること。
【解決手段】荷電粒子源を試料に照射し、その試料から発生する信号を検出する荷電粒子線装置において、荷電粒子ビームを試料上に収束または照射する荷電粒子光学系と、荷電粒子線の走査によって試料から発生する信号を検出する検出手段と、荷電粒子ビームの電流を測定するための検出素子と、荷電粒子の走査を実現する偏向電極、あるいは偏向コイルを備え、これを制御する電圧もしくは電流を印加する制御部と、荷電粒子ビームの光学条件を記憶可能な演算装置を具備し、予めビーム電流のピーク電流が得られる条件を記憶しておくことで、光学条件に応じてビーム偏向範囲を参照することで、ビーム偏向を検出素子近傍のみに制限し、荷電粒子ビームの電流値を計測する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子ビームを試料に照射し、試料から発生する信号粒子を検出する荷電粒子線装置において、荷電粒子ビームの電流測定および設定が高速かつ高精度に行うことができる荷電粒子線装置に関するものである。
【背景技術】
【0002】
荷電粒子線装置は、一次荷電粒子ビームを試料に照射し、試料から発生する二次電子あるいは試料から後方散乱される後方散乱電子(反射電子)を二次信号として検出する装置である。検出された二次信号は、画像化あるいは画像信号として各種の計測・検査に使用される。一次荷電粒子ビームの電流値が変化すると、試料から放出される信号量も変化する。そのため、良好な画像あるいは画像信号を取得するためには、画像あるいは画像信号の取得範囲内では、照射する一次荷電粒子ビームの電流量をなるべく均一にする必要がある。従って、実際に画像や画像信号するに際しては、荷電粒子ビームの電流値を事前に高精度に測定し、電流値が設定値から外れている場合には、電流値を調整しなおす必要がある。
【0003】
荷電粒子線装置のビーム電流の測定方法は、2つの方式に大別される。一つは、ファラデーカップに代表される検出素子を荷電粒子ビーム光軸上に機械的に移動させて電流を測定する方式である。もう一方は、荷電粒子ビームを電磁偏向もしくは静電偏向によって固定した検出素子に入射させ、電流値を測定する方法である。後者の方式は、機械的調整が不必要であり、容易に電流測定が可能であり、多くの荷電粒子線装置で採用されている。例えば、特許文献1には、E×B偏向器の近傍に縦長の溝状体形状を有する電流量検出器を設けた荷電粒子線装置の発明が開示されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平9−171790号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に開示されたビーム電流計測の場合、電流量検出器は試料上ではなく電子光学系の途中に配置されている。従って、ビーム電流測定を行う場合、まず荷電粒子ビームを所定量偏向し、電流検出回路に接続された深溝形状の検出素子に入射させ、検出回路で得られる電流最大値が電流値であると判断していた。深溝形状の検出素子の場合、電流計測面において溝の内壁面であり、ピーク電流が得られるのは、荷電粒子ビームがうまく検出素子の溝底に照射された場合である。この場合、荷電粒子ビームが検出素子周辺の金属部品に照射されると、照射された金属部で荷電粒子の放出や吸収が発生する。これらの荷電粒子が検出素子に到達してしまうと、本来測定すべき荷電粒子ビームの電流値が正確に測定できないという問題がある。
【0006】
また、検出素子が荷電粒子ビームを検出するために必要な移動量、あるいは荷電粒子ビームが検出素子に入射するために必要な偏向量は、荷電粒子ビームの光学条件によって変化する。そのため従来方式ではビーム偏向を制御する制御電流ならびに制御電圧を広い範囲に渡って変化させる必要があり、高速な測定が困難であった。
【0007】
本発明の目的は、上記の従来技術の欠点を排除し、高速かつ高精度に荷電粒子ビームの電流値の測定及び設定できる荷電粒子線装置を提供することにある。
【課題を解決するための手段】
【0008】
上記の目的を達成するために、本発明の荷電粒子線装置は、一次荷電粒子ビームを試料上に走査して、検出される反射電子や2次電子などの二次荷電粒子に基づく信号を出力する機能を有する荷電粒子光学系と、上記一次荷電粒子ビームが持つ電流量を計測する電流検出素子と、上記荷電粒子光学系に設けられた走査偏向手段の駆動電圧あるいは駆動電流を制御する荷電粒子光学系制御部とを備え、一次荷電粒子のビーム電流計測時に、ビーム偏向量が適切な値になるように上記走査偏向手段を制御することを特徴とする。
【0009】
より具体的には、上記電流検出素子を用いて一次荷電粒子ビームの電流計測を行い、一次ビームの偏向量と電流との関係を適当な記憶手段に予め記憶しておく。その後、ビーム電流計測を再度行う際には、上記荷電粒子光学系制御部が上記の関係を参照して、荷電粒子ビームの偏向範囲を電流検出素子の近傍のみに制限する偏向制御電流あるいは偏向制御電圧を与えることにより、ピーク電流値の計測を可能とする。
【発明の効果】
【0010】
本発明によれば、荷電粒子ビームのビーム電流値測定に関して、短時間かつ高精度に測定および設定できる荷電粒子線装置を提供できる。
【図面の簡単な説明】
【0011】
【図1】走査電子顕微鏡の実施例を示した説明図。(実施例1)
【図2】検出素子(ファラデーカップ)と周辺部品の説明図。(実施例2)
【図3】所定の加速電圧に対して一定のビーム偏向量を得るために必要な電子ビーム偏向制御電圧の関係。
【図4】各偏向制御電流における電子ビーム電流検出回路出力電流量と偏向制御電圧の関係を示す特性図。
【図5】実施例1または2のビーム電流測定のフローを示すフローチャート。
【図6】実施例3または4のビーム電流測定のフローを示すフローチャート。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態について走査型電子顕微鏡を実施例に、図面に基づいて詳細を述べる。
【0013】
図1は走査電子顕微鏡の実施例の図面である。走査電子顕微鏡の上方には電子源1が取り付けられ、電子源1近傍にはビーム制御電極2が設けられている。これは引き出し電極3,加速電極4と共にビーム制御高圧電源5に接続され、演算器(CPU)および記憶装置を搭載した中央制御装置6の電源制御部によって制御される。引き出し電極3,加速電極4等の印加電圧を調整することで、電子源1から放出される電流量を制御することができる。電子源1,ビーム制御電極2,引き出し電極3および加速電極4は電子銃を構成し、以下の説明では、以上の光学要素の集合を「電子銃」として適宜引用する。なお、他の光学要素を含めて電子銃と称する場合もあるが、その場合であっても本発明の適用は可能である。
【0014】
電子源1から放出した電子により形成される電子ビーム7は、第一収束レンズ8のレンズ作用により絞り板10の上方でクロスオーバを形成する。収束された電子ビーム7は、ビーム絞り板10によって機械的にビーム径が制限され、その後、さらに、絞り板10より下方に取り付けられた第二収束レンズ11と収束レンズ制御電源9、さらに、対物レンズ12と対物レンズ制御電源13を中央制御装置6により制御することで、電子ビーム7を試料17上に収束させる。第一収束レンズ8および第二収束レンズ11は、収束レンズ制御電源9により動作が制御される。
【0015】
収束した電子ビーム7はビーム走査偏向手段、例えば偏向コイル14による電磁偏向あるいは偏向電極15による静電偏向により、試料上に走査させることができる。電子ビーム7の走査は、観察倍率に応じて偏向制御電源16の制御電圧または制御電流を変化することにより制御可能である。電磁偏向の場合は偏向コイル14,偏向制御電源16からコイルの駆動電流が供給される。静電偏向の場合は偏向電極15,偏向制御電源16から制御電圧が供給される。図1では偏向コイル14両方の偏向制御手段を搭載している場合を示しているが、実際にはいずれか一つのみが設けられる場合が多い。観察電子ビームの走査条件は、観察倍率や画素サイズといった光学条件に応じて偏向制御電源16の制御電圧もしくは制御電流を変化させて制御に応じて偏向制御電源16が制御される。
【0016】
一次電子ビーム7を照射することで試料17から照射することで発生する二次電子18または後方散乱される反射電子は、直接もしくは、検出効率を上げるための反射板19を介し、電子検出器20にて検出される。電子検出器20によって検出された検出信号は、増幅機能,A/D変換機能,画像処理機能を有する信号検出回路21によって画像化され、画像表示装置22に表示される。
【0017】
また一次電子ビーム7のビーム電流量はビーム電流検出素子23を用いて計測される。本実施例の場合、ビーム電流検出素子23は、二段の偏向コイル14の下部に配置されている。偏向コイル14に制御電流を流す、あるいは偏向電極15に制御電圧を印加すると、電子ビーム7が偏向され、ビーム電流検出素子23に入射される。ビーム電流検出素子23は電子ビームの光軸方向に対して長い溝状の構造を有しており、溝の内壁面に形成された電子検出部に入射した荷電粒子線量に比例する検出電流を電流検出回路24に出力する。
【0018】
以上説明した電子源1,引き出し電極3,加速電極4、あるいは収束レンズ8,11や対物レンズ12といった各種レンズなどの光学要素は電子光学系を構成している。以下の説明においては、以上の光学要素の集合を「電子光学系」あるいは「荷電粒子光学系」として参照する場合もある。
【0019】
図2にビーム電流検出素子23と周辺部品の配置関係を示す。ビーム電流検出素子23は、電子顕微鏡内部に設けられたシールド101を構成する金属部材の内壁面の内部に絶縁体102を介して取り付けられ、ビーム電流測定以外のときはアース電位となるように設置される。ビーム電流値測定時には、電流検出素子23をアースから切り放し、ビーム電流検出回路24に接続する。そして、中央制御装置6に搭載されたCPUによって偏向制御電源16の制御電圧を設定し、シールド101や上方の金属部品103に照射されないように電子ビーム7をビーム検出素子23に入射させることで、そのときのビーム電流検出回路24出力のピーク値をビーム電流値として測定できる。
【0020】
ここで、ビーム電流検出素子23の溝の内壁面に、二次電子または反射電子発生の抑制効果のあるカーボン等の抑制材料を塗布することにより、二次電子あるいは反射電子の検出面が溝の底面のみに限定することができる。これにより、ビーム電流検出素子23周辺の金属部品から放出される荷電粒子が比較的到達しやすい溝の内壁面ではなく、比較的届きにくい溝の底面のみで一次荷電粒子ビームの電流量を計測できるため、ビーム電流検出素子23の検出信号に含まれる一次荷電粒子ビーム以外の原因によるノイズ成分を低減し、ビーム電流量の計測精度を向上することができる。
【0021】
また、内壁面に抑制材料を塗布することで、電子ビーム7の溝の内壁面への照射により発生する二次電子あるいは反射電子の生成量を抑制することができる。これにより、荷電粒子線の検出部である溝の底面への二次電子あるいは反射電子の入射量が低減されるため、やはりビーム電流検出素子23の検出信号に含まれるノイズ成分を低減することができる。
【0022】
以上説明したように、正確なビーム電流量計測を行うためには、一次電子ビーム7がビーム検出素子23にのみ入射される必要がある。このためには、一次電子ビーム7がシールド101や金属部品103などに照射されないように、精密なビーム偏向を行う必要があるが、一次電子ビーム7の偏向量は、電子銃の加速電圧やビーム制御電圧に影響される。以下では、図3を用いて、電子ビーム7の偏向量と電子銃の加速電圧との関係について説明する。
【0023】
図3には、電子銃の加速電圧Vaccとビーム偏向量との関係を示した。図3は、電磁偏向の場合におけるVaccとビーム偏向量との関係を示した図であり、図の横軸は、Vaccの平方根(1/2乗)を、縦軸は電子ビーム7を一定量偏向するために必要な偏向コイル14に流す偏向制御電流量をそれぞれ示す。図示されるように、一定のビーム偏向量を得るために必要な偏向コイル電流量は加速電圧Vaccに伴って増加する。静電偏向の場合も、静電偏向電圧と加速電圧との関係はほぼ同様であり、一定のビーム偏向量を得るために必要な静電偏向電極15への印加電圧はVaccに伴って増加する。
【0024】
また、ビーム電流量値(Ip)は、加速電圧Vaccだけではなく電子ビーム電子銃内のビーム制御電極2への印加電圧(以下、電子ビーム制御電圧Vsと称する)にも影響され、制御電圧Vsを調整することにより、電子ビーム電流量を制御することができる。
【0025】
図3に実線で示した加速電圧と偏向制御電流量との関係は以下の式(1)で表される。
【0026】
【数1】

【0027】
また、静電偏向の場合、加速電圧と静電偏向電極15へ印加する偏向制御電圧との関係は、以下の式(2)で表される。
【0028】
【数2】

【0029】
ここでLは電子ビーム偏向量を、Vaccは電子銃の実効的な加速電圧を、Idefは電磁偏向の場合に偏向コイル14に流れる制御電流を、Vdefは静電偏向の場合に偏向電極15に印加される偏向制御電圧を、α1,α2は電子ビーム7の電子光学条件によって決定する比例定数をそれぞれ意味する。
【0030】
さて、式(1)あるいは式(2)を利用すれば、設定された加速電圧Vaccに対するビーム偏向量が分かる。よって、目的とするビーム偏向量、つまりシールド101や金属部品103といった電子ビーム電流量計測に影響を与える構成要素に電子ビームが照射されないようにビーム電流検出素子23に電子ビームを入射するためのビーム偏向量が決まれば、与えられた加速電圧Vaccの下で所定のビーム偏向を実現するための偏向コイル14の電流値あるいは静電偏向電極15の電圧値が定まる。
【0031】
次に、電子ビームの偏向制御について図4を用いて説明する。図4に、電磁偏向の場合における、電子ビーム7の走査時に偏向コイル14に流す電流(偏向制御電流)と電子ビーム電流量との関係を示す。図4の横軸は偏向コイル14への印加電流値を示し、縦軸はビーム電流検出素子23の検出電流値を示している。
【0032】
従来の電流計測においては、前述の通り、単純に広い範囲でビーム偏向を行いピーク電流を測定している。この場合、電子ビーム7がビーム電流検出素子23の周辺のシールド101あるいは上方に取り付けられた金属部品103等を照射する場合があり、金属部から多くの反射電子や二次電子18が発生してビーム電流検出素子23がこれらを捕捉してしまう場合や、二次電子の収率によって本来の電子ビーム電流値よりも大きいピークの電流値を検出してしまう。この場合、図4の場合では“金属部品へのビーム照射時の電流値”として示されるような電流値を本来計測されるべき電流値として検出してしまうことになり問題となってしまう。そこでまず、ビームが電流検出素子23の溝壁内に入射するような偏向量Lを式(1)から算出し、周辺のシールド101あるいは上方に取り付けられた絶縁体102に電子ビーム7が照射しないような偏向となるように偏向制御電源16を設定し、ビーム電流を測定する。
【0033】
図4の縦軸の検出電流値の計測時には、ビーム電流検出素子23の内壁に電子ビーム7が入射するように電子ビーム7を偏向させており、この際に電流検出素子23の溝内壁および底面(内壁面に抑制材料のコーティングを行った場合は底面)に入射したときの電流検出回路24の出力が電子ビーム電流値の計測値となる。電子ビーム電流値の計測時に必要なビーム偏向量Lは式(1)または式(2)より算出できるが、電子ビーム7が光軸104からずれている場合もあるため、ビーム電流量を予め図4で“参照データ生成用のビーム偏向制御範囲”という矢印で示された程度の広さの偏向範囲で測定しておき、電流ピーク値が得られる偏向制御電流を把握することが必要となる。
【0034】
図4に示されるようなピークを含んだ周辺部分のみのビーム偏向を実現するためには、図3で説明したように、ビーム電流量と加速電圧Vaccとの関係を記述したテーブルあるいは式(1)または式(2)の比例定数の情報を中央制御装置6内に設けられたメモリに記憶し、更にビーム電流量と電子ビーム制御電圧Vsの関係情報をメモリ内に記憶させる。ビーム電流の計測時には、中央制御装置6が、メモリ内に記憶された各データを参照して、現在設定されている電子ビーム照射条件(例えば加速電圧Vaccなど)の条件下で目的とする偏向量を得るための偏向電流値あるいは偏向電圧値を算出し、算出された偏向電流値あるいは偏向電圧値に応じて偏向制御電源16を制御することにより、ピーク電流値が得られる近傍のみが走査されるような偏向制御範囲を設定する。これにより、電子ビーム7の軸ずれの影響や周辺絶縁体102の影響を受けることなく、ビーム電流を測定することが可能となる。
【0035】
上記手段を利用し、高精度かつ高速にビーム電流を測定する手順は、図のフローチャートで表すことができる。また詳しいビーム電流の測定,ビーム設定のシーケンスを図5のフローチャートに示す。上記手段を利用し、高精度かつ高速にビーム電流を測定する手順は、図5のフロー図により表される。まず荷電粒子線装置の立ち上げを行い(ステップS01)、初期設定により装置パラメータを設定(ステップS02)した後、荷電粒子光学条件を設定・調整する(ステップS03;以下、本光学条件を基本光学条件と略す)。このビーム電流量を変化させる基本光学条件には、ビーム制御高圧電源5により制御する加速電圧,引き出し電圧,ビーム制御電圧、また収束レンズ制御電源9,対物レンズ制御電源13により制御するコンデンサレンズ励磁電流等の設定がある。これら基本光学条件の設定を行い、偏向コイル14に流す制御電流量、あるいは、偏向電極15に印加する電圧を偏向制御電源16にて制御し、荷電粒子ビームを偏向する。荷電粒子ビーム電流値の測定は、このビームを電流検出素子23に入射するように偏向し、ビーム電流検出回路24における出力値を測定する。ここで、ビーム制御高圧電源5に印加する電圧と偏向コイル14に流す制御電流、あるいは、偏向電極15に印加する制御電圧との関係を記憶装置に記憶する(ステップS04)。この結果を利用し、高速にビーム電流値のピーク値が得られるように、荷電粒子ビームを偏向するための制御電流値、あるいは、制御電圧値を、ビーム照射範囲がビーム電流値のピーク値近傍となるように設定する(ステップS05)。以上の5ステップは装置メーカ側の作業となる。
【0036】
ユーザ側は、荷電粒子ビームの電流量の測定もしくは電流量の設定を行う際、所望の加速電圧と荷電粒子ビームの電流値のみをインターフェイスより設定する。これにより、中央制御装置6に記憶された基本光学条件(ステップS03)から検査に必要な光学条件が呼び出され、ビーム制御高圧電源5の設定値が決まる。また同時に、中央制御装置6に記憶されたビーム照射範囲が呼び出され、偏向制御電源16が設定される。これにより荷電粒子ビームはビーム電流検出素子23近傍のみに照射され、高速かつ高精度にビーム電流値の測定・設定することができる(ステップS06)。
【0037】
次に図6に荷電粒子ビーム装置における電流測定フロー図を示す。まず所望の加速電圧とビーム電流量を選択する(ステップS07)。設定した条件に応じて、中央制御装置6によりビーム制御高圧電源5に印加する制御電圧と基本光学条件が設定される。このとき、アースに接続していたビーム電流検出素子23は電流検出回路24に接続され(ステップS08)、設定した加速電圧と、予め取得した偏向制御する電流量、もしくは、印加電圧との関係を参照し、電子ビーム7の偏向範囲をビーム検出素子23の溝近傍のみとなるように偏向制御電源16を設定する(ステップS09)。これにより電流のピーク値を検出するビームの偏向制御範囲を制限し、この偏向範囲内でビーム電流検出素子23にてビーム電流のピーク値を検出する(ステップS10)。これにより、高精度かつ瞬時に荷電粒子ビームを電流検出素子23に入射させることができるため、電流測定の高速化と高精度化が両立できる。電子ビーム電流量を設定する場合には、ステップS10の後、ビーム制御高圧電源5の制御電圧を所望の増減分に変化するように制御電圧を中央制御装置6に記録された参照データより呼び出すことで、ビーム電流量を高速に設定することができる(ステップS11)。これにより高速にビーム電流量を測定し、測定結果を画像表示装置22等に表示する(ステップS12)。測定後は、再びビーム検出素子23をアースに接続して測定を終了する(ステップS13)。
【符号の説明】
【0038】
1 電子源
2 ビーム制御電極
3 引き出し電極
4 加速電極
5 ビーム制御高圧電源
6 中央制御装置
7 電子ビーム
8 第一収束レンズ
9 収束レンズ制御電源
10 絞り板
11 第二収束レンズ
12 対物レンズ
13 対物レンズ制御電源
14 偏向コイル
15 偏向電極
16 偏向制御電源
17 試料
18 二次電子
19 反射板
20 電子検出器
21 信号検出回路
22 画像表示装置
23 ビーム電流検出素子
24 電流検出回路
101 シールド
102 絶縁体
103 金属部品
104 光軸

【特許請求の範囲】
【請求項1】
一次荷電粒子ビームを試料に照射して検出される二次信号を信号出力する機能を備えた荷電粒子光学系を備える荷電粒子線装置において、
前記荷電粒子光学系は、
前記一次荷電粒子ビームを前記試料上に走査させる走査偏向器と、
前記走査偏向器により偏向された一次荷電粒子ビームの電流値を測定する電流検出素子とを有し、
前記荷電粒子線装置は、前記一次荷電粒子ビームのビーム電流計測時には、
前記一次荷電粒子ビームに対する偏向範囲が、前記電流検出素子の検出電流ピーク位置近傍から開始されるように前記走査偏向器を制御する制御手段を更に備えることを特徴とする荷電粒子線装置。
【請求項2】
請求項1に記載の荷電粒子線装置において、
前記荷電粒子光学系は、前記一次荷電粒子ビームの加速電圧を調整可能な電子銃を備え、
前記加速電圧に応じて、前記一次荷電粒子ビーム偏向開始位置を制御することを特徴とする荷電粒子線装置。
【請求項3】
請求項2に記載の荷電粒子線装置において、
前記制御手段は、前記走査偏向器に供給する偏向電圧値が前記加速電圧に応じて格納されたテーブルを備えることを特徴とする荷電粒子線装置。
【請求項4】
請求項2に記載の荷電粒子線装置において、
前記制御手段は、前記走査偏向器に供給する偏向電圧を、所定の演算式および前記加速電圧に基づき算出することを特徴とする荷電粒子線装置。
【請求項5】
請求項1に記載の荷電粒子線装置において、
前記測定した荷電粒子ビームの電流値を表示する表示手段を備えたことを特徴とする荷電粒子線装置。
【請求項6】
請求項1から5のいずれか1項に記載の荷電粒子線装置において、
前記電流検出素子の形状は、前記一次荷電粒子線の光軸方向に長い溝状であることを特徴とする荷電粒子線装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate