説明

表面上における指紋の出現を低減する微細構造

様々な形状及びパターンの微細構造を提供し、取り扱いに起因して基材の表面上に生成される指紋の視認性を低減する。微細構造を基材の外部表面上に直接形成し、耐指紋性を基材に付与可能であり、或いは、微細構造をポリマーシートの表面上に形成し、基材(例えば、光学ディスプレイ)の表面上に配設可能な耐指紋性保護レイヤを提供可能である。基材の表面にわたる微細構造のサイズ、形状、向き、及び分布を最適化し、微細構造の耐久性を改善可能であると共に/又は、基材の特定のアプリケーションのために基材に拡散表面を付与可能である。又、光学ディスプレイの表面上に配設された際のヘイズ及びモアレの出現を最小化するべく、透明な保護レイヤ上の微細構造の密度及び分布を最適化する。

【発明の詳細な説明】
【技術分野】
【0001】
技術分野
本発明は、一般に、取り扱いによる汚染に起因した指紋の出現を低減する微細構造を有する表面を提供する分野に関する。更に詳しくは、本発明は、指紋の可視性を低減すると共に取り扱いの際に遭遇するせん断力に耐える優れた耐久性を有する様々な形状及び分布の微細構造の提供に関する。
【背景技術】
【0002】
背景技術
透明な基材表面上の指紋及びその他の痕跡は、基材を透過する光(例えば、ディスプレイから放射された画像)が歪むように、表面の透過特性を光学的に歪曲可能である。同様に、不透明な基材表面上においても、指紋及びその他の痕跡/汚染物質は、表面の反射特性を光学的に歪曲可能である。指紋の出現又は汚れは、取り扱われた又は触れられた表面に転写された指紋の油分の結果である。指紋は、堆積した油分が、触れられた表面上にそのままの状態において留まるため、可視状態となる。表面上に堆積した指紋に起因した光学的な歪みは、通常、操作者が保持又は取り扱う様々な装置において特に明白である。例えば、指紋は、一般に、いくつかの例を挙げただけでも、携帯電話機の表示画面、対話型装置のタッチパネル、(例えば、冷蔵庫のドアやストーブコンロなどの)家庭用電化製品、及び窓として利用される基材の外部表面上に表れる。この問題に対する有効な解決策は、操作者(例えば、観察者)の眼から油分がもはや可視状態ではなくなるように、堆積した指紋の油分を分散させるか又は隠蔽することになろう。
【0003】
1つの従来の解決策は、洗浄溶剤及び/又は拭き取り布(例えば、タオル)によって基材表面をクリーニングするというものである。しかしながら、この解決策は、高頻度のクリーニングが望ましくないと共に/又は拭き取り布が容易に入手可能ではないことに起因し、多くのアプリケーションにおいて、便利でないか、或いは、実際的ではない。別の解決策は、親油性又は撥油性の表面コーティングによって油分を吸着するか又は撥じくように、平坦な表面を加工するというものであるが、指紋の油分が、加工済みの表面上において依然として可視状態にあるため、この加工は、堆積した油分に対して十分な影響を付与しない。例えば、タッチディスプレイスクリーンの分野においては、指紋の汚れの問題を取り扱うためのいくつかの既存の、但し、有効ではない方法が存在している。1つの方法は、表示表面上にコーティングを施すというものである。このようなコーティングは、しばしば、撥油性のコーティングであり、これらは、クリーニングを容易にするが、指紋の汚れを隠蔽しない。このような方法に伴う別の問題点は、長期間の使用に伴ってコーティングが摩滅する傾向を有するという点にある。更には、コーティングは、スクラッチに対する保護を表示表面に対して提供しない。
【0004】
別の解決策は、タッチディスプレイスクリーンの表面上に透明なカバーフィルムを施すというものである。このようなカバーフィルムは、表示表面をスクラッチから保護するが、指紋を隠蔽しない。利用されているこのようなカバーフィルムの1つが、フラットフィルムである。しかしながら、フラットフィルムは、堆積した指紋の油分が人間の眼には知覚不能となるように、指紋を隠蔽しない。フラットフィルムの一例(ザッグ社(Zagg,Inc.)から市販されている「インヴィジ−シールド(Invisi−Shield)」)については、図27及び図28を参照して後述する。フラットフィルムが、親油性のコーティングによって表面処理されている場合には、指紋が塗りつけられるのみであり、これにより、指紋の油分が依然として可視状態に残り、且つ、フィルムを通じて観察される下の画像がぼやけたものになる。この理由は、親油性の(「油との親和性を有する」)表面は、事実上、耐指紋性を有しておらず、指紋の油分を分散させるのみであって、指紋の汚れと関連する水及びその他の成分を分散させないからである。この結果、このような汚れ及びその他の汚染物質は、依然として可視状態に留まる。撥油性コーティングを使用している場合には、フラットフィルムは、指紋の油分を依然として明瞭に可視状態に残しつつ、指紋の油分を粒状にする傾向を有する。表面を撥油性にするべく利用されるフルオロケミカル表面処理は、大きな液体接触角を生成するメカニズムの提供を意図したものであり、従って、耐指紋性を生成するとされている。実際には、このような表面は、クリーニングが容易であるが、指紋の油分が依然として可視状態に残るため、耐指紋性を有してはいない。更には、このようなコーティングの屈折率は、コーティングによって実際には指紋の汚れが強調されるように、カバーガラス/プラスチックの屈折率との不整合を生成可能である。又、フッ素化ポリマーの塗布は高価である。更には、親油性及び撥油性のコーティングは、使用に伴って摩滅する傾向を有し、且つ、補修環境において塗布することができない。利用されている別のカバーフィルムは、マット仕上げフィルムである。しかしながら、このフィルムは、指紋を十分に隠蔽せず、且つ、そのマット仕上げは、下のディスプレイからフィルムを通じて透過する光学画像を低減する拡散表面を導入すると共に表面からの反射ヘイズをも増大させることにより、光学性能を低下させる。マットフィルムの一例(パワーサポート社(Power Support)から市販されている「防眩フィルム(anti−glare film)」)については、図25及び図26を参照して後述する。マット仕上げフィルムの適用に伴う戦略は、不透明なミクロンサイズのフィラーを追加することによって粗面化表面(例えば、ピーク対谷又はR=5.7ミクロン)を提供し、指紋を隠蔽するというものである。しかしながら、このようなフィルムが有する耐指紋性は、乏しく、且つ、更には、不透明なフィラーは、透過及び反射光の両方を望ましくない方式によって散乱させるヘイズをフィルムに導入し、これにより、フィルムを通じて観察される下の画像の視認性が低下する。
【発明の概要】
【発明が解決しようとする課題】
【0005】
基材の表面上に堆積した指紋によって生じる光学歪みの問題は、十分に解決されておらず、且つ、ガラス、プラスチック、又は金属を有する様々な基材に伴う問題として存在し続けている。
【図面の簡単な説明】
【0006】
【図1】本発明の実施例による基材の上部表面上に分布した複数の微細構造を具備する基材セクションの断面図である。
【図2】本発明の実施例による基材の表面上に配設された保護レイヤ(保護シート/フィルム)の上部表面上に分布した複数の微細構造を具備する基材セクションの断面図である。
【図3A−3F】本発明の実施例による例示用の微細構造のいくつかの形状を示す。
【図4A】本発明の実施例による基材の上部表面上に分布した複数の円筒形微細構造を具備する基材セクションの平面図である。
【図4B】図4Aに示されている基材セクションの断面図である。
【図5】本発明の実施例による単一方向において分布した複数のピラミッド錐台微細構造を具備する基材セクションの平面図である。
【図6】本発明の実施例よる実質的にランダムな向きにおいて分布した複数のピラミッド錐台微細構造を具備する基材セクションの平面図である。
【図7A】本発明の実施例による複数のパターンで異なる向きにおいて分布した複数の細長い線形微細構造を具備する基材セクションの平面図である。
【図7B】図7Aに示されている微細構造の1つのパターンの斜視図である。
【図8】本発明の実施例によるいくつかの異なるパターンで異なる向きにおいて分布した複数の細長い線形微細構造を具備する基材セクションの平面図である。
【図9】本発明の実施例による線形星形パターンで異なる向きにおいて分布した複数の細長い線形微細構造を具備する基材セクションの平面図である。
【図10】本発明の実施例による湾曲した星形パターンで異なる向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図11】本発明の実施例による別の湾曲した星形パターンで異なる向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図12】本発明の実施例による別の湾曲した星形パターンで異なる向き、サイズ、及び間隔において分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図13】本発明の実施例による同心破断リングパターンで同心状の向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図14】本発明の実施例による別の同心破断リングパターンで同心状の向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図15】本発明の実施例による六方稠密分布を有する同心リングパターンにおいて複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図16】微細構造が単一の長さ及び矩形形状の端部を具備する染色体パターンで異なる向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図17】微細構造が2つの異なる長さ(二種集団)及び丸い形状の端部を具備するホットドッグパターンで異なる向きにおいて分布した複数の細長い湾曲した微細構造を具備する基材セクションの平面図である。
【図18A】本発明の実施例による保護レイヤ上に形成されたホットドッグ形状の細長い微細構造の二種集団のSEM顕微鏡写真である。
【図18B】図18Aに示されているSEM顕微鏡写真の一部分の拡大図である。
【図19】本発明の実施例による保護レイヤ上に形成されたホットドッグ形状の細長い微細構造の一種集団のSEM顕微鏡写真である。
【図20】本発明の実施例による保護レイヤ上に形成された凹入した細長い湾曲した微細構造のSEM顕微鏡写真である。
【図21】基材の上部表面上に分布した複数の微細構造を具備する基材を製造する例示用のシステムを示す。
【図22】本発明の耐指紋性及びその他の属性を従来技術と比較した表である。
【図23】本発明の実施例による複数の微細構造を具備する基材が有する耐指紋性の一例を示す。
【図24】微細構造の密度が図23よりも小さい複数の微細構造を具備する基材の別の実施例が有する耐指紋性の比較例を示す。
【図25】実質的にマット仕上げを具備する従来技術の表面フィルムの顕微鏡からのデジタル画像を示す。
【図26】実質的にマット仕上げを具備する従来技術の表面フィルムが提供する耐指紋性を示す。
【図27】実質的に滑らかな表面を具備する別の従来技術の表面フィルムの顕微鏡からのデジタル画像を示す。
【図28】実質的に滑らかな表面を具備する従来技術の表面フィルムが提供する耐指紋性の一例を示す。
【図29】その上部に配設された本発明の耐指紋性フィルムを有する又は有していない光学ディスプレイにおいて計測された輝度データの2つの表を示す。
【図30】所与の微細構造の高さにおける微細構造の密度の関数としてのヘイズの例示用のプロットである。
【発明を実施するための形態】
【0007】
以下、本発明の1つ又は複数の実施例について説明することとする。これらの説明対象の実施例は、本発明を例示するものに過ぎない。更には、これらの例示用の実施例の説明を簡潔なものにするべく、実際の実装の特徴のすべてについて本明細書において記述することはできないであろう。このような任意の実装の開発においては、あらゆるエンジニアリング又は設計プロジェクトにおけると同様に、実装ごとに変化可能なシステム関連及びビジネス関連の制約の遵守などの開発者の特定の目的を実現するべく、多数の実装固有の判断を実行しなければならないことを理解されたい。更には、このような開発の努力は、複雑であり、且つ、時間を所要可能であるが、それにも拘わらず、本開示の利益を享受する当業者にとっては、定例の設計、組立、及び製造作業であろうことをも理解されたい。
【0008】
本発明の様々な実施例は、取り扱いの際に表面上に通常堆積する指紋の油分及びその他の汚染物質の視認性を低減するべく、基材の表面上に複数の微細構造を提供する。一実施例においては、光学ディスプレイの外部表面、ストーブコンロの上部表面、又は冷蔵庫ドアの外部表面などの基材表面に耐指紋性を提供するべく、図1に示されているように、複数の微細構造102を基材101の表面上に直接形成する。複数の微細構造102とは、基材表面の隆起した部分を意味している。複数の微細構造を有する基材表面は、通常、取り扱いの対象となる基材101の外部表面であってよい。別の実施例においては、微細構造202を透明な又は半透明なガラス又はポリマーシート(又は、フィルム)を有する基材の第1表面上に形成することにより、耐指紋性保護レイヤ203を提供可能である。以下において「保護レイヤ」と呼ばれる透明な又は半透明な耐指紋性保護レイヤ203は、保護レイヤ203の第2表面(即ち、相対的に滑らか且つ平坦な面)をその他の基材201の表面上に配置することにより、図2に示されているように、別の基材201の表面上に配設可能である。保護レイヤ203は、有利には、事実上、表面に耐指紋性を付与するべく、本質的に任意の基材(例えば、透明なガラス又はポリマー、或いは、不透明な材料)の表面上に配設又は配置可能である。いくつかの実施例においては、微細構造をコンフォーマルハードコーティングによってカバーすることにより、改善された耐スクラッチ性を提供可能である。
【0009】
本発明の実施例は、基材の特定のアプリケーションに予想される使用法及び/又は必要とされる耐久性(予想されるせん断力の印加)の観点において最適化可能である耐指紋性表面を提供するべく、基材の表面上に様々な形状及び分布(例えば、パターン)の微細構造を提供する。いくつかの実施例においては、基材又は保護レイヤの外部表面は、堆積した指紋の油分の伸展(spreading)を改善するべく、約25〜約35dynes/cmの範囲の表面エネルギーを具備可能である。更には、いくつかの実施例においては、保護レイヤ上における微細構造の密度及び分布も、保護レイヤが光学ディスプレイの表面又はその他の画像生成表面上に配設された際のヘイズ及びモアレの出現を極小化するべく、最適化される。
【0010】
微細構造は、略平坦な上部表面302を具備する本質的に任意の形状を具備可能である。図3A〜図3Fを参照すれば、適切な微細構造の形状の例は、円筒形(図3A)、ピラミッド錐台(図3B)、円錐台(図3C)、複合パラボラ(図3D)、複合楕円、ポリオブジェクト、又は立体を形成するべく回転される任意の円錐セクションを含む。ピラミッド錐台形状は、側壁表面304を含み、これらの側壁表面は、図3Bに示されているように、互いに隣接すると共に、微細構造の周囲に位置する、例えば、6つの平坦な側壁表面などの略平坦な表面である。ピラミッド錐台は、特定の数の平坦な側壁表面に限定されてはおらず、且つ、例えば、三角形形状の平坦な上部表面を有する3つの平坦な側壁表面や、図5及び図6に示されているように、4つの平坦な側壁表面及び正方形形状の平坦な上部表面を具備するピラミッド錐台など、その他の形状を使用することも可能であることに留意されたい。更には、微細構造は、略平坦な上部表面302及び真っ直ぐな又は湾曲した側壁を具備する任意の望ましい細長いストリップの形状を具備することも可能であり、以下においては、このような微細構造を「細長い微細構造」と呼ぶ。細長い微細構造の形状の例は、側壁304が真っ直ぐ又は線形である「矩形」(図3E)と、微細構造の長さ(l)寸法が湾曲するように側壁304が湾曲している「湾曲した矩形」(図3F)と、を含む。細長いストリップ形状は、本明細書においては、その幅(w)寸法よりも大きな長さ(l)寸法を具備する微細構造として定義される。従って、様々な微細構造のそれぞれのものの平坦な上部表面302は、基本的に、例えば、図3A、図3C、及び図3Dに示されている円形表面、図3Bに示されている六角形形状の表面、及び図3Eに示されている矩形表面などの多角形形状、並びに、図3Fに示されている湾曲した表面などの任意の線形の又は湾曲した形状を具備可能である。更には、平坦な上部表面302は、微細構造の下部表面と、基材又は保護レイヤのプレーンと、に対して平行であってよい。このような微細構造は、裸眼では可視状態にないであろうが、微細構造を顕微鏡によって検査し、表面微細構造の存在の有無を判定可能である。
【0011】
微細構造は、図3A、図3E、及び図3Fに示されているように、その高さ(h)寸法がその幅(w)寸法に対して略垂直である(即ち、θが約90度に等しい)垂直側壁304を具備可能である。或いは、この代わりに、微細構造は、図3B、図3C、及び図3Dに示されているように、垂直ではない(その幅寸法及びフィルムのプレーンとの関係において垂直ではない)側壁304を具備することも可能である。垂直ではない側壁は、微細構造を透過可能である透過光と微細構造の1つ又は複数の側壁表面から反射可能である周辺光の両方の光の散乱を生成する拡散性表面を提供する。従って、光の光学的な歪みが望ましくない際には、垂直側壁を具備する微細構造を利用して耐指紋性を基材又は保護レイヤに提供可能である。一方、マット面又は拡散性表面が望ましい場合には、垂直ではない側壁を具備する微細構造を利用して耐指紋性を基材又は保護レイヤに対して提供可能である。
【0012】
微細構造は、約1ミクロン〜約25ミクロンの範囲の、更に好ましくは、約3ミクロン〜約10ミクロンの範囲の高さ(h)を具備する。微細構造の高さは、予想される特定の汚染物質及び特定の汚染物質の量の観点において、特定のアプリケーションに従って最適化可能である。例えば、滑らかな表面上に押圧された指紋は、通常、3〜6ミクロンの厚さの範囲の油分の痕跡(即ち、3〜6ミクロンの高さを具備する指紋)を残す。指紋に起因した画像の歪みを極小化しつつ、事実上、油分を解体及び再分散させるために、好適な微細構造のアレイを基材の表面上に製造して約3〜10ミクロンの類似した範囲の表面トポロジー(ピーク対谷の計測値又はR)を提供可能である。
【0013】
別の態様においては、必要とされるせん断強度を具備するべく、微細構造の形状を最適化可能である。例えば、タッチスクリーンディスプレイのアプリケーションにおいては、タッチスクリーン(即ち、基材)上又はタッチスクリーン上に配設された保護レイヤ上の複数の微細構造は、タッチスクリーンと操作者の間の相互作用に起因し、指の接触又は擦り動作に晒される。取り扱いの際に複数の微細構造の上部表面上において発生する指の接触及び擦り動作は、微細構造の1つ又は複数のもののせん断強度を上回る外部せん断力の印加を結果的にもたらす可能性があり、これにより、1つ又は複数の微細構造が、破壊され、且つ、基材から擦り落とされることになる。微細構造のせん断強度及び耐久性を増大させるべく、様々な微細構造の形状は、微細構造の幅がその高さ以上である低いプロファイルを具備可能である。従って、微細構造の寸法は、約1〜約13(即ち、1:1〜13:1)の範囲の、更に好ましくは、約2〜約10の範囲の幅対高さ(即ち、w:h)のアスペクト比を具備する。尚、可変幅(即ち、図3B、図3C、及び図3Dに示されているように、高さの関数として変化する幅)を具備する微細構造の場合には、アスペクト比の判定において参照される幅は、微細構造の最大幅(即ち、下部表面の幅)である。
【0014】
低プロファイルに加えて、lがwよりも大きい細長い微細構造(図3E及び図3F)の細長い属性は、取り扱いの際の微細構造の耐久性を更に向上させる。本質的に等しい長さ及び幅寸法を具備する微細構造(例えば、図3A〜図3Dに示されている微細構造)の接触面積(即ち、l×w)と比べた場合に、細長い微細構造(l>w)は、その上部に微細構造が形成及び接続される基板又は保護レイヤに対する接触面積(l×w)の増大に起因し、向上した耐久性を有する。個々の細長い微細構造の接触面積を増大させることにより、有利には、そのせん断強度が増大し、これにより、細長い微細構造は、取り扱いの際に発生可能な相対的に大きなせん断力の印加に耐えることが可能になる。細長い微細構造のそれぞれのものの適切な長さは、約10〜約250ミクロンの範囲、更に好ましくは、約35ミクロン〜約100ミクロンの範囲であってよい。
【0015】
更には、図10〜図20に示されている湾曲した細長い微細構造(図3F)の湾曲した向きは、(取り扱いの際に遭遇する)印加されたせん断力が必然的にその曲がりに起因して微細構造の幅及び長さ寸法の両方に沿って分布するように、単一の微細構造の変化する向きを導入することにより、耐久性を更に向上させる。指が複数の微細構造の平坦な上部表面にわたって摺動した際に、微細構造の相対的に小さな(微視的な)サイズに起因し、指は、微細構造のいずれかのものとの関係において1つの方向(例えば、真っ直ぐなライン)において摺動し、これにより、単一方向においてせん断力を印加するものと推定される。細長い微細構造(この場合には、lがwよりも大きい)の相対的な物理的寸法に起因し、細長い微細構造は、その長さ寸法に沿ってその最大の強度を、そして、その幅寸法に跨ってその最小強度を具備する。従って、微細構造の幅に跨るせん断力は、微細構造を破壊するか又は基板から擦り落とすことになる材料破壊の可能性が最も高い要因である。このような破壊は、細長い線形微細構造(例えば、図3E、図7〜図9)のその幅寸法に沿って側壁に対して印加された十分に大きなせん断力(例えば、その側壁に対して垂直に印加されたせん断力)の場合に、発生可能である。一方、湾曲した細長い微細構造の側壁(即ち、湾曲した側壁)に印加された同一のせん断力は、必然的に、湾曲した微細構造(例えば、図3F、図10〜図20)の幅及び長さ寸法の両方にわたるせん断力の分布を結果的にもたらし、この結果、湾曲した細長い微細構造の材料破壊をもたらすのに必要とされるせん断強度が増大する。従って、例えば、図10〜図20に示されているような湾曲した細長い微細構造は、特に丈夫であり、取り扱いに起因した擦りせん断力に耐えることができる。低プロファイルと、細長い長さ寸法(l>w)と、湾曲した細長い長さ寸法の湾曲した向きと、の中の1つ又は複数の属性を微細構造に対して提供することは、(例えば、PET、アクリレートなどの)ポリマー材料などの相対的に低機械強度の材料から製造された微細構造のせん断強度を改善するのに特に有益である。
【0016】
基材は、基材又は保護レイヤの表面内に複数の微細構造(例えば、円筒形、ピラミッド錐台、矩形、又は湾曲した細長い微細構造)を形成するべく加工可能な本質的に任意の材料を有することができる。適切な基材材料は、ガラス、金属、及びポリマーを含む。複数の微細構造は、任意の既知の加工技法により、基材の表面内に又はその上部に形成可能である。例えば、基材の表面上に複数の微細構造が形成され且つ残留するように、ガラス基材の平坦な表面をパターン化及びエッチングし、ガラス材料を除去可能である。別の例においては、金属基材の表面(例えば、金属シート)をエッチング、エンボス加工、又はスタンピングし、基材の表面上に微細構造を形成可能である。更に別の例においては、基材上の重合可能な材料を成型するか、化学作用を持つ放射線によって硬化させるか、熱によって形成するか、エンボス加工するか、切除するか、エッチングするか、或いは、いくつかのポリマー加工技法の中のいずれかのものを施すことにより、基材の表面上に微細構造を形成可能である。同様に、重合可能な保護レイヤ(例えば、ポリマーシート又はフィルム)を成型するか、化学作用を持つ放射線によって硬化させるか、熱によって形成するか、エンボス加工するか、エッチングするか、或いは、いくつかのポリマー加工技法の中のいずれかのものを施すことにより、保護レイヤの表面上に微細構造を形成可能である。
【0017】
従って、基材の表面内に又はその上部に形成された複数の微細構造は、基板自体と同一の材料を有することができる。換言すれば、透明又は半透明な基材(例えば、光学的に透明なガラス又はプラスチック基材、或いは、光学的に透明なポリマー保護レイヤ)上に形成された複数の微細構造は、基材表面の透過特性を維持する透明/半透明な微細構造であってよい。同様に、不透明な基材(例えば、不透明なプラスチック、ガラス、又は金属基材)上に形成された複数の微細構造は、基材表面の反射特性を維持する不透明な微細構造であってよい。
【0018】
微細構造400は、通常は、図4A及び図4Bに示されているように、基材401の正常な取り扱いの際に基材401の表面上に堆積する指紋からの油分などの異質な痕跡又は汚染物質に起因した画像の歪みを低減する。微細構造400の略平坦な上部表面402は、操作者/ユーザーに対向すると共にユーザーが接触する微細構造の遠端である。複数の微細構造400は、微細構造の平坦な上部表面402上に堆積した異質な痕跡物質を基材のその他のエリアに解体及び再分散させることにより、光の歪み(透過性又は反射性)及び異質な痕跡物質の視認性を低減する。具体的には、個々の微細構造400の離隔した関係は、異質な痕跡を解体すると共に毛細管作用によって異質な痕跡物質の再分散を促進又は許容する表面トポグラフィーを提供する。この表面トポグラフィーは、前述の1つ又は複数のエリアに移動する異質な痕跡物質を収容する隣接する微細構造の間の1つ又は複数の隙間凹入エリア404(「谷」又は「チャネル」とも呼ばれる)によって取り囲まれた複数の微細構造400を有する。隣接する微細構造の存在及びこれらの近接性は、1つ又は複数の凹入エリアへの異質な痕跡の毛細管再分散を生成する。凹入エリア404は、図4Aに示されているように、連続的であってよいと共に(又は、連続凹入エリア)、凹入エリア404に移動する異質な痕跡物質を収容するように、十分なサイズに設定可能である(即ち、凹入表面エリア)。痕跡物質の再分散により、異質な痕跡が元々堆積していた微細構造の平坦な上部表面402上には、相対的にわずかな異質な痕跡物質しか残されず、且つ、従って、この結果、平坦な上部表面402及び凹入エリア404の両方を通じて透過した光(又は、反射した光)は、相対的に少ない歪みを伴って、基板401を観察している操作者に到達可能である。単一の連続凹入エリア404(図4Aに示されているもの)は、有利には、凹入表面エリアの全体にわたる異質な痕跡の再分散を許容し、この結果、光学的歪みを生成する十分な異質な材料の蓄積が極小化される。更には、単一の連続凹入エリア404は、相対的に大量の異質な材料を収容可能である。一例においては、(後述する図4A、図5、図6、図7A、図8〜図18に示されているように)複数の微細構造の平坦な上部表面402上に堆積した指紋からの油分は、微細構造の間の凹入エリア404に移動し、これにより、指紋が元々堆積していた平坦な上部表面402上に留まる指紋油分の量が減少する。微細構造の平坦な上部表面402上の指紋の油分の量を低減し、且つ、凹入エリア404の全体にわたって油分を伸展させることにより、基材の表面を透過する又はこれから反射される光の歪みが低減され、これにより、指紋の視認性が極小化される。
【0019】
更には、微細構造は、好ましくは、約2〜約120ミクロンの範囲の、更に好ましくは、約10〜50ミクロンの範囲の幅を具備する。約2ミクロン未満の幅を具備する複数の微細構造は、耐指紋性を有するが、一般には、操作者の相互作用による接触の際の複数の微細構造の平坦な上部表面上において摺動する指に起因したせん断力に耐えるべく、個々の微細構造が十分に丈夫ではない。約120ミクロンを上回る幅においては、複数の微細構造の平坦な上部表面上に堆積した指紋の油分は、基材の凹入エリアに移動するのに過剰な長さの時間を所要する傾向を有する。換言すれば、約120ミクロンを超える幅を具備する微細構造の平坦な上部表面上に堆積した指紋物質を再分散させるという状況においては、隣接する微細構造の間の毛細管作用が低下し、堆積した指紋が凹入エリアに十分に移動しなくなる。大部分の基材材料において、約10ミクロンを上回る微細構造の幅は、指の接触(擦れ)に起因したせん断力に耐えるための十分な耐久性を提供し、且つ、約50ミクロンを下回る微細構造の幅は、人間の眼によって検出不能であるか又は目立たず、微細構造の表面形状が観察者に目立たないことが望ましい際に、好適であることから、10〜50ミクロンの幅の範囲が更に好適であろう。
【0020】
図22を参照すれば、本発明の微細構造基材又は保護レイヤの利益及び利点を背景技術の節において前述した従来技術の技法と比較した表が示されている。容易に観察可能なように、耐指紋性及び良好な光学的性能の提供に加えて、本発明の実施例は、従来技術の技法と比べた場合にいくつかのその他の重要な利益及び利点をも提供する。
【0021】
「湿潤(wetting)」又は「伸展(spreading)」とも呼ばれる前述の油分の移動は、基材(又は、保護レイヤ)の表面エネルギーを変化させることにより、更に改善可能である。基材の湿潤は、一般に、低い表面エネルギーを具備する表面よりも高い表面エネルギーを具備する表面上において相対的に容易に発生するため、堆積した異質な痕跡物質の表面エネルギーと略同一の又はこれを上回る表面エネルギーを具備するように、基材又は保護レイヤの表面エネルギーを変更可能である。一例においては、指紋の油分を有する異質な痕跡及び基材の表面の相対的な表面エネルギーを最適化し、アクリレートを有するポリマー保護レイヤの表面上における指紋の油分の伸展を促進可能である。保護レイヤの表面エネルギーは、指紋の油分の表面エネルギー以上である。指紋の油分は、約29〜33dynes/cmの表面張力(即ち、表面エネルギー)を具備し、アクリレート保護レイヤの表面エネルギーは、約30〜35dynes/cmである。類似した表面エネルギーにより、指紋の油分が迅速に湿潤すると共に指紋として元々堆積していた場所から油分が伸展するように、伸展も改善される。指紋の油分のもの以上の表面エネルギーを保護レイヤに提供する材料から少なくとも部分的に保護レイヤを形成することにより、保護レイヤ(即ち、基材)の凹入エリアへの又はその全体にわたる堆積した指紋の再分散が促進される。いくつかの実施例においては、アクリレートを上回る表面エネルギーを具備するその他の材料を使用し、保護レイヤ又は基材を形成可能である。その他の実施例においては、基材又は保護レイヤの表面を(例えば、気相蒸着により)親油性材料によって加工又はコーティングし、表面エネルギーを増大させると共に指紋の油分の湿潤を改善可能である。
【0022】
以上の内容の結果として、本発明の実施例は、元々堆積していた微細構造の上部表面上における異質な痕跡物質の堆積を困難にする。微細構造の平坦な上部表面上に留まる異質な痕跡物質の量を低減することにより、異質な痕跡が人間の眼にとって知覚不能となり、且つ、透過又は反射した光が相対的に少ない歪みを伴ってユーザーに到達することが可能となる。例えば、指紋の油分が画像ディスプレイをカバーする保護レイヤ(フィルム)の凹入エリアの全体にわたって伸展できるようにすることにより、光学的な歪みを生成可能な元々堆積していた油分の濃度又は総量が凹入エリアに迅速に分散し、これにより、下の画像からの光が、最小限の画像歪みを伴って、透明/半透明な微細構造の平坦な上部表面及び凹入エリアを通じて透過可能である。別の例においては、不透明な基材の複数の微細構造上に堆積した指紋は、凹入エリアに迅速に分散し、従って、光は、不透明な微細構造の平坦な上部表面及び凹入エリアから最小限の歪みを伴って反射され、これにより、指紋が人間の眼にとって知覚不能となる。更には、後続の取り扱いの際に発生可能な擦り動作は、微細構造の間の隙間凹入エリアに油分を再分散させる傾向をも有する。
【0023】
通常、ガラス及び金属基板材料と比べた場合に、ポリマー基材又はポリマー保護レイヤの相対的に低い硬度に起因し、ポリマー基材の表面上におけるポリマー微細構造の耐久性(例えば、せん断強度)を増大させるべく細長い微細構造を利用することが有利である。細長い湾曲した微細構造を使用して基材表面上の個々の微細構造の向きを変化させることにより、更なる耐久性の改善を実現可能である。
【0024】
特定のアプリケーション及び基材の表面に対する観察者の通常の観察距離などの要因に応じて、基材又は保護レイヤの表面上の微細構造の適切な密度を最適化可能である。微細構造の隆起した表面(即ち、複数の微細構造の平坦な上部表面)の面積は、好ましくは、基材の平坦な表面の合計面積(即ち、微細構造の隆起した表面の面積+基材の1つ又は複数の凹入表面の面積)の約5%〜約45%の範囲である。下端部において、約5%未満の微細構造の密度は、特に微細構造が短い(例えば、h<10ミクロン)場合には、基材の耐指紋性を失う傾向を有する。換言すれば、隣接する微細構造の間の毛細管作用が低下し、従って、耐指紋性が減少するほどに、微細構造が離れ過ぎている。小さな表面面積(即ち、隆起した表面の面積)によって耐指紋性を維持するには、微細構造は、更に詳しく後述するように、更に大きな高さ(例えば、h>10ミクロン)を具備しなければならないであろう。一方、約45%を上回る密度においては、過剰な微細構造がフィルムの耐指紋性に大きく寄与することにならず、且つ、相応して、凹入エリアの表面面積が不必要に低減されることになる。更には、45%を上回る微細構造の密度の場合には、微細構造の間に必要とされる小さな離隔距離に起因し、組立又は製造が益々複雑になる可能性がある。基材又は保護レイヤに望ましくない許容不能な量のヘイズを導入しないように複数の微細構造を透明/半透明な基材又は保護レイヤ上に形成する際には、45%という密度の上限が有用である。透明な基材(又は、保護レイヤ)のヘイズは、複数の微細構造の側壁表面の面積に比例して増大する。下の画像からの光が基材を透過するのに伴って、微細構造の側壁は、側壁に入射する光を散乱させる傾向を有する。この散乱光は、リダイレクトされた光であって、透過ヘイズとして定量化又は計測可能であり、その量は、操作者/観察者によって知覚される光損失の量に相当する。又、この散乱光は、透明ではなく、望ましくない白っぽい外観を基材(又は、保護レイヤ)に付与する。好適な密度の範囲は、一般に、好ましくは、約2ミクロン〜約120ミクロンの範囲の、更に好ましくは、約10ミクロン〜50ミクロンの範囲の任意の2つの隣接する微細構造の最も近接した部分の間の離隔距離(d)と相関している。
【0025】
又、微細構造密度の最適化は、微細構造の高さの関数であることに留意されたい。一般に、相対的に背の高い微細構造の場合には、形状の相対的に小さな密度を利用して十分な耐指紋性を提供可能であり、相対的に短い微細構造の場合には、十分な耐指紋性を提供するべく、形状の相対的に大きな密度が使用される。例えば、8ミクロンの高さの微細構造の場合に、微細構造の15%の密度は、十分な耐指紋性を提供し、且つ、25%を上回る密度は、透明な基材(又は、保護レイヤ)に過大なヘイズを生成可能である。対照的に、(8ミクロンの微細構造と同一の長さ及び幅寸法を有する)4ミクロンの高さの微細構造の場合には、十分な耐指紋性を提供するべく、微細構造の20%の密度が使用され、且つ、30%を上回る密度は、透明な基材又は保護レイヤに過大なヘイズを生成可能である。換言すれば、背の高い微細構造は、短い(例えば、20%の密度の)微細構造と比べて、小さな密度(例えば、15%の密度)において、良好な耐指紋性を提供する。又、透明な基材アプリケーションにおいては、背の高い微細構造は、(例えば、30%の密度の)短い微細構造と比べて、低い密度における背の高い側壁の側壁表面の面積(高さ×長さ)の増大に起因し、低い密度(例えば、25%の密度)において透明な基材又は保護レイヤに許容不能な量のヘイズを導入可能である。従って、5%〜45%の密度の範囲において、特定の微細構造の形状及び所望のアプリケーションについて、微細構造の密度を更に最適化可能である。
【0026】
透明な基材アプリケーションにおいては、微細構造の側壁表面の面積(即ち、微細構造の長さ及び高さ)及び複数の微細構造の密度は、許容不能な量のヘイズを導入しないように制御する対象のパラメーターである。所与の微細構造形状の微細構造の最大許容可能密度を判定するべく、基材又は保護レイヤ上の微細構造の存在に起因して散乱した光(例えば、ヘイズ)を計測可能である。更には、例えば、複数のレイヤを有する基材又は保護レイヤなどの複数のレイヤを使用する実装においては、多層基材内の複数のレイヤの屈折率を実質的に整合させることにより、ヘイズを低減することも可能である。
【0027】
微細構造の分布は、図1、図2、及び図4〜図6に示されているように、隣接する微細構造の中心点の間に一定の距離(a)を具備する微細構造の規則的な分布の形態を有することができる。同様に、微細構造は、図7〜図11、図13〜図15に示されているように、1つ又は複数のパターンにおける規則的な分布によって基材の表面にわたって分布することも可能である。パターンとは、基材の表面にわたる微細構造の複写された配列を意味している。基材(又は、保護レイヤ)上に形成される微細構造は、特定のアプリケーションについて基材の透過又は反射表面特性を最適化させるべく、図12に示されているように、複数のパターンの向き、複数のパターンのサイズ、及びこれらの組合せにおいて配列可能である。別の態様においては、パターンの複写された特性は、基材表面上における微細構造の製造の容易化をも支援する。微細構造の単一パターンのサイズ(即ち、パターンの長さ及び幅)は、本質的に、任意のサイズであってよい。但し、(例えば、携帯電話機の光学ディスプレイ又はタッチスクリーンパネルなどの)保護レイヤが光放射基材上に配設される透過性微細構造の1つ又は複数のパターンを有する透明な保護レイヤの場合には、有利には、モアレパターンなどの干渉パターンの生成を回避するように、下の光放射基材内に存在可能な別のパターン(例えば、ピクセルサイズ)の寸法(即ち、サイズ及び分布)との関係において、微細構造のパターンのサイズ及び分布を最適化可能である。
【0028】
或いは、この代わりに、微細構造の分布又は微細構造の1つ又は複数のパターンは、ランダムな又は略(実質的に)ランダムな方式によって基材上に配列させることも可能である。図16〜図19に示されているように、微細構造のランダム化された分布は、保護レイヤが画像生成基材の表面上に配設された際に(例えば、光学ディスプレイ)、モアレパターンの出現を回避するべく、有用である。微細構造のランダム化された分布が望ましいアプリケーションにおいては、相対的に小さな長さの細長い微細構造は、特に、約15%を上回る微細構造の密度の場合に、相対的に長い構造よりも、ランダム化された分布における分布が容易になる傾向を有する。従って、ランダム化を円滑に実行するための細長い微細構造の長さは、約35〜100ミクロンの、更に好ましくは、約35ミクロン〜約75ミクロンの範囲である。
【0029】

図4Aは、基材(又は、保護レイヤ)401の上部表面上に形成された円筒形の形状の微細構造400(図3Aを参照されたい)の規則正しい分布を有する基材(又は、保護レイヤ)の一区画の平面図である。尚、本明細書に記述されている例のそれぞれのものは、保護レイヤに対しても等しく適用可能であることに留意されたい。円筒形の微細構造400は、基材の正常な取り扱いの際に円筒形の微細構造の平坦な上部表面402上に堆積した指紋からの油分などの異質な痕跡に起因した(透過及び反射された)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。円筒形の微細構造400は、本明細書において前述したように、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材401の上部表面内に形成可能である。図4Bの基材の断面図に示されている隣接する微細構造の間の離隔距離(d)は、約2ミクロン〜約120ミクロンの範囲であり、且つ、好ましくは、約10〜50ミクロンの範囲である。一例においては、ガラス基材の平坦な表面をパターン化及びエッチングすることにより、円筒形の微細構造400が基材401の表面上に形成され且つ残留するように、ガラス材料を除去可能である。別の例においては、金属基材(例えば、金属シート)の平坦な表面をエッチング、エンボス加工、又はスタンピングし、基材401の表面上に円筒形の微細構造400を形成可能である。更に別の例においては、ポリマー基材(又は、シート/フィルム)を成型するか、熱によって形成するか、エンボス加工するか、切除するか、エッチングするか、又は本明細書に記述されているものなどのいくつかのポリマー加工技法のいずれかのものを施すことにより、基材401の表面上に円筒形の微細構造400を形成可能である。個々の微細構造の離隔した関係は、凹入エリア404への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の可視性を極小化する。
【0030】
図5は、基材又は保護レイヤ501の上部表面上に形成されたピラミッド錐台形状の微細構造500の規則的な分布を有する基材の一区画の平面図である。微細構造500は、図5に示されているように、一定の微細構造の向きを具備する微細構造の規則的な分布、或いは、図6に示されているように、実質的にランダムな向き(回転的な向き)を具備する微細構造600の規則的な分布を有することができる。基材601の表面に光拡散表面(例えば、マット仕上げ)を提供することが望ましい際には、複数のピラミッド錐台の微細構造600のいくつかの向き又は実質的にランダムな向きの導入を利用可能である。換言すれば、ピラミッド形錐台600の異なる(実質的にランダムな)向きは、到来する又は入射する光をその上部において相対的に広い範囲の方向に反射することによって相対的に高い拡散反射の比率を提供可能である相対的に大きな数の異なる方式によって傾斜した側壁表面を導入する。例えば、不透明な基材内に錐台微細構造を形成することにより、指紋を隠蔽し、且つ、望ましい拡散面又はマット面を不透明な基材に対して提供可能である。不透明な基材の一例は、冷蔵庫ドアの外部表面として使用される金属基材である。図5及び図6の両方の錐台微細構造は、基材の正常な取り扱いの間に錐台微細構造の平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した光(透過又反射した光)の歪みを低減することにより、異質な痕跡の出現を隠蔽する。錐台微細構造は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法によって基材の上部表面内に形成可能である。個別の微細構造の離隔した関係は、凹入エリア504、604への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0031】
図7Aは、細長い微細構造のいくつかのパターンを有する基材の一区画の平面図であり、それぞれのパターンは、基材又は保護レイヤ701の上部表面上に形成された異なる向きを有する複数の矩形形状の微細構造700(即ち、細長い微細構造)を具備する。保護レイヤを光学ディスプレイ上に配設する際にモアレの発生を防止することが望ましい場合には、異なる向き又は実質的にランダムな向きの複数の矩形の微細構造700の導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を基材に提供することが望ましい際には、実質的にランダムな向きを利用し、不透明な基材内に形成される微細構造を分散させることができる。換言すれば、異なる向きの矩形の微細構造700は、入射光をその上部において相対的に広い範囲の方向に反射することによって相対的に大きな比率の拡散反射を不透明な基材に対して提供可能である相対的に大きな数の異なる方式によって傾斜した表面を導入可能である。図7Aの矩形の微細構造700は、基材の正常な取り扱いの際に矩形の微細構造700の平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過又は反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。矩形の微細構造700は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材701の上部表面内に形成可能である。個々の微細構造の離隔した関係は、凹入エリア704への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0032】
図7Bは、図7Aに示されている矩形の微細構造700の1つのパターンの斜視図である。図7Bを参照すれば、隣接する矩形の微細構造700の間の適切な離隔距離(d)705は、約2〜約120ミクロンの範囲であってよく、且つ、好ましくは、約10〜約50ミクロンの範囲であってよい。一例においては、複数の矩形の細長い微細構造は、それぞれ、6ミクロンの高さ(h)707と、11ミクロンの幅(w)706と、約10ミクロン〜約50ミクロンの範囲の隣接する微細構造の間の変化する離隔距離(d)705と、を具備する。
【0033】
図8は、いくつかのパターンの微細構造を有する基材を示しており、それぞれのパターンは、基材又は保護レイヤ801の上部表面上に形成された様々な向きを有する複数の矩形形状の微細構造800(即ち、細長い微細構造)を具備する。光学ディスプレイ上に配設された保護レイヤのモアレの発生を防止することが望ましい際には、パターン内の異なる向きの複数の矩形の微細構造800の導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な表面に対して提供することが望ましい際には、様々な向きの微細構造を利用し、不透明な基材内に形成される微細構造を分散させることができる。図8の矩形の微細構造800は、基材801の正常な取り扱いの際に矩形の微細構造800の平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過又は反射した)光の歪みを低減するとにより、異質な痕跡の出現を隠蔽する。矩形の微細構造800は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材801の上部表面内に形成可能である。個別の矩形の微細構造800の離隔した関係は、凹入エリア804への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0034】
図9は、基材又は保護レイヤ901の上部表面上に形成された複数の矩形形状の細長い微細構造900の別の例を示しており、本明細書においては、この表面パターンの反復単位を「線形星形」パターンと呼ぶ。線形星形パターンは、中心点903を中心として360度に広がる異なる方向において中心点903(即ち、単位の中心)から伸びる線形の矩形の微細構造900を具備する。光学ディスプレイ上に配設された保護レイヤのモアレの発生を防止することが望ましい際には、多くの異なる向きの複数の矩形の微細構造900の導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な基材に対して提供することが望ましい際には、多くの異なる向きの微細構造を利用し、不透明な基材内に形成される微細構造を分散させることができる。図9の矩形の微細構造900は、基材901の正常な取り扱いの際に矩形の微細構造900の平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過又は反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。矩形の微細構造900は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材901の上部表面内に形成可能である。個々の矩形の微細構造900の離隔した関係は、凹入エリア904への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、従って、異質な痕跡物質の視認性を極小化する。
【0035】
図10は、基材又は保護レイヤ1001の上部表面上に形成された複数の湾曲した細長い微細構造1000の一例を示しており、本明細書においては、この表面パターンの反復する単位を「湾曲した星形」パターンと呼ぶ。湾曲した星形パターンは、中心点1003を中心として360度に広がる異なる方向において中心点1003(即ち、単位の中心)から伸びる湾曲した向きを有する湾曲した矩形形状の微細構造1000を具備する。このパターンは、複数の微細構造1000の360度の分布と、矩形の微細構造の湾曲した向きと、の両方によって導入される相対的に大きな数の向きを提供する。光学ディスプレイ上に配設された保護レイヤのモアレの発生を防止することが望ましい際には、パターン内における多くの異なる向きの複数の湾曲した矩形の微細構造1000の導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な基材に対して提供することが望ましい際には、多数の異なる向きの微細構造を利用し、不透明な基材内に形成された微細構造を分散させることができる。更には、湾曲した細長い微細構造1000の湾曲した向きは、印加されたせん断力が湾曲した微細構造1000の幅及び長さ寸法の両方に沿って分散するように単一の微細構造1000の変化する向きを導入することにより、耐久性を更に改善する。図10の湾曲した矩形の微細構造1000は、基材1001の正常な取り扱いの際に微細構造1000の湾曲した平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過及び反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。微細構造1000は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技術により、基材の上部表面内に形成可能である。個別の微細構造1000の離隔した関係は、凹入エリアへの異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、従って、異質な痕跡物質の視認性を極小化する。
【0036】
図11は、湾曲した星形パターンの代替実施例を示す。前述の図10と比較した場合に、図11に示されている湾曲した星形パターンは、中心点1103を中心として360度に広がる異なる方向において中心点1103(即ち、単位の中心)から伸びる更なる湾曲した矩形形状の微細構造1100を具備する。単一パターン内における相対的に多くの向きの複数の矩形の微細構造1100の導入を利用することにより、光学ディスプレイ上に配設された透明な基材内に微細構造を形成する際には、モアレの出現を相対的に良好に低減可能であり、且つ、不透明な基材内に微細構造を形成する際には、相対的に均一な光拡散表面を提供可能である。別の態様においては、これらの更なる湾曲した矩形形状の微細構造を利用し、パターン内において隣接する微細構造の間に相対的に小さな範囲の離隔距離(d)を提供可能である。
【0037】
図12は、湾曲した星形パターンの代替実施例を示す。図11と比べた場合に、図12に示されている湾曲した星形パターンは、それぞれの中心点1203を中心として異なる(実質的にランダムな)向きを有するように分布可能である。更には、パターンは、異なるパターンサイズを有するように配設可能であって、例えば、パターンサイズは、図12に示されているように、最上部の列から底部の列に向かって増大可能である。更には、隣接するパターンの間の間隔も、基材の表面にわたって変化可能である。光学ディスプレイ上に配設された保護レイヤのモアレの出現を防止することが望ましい際には、異なる向き、サイズ、及び間隔の1つ(又は複数)のパターンの導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な基材に対して提供することが望ましい際には、多くの異なるパターンの向き、サイズ、及び間隔を利用し、不透明な基材内に形成される微細構造を分散させることができる。
【0038】
図13は、基材又は保護レイヤ1301の上部表面上に形成された複数の湾曲した細長い微細構造1300の別の例を示しており、本明細書においては、この表面パターンの反復する単位を「破断リング」同心パターンと呼ぶ。破断リング同心パターンは、中心点1303を中心として360度に広がる共通中心点1303(即ち、ユニットの中心)を具備する湾曲した向きを有する湾曲した矩形形状の微細構造1300を具備する。光学ディスプレイ上に配設された保護レイヤのモアレの発生を防止することが望ましい際には、単一パターン内において360度に広がる多数の向きの導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な基材に対して提供することが望ましい際には、多数の異なる向きの微細構造を利用し、不透明な基材内に形成される微細構造を分散させることができる。更には、湾曲した細長い微細構造1300の湾曲した向きは、印加されたせん断力が湾曲した微細構造1300の幅及び長さ寸法の両方に沿って分布するように、単一の微細構造の変化する向きを導入することにより、耐久性を更に改善する。図13の湾曲した矩形の微細構造1300は、基材1301の正常な取り扱いの際の微細構造1300の湾曲した平坦な上部表面上に堆積した指紋からの油分などの異質の痕跡に起因した(透過及び反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。微細構造は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材1301の上部表面内に形成可能である。個別の微細構造の離隔した関係は、凹入エリア1304への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、従って、異質な痕跡物質の視認性を極小化する。
【0039】
図14は、破断リング同心パターンの代替実施例を示す。前述の図13と比べた場合に、図14に示されている破断リング同心パターンは、実質的に完全な同心リングを形成していない微細構造を含むことなしに、中心点1403から伸びる湾曲した細長い微細構造1400を具備する。個別の微細構造の離隔した関係は、凹入エリア1404への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0040】
図15は、同心パターンの代替実施例を示す。前述の図13及び図14と比べた場合に、図15に示されている同心パターンは、中心点1503から伸びる連続した(即ち、破断していない)同心リング形状の微細構造1500を具備し、このパターンは、六方稠密分布において基材1501上に分布している。同心パターンは、中心点1503を中心として360度に広がる共通中心点1503(即ち、単位の中心)を具備する湾曲した向きを有するリング形状の微細構造1500を具備する。単一パターン内におけるすべての向き(即ち、360度)の複数の湾曲した矩形の微細構造1500の導入を利用することにより、光学ディスプレイ上に配設された透明な基板内に微細構造が形成される際には、モアレの出現を相対的に良好に低減可能であり、或いは、不透明な基材内に微細構造が形成される際には、相対的に均一な光拡散表面を提供可能である。更には、稠密構成における微細構造の配列を利用することにより、光学ディスプレイ上に配設された透明な基材内に微細構造が形成される際には、モアレの出現を相対的に良好に低減可能であり、或いは、不透明な基板内に微細構造が形成される際には、相対的に均一な光拡散表面を提供可能である。
【0041】
図16は、基材又は保護レイヤ1601の上部表面上に形成された複数の湾曲した細長い微細構造1600を示しており、本明細書においては、この表面パターンを「染色体」パターンと呼ぶ。染色体パターンは、実質的にランダムな分布における湾曲した矩形形状の微細構造1600を具備する。いくつかの実施例においては、湾曲した矩形の微細構造1600は、複数の近隣の微細構造のグループとして形成可能である。光学ディスプレイ上に配設された保護レイヤのモアレの発生を防止することが望ましい際には、グループ及び実質的にランダムな分布の染色体パターンの導入を利用し、透明な保護レイヤ内に形成される微細構造を分散させることが可能である。或いは、この代わりに、相対的に均一な光拡散表面を不透明な基材に対して提供することが望ましい際には、ランダムな分布及び湾曲した向きの微細構造を利用し、不透明な基材内に形成される微細構造を分散させることができる。図16の湾曲した矩形の微細構造1600は、基材1601の正常な取り扱いの際に微細構造1600の湾曲した平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過及び反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。湾曲した矩形の微細構造1600は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材1601の上部表面内に形成可能である。個別の湾曲した細長い微細構造1600の離隔した関係は、凹入エリア1604への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0042】
図17は、微細構造の二種集団を利用する複数の湾曲した細長い微細構造の代替実施例を示しており、本明細書においては、この微細構造を「ホットドッグ」形状の微細構造と呼ぶ。湾曲した向きを具備するホットドッグ形状の微細構造1700は、実質的にランダムな分布において基材1701の表面上に分布している。いくつかの実施例においては、所与の密度において、特に、15%を上回る細長い微細構造の密度において、均一にサイズ設定された相対的に小さな構造(例えば、45×15×4ミクロンの長さ×幅×高さ)の集団のほうが、相対的に長い構造(例えば、75×15×4の長さ×幅×高さ)よりも、実質的にランダム化された分布において分散させるのが容易であってよい。従って、実質的にモアレを防止するために微細構造のランダム化を円滑に実行するべく、第2の相対的に小さな長さの細長い微細構造を導入する微細構造の二種集団(2つの異なるサイズのそのような微細構造:但し、本発明は、1つ又は2つのサイズのみの利用に限定されてはいない)を利用可能である。ランダム化された湾曲した細長い微細構造1700の導入を利用することにより、光学ディスプレイ上に配設された透明な基材内に微細構造が形成された際には、モアレの発生を防止し、或いは、不透明な基材内に微細構造が形成された際には、相対的に均一な光拡散表面を提供する。湾曲した細長い微細構造1700は、基材1701の正常な取り扱いの際に微細構造1700の湾曲した平坦な上部表面上に堆積した指紋からの油分などの異質な痕跡に起因した(透過及び反射した)光の歪みを低減することにより、異質な痕跡の出現を隠蔽する。個別の湾曲した細長い微細構造1700の離隔した関係は、凹入エリア1704への異質な痕跡物質の解体及び再分散を促進及び許容する表面トポグラフィーを提供し、且つ、これにより、異質な痕跡物質の視認性を極小化する。
【0043】
湾曲した細長い微細構造1700は、(例えば、パターン化及びエッチング、エンボス加工、成型などの)任意の既知の加工技法により、基材1701の上部表面内に形成可能である。図示の例においては、湾曲した細長い微細構造1700は、丸い端部を具備している。いくつかの製造の実装においては、丸い端部を有する微細構造を形成することにより、四角い端部(例えば、図16に示されている染色体パターンの湾曲した細長い微細構造1600によって示されているもの)を有する微細構造の製造性と比較した際に、基材又は保護レイヤ上における細長い微細構造の製造性を改善可能である。図18Aは、45×15×4の長さ×幅×高さを具備する複数の相対的に短いホットドッグ形状の微細構造1806と、75×15×4の長さ×幅×高さを具備する複数の相対的に長いホットドッグ形状の微細構造1808と、を有するホットドッグ形状の微細構造の二種集団のSEM顕微鏡写真である。示されているように、ホットドッグ形状の構造の二種集団は、ランダムな分布において透明な保護レイヤ1801の表面上に分布している。透明な保護レイヤ1801内に形成されたホットドッグ形状の微細構造1806、1808のランダムな分布は、保護レイヤが光学ディスプレイ上に配設された際に、モアレの出現を防止する。図18Bは、図18Aに示されているSEM顕微鏡写真の一部分の拡大図である。この拡大図は、ホットドッグ形状の微細構造1808の垂直の側壁及び丸い両端部を明瞭に示している。
【0044】
図19は、ホットドッグ形状の微細構造1900の一種集団(即ち、均一にサイズ設定されているもの)を利用する湾曲した細長い微細構造の別の例を示すSEM顕微鏡写真である。ホットドッグ形状の微細構造1900は、45×15×4の長さ×幅×高さを具備し、且つ、実質的にランダムな分布において基材1901の表面上に分布している。45ミクロンという相対的に短い細長い微細構造の長さにより、これらのホットドッグ形状の微細構造1900は、最大で約45%の微細構造の密度において、基材1901又は保護レイヤの表面上に実質的にランダム化された分布において比較的容易に分布する。
【0045】
以上の例の多くのものにおいて、微細構造は、一般に、ベース表面から外側に突出する構造(例えば、平坦なプレーンから上方に隆起する高原部)として説明されている。しかしながら、その他の実装においては、微細構造は、逆に形成可能である。例えば、微細構造は、実質的に平坦な表面内の鋭く定義された窪み(例えば、プレーン内に切削された溝)として形成可能である。これらの窪みは、隆起した微細構造と実質的に類似の寸法を有するように形成可能である。例えば、微細構造のそれぞれのものの適切な深さは、約1〜約25ミクロンの範囲であってよく、更に好ましくは、約3〜約10ミクロンの範囲であってよい。微細構造のそれぞれのものの適切な幅は、約2〜約120ミクロンの範囲であってよく、更に好ましくは、約10〜約50ミクロンの範囲であってよい。微細構造のそれぞれのものの幅対深さの適切なアスペクト比率は、約1〜約13の範囲であってよい。微細構造のそれぞれのものの適切な長さは、約10〜約250ミクロンの範囲であってよく、更に好ましくは、約35〜約100ミクロンの範囲であってよい。任意の2つの隣接する微細構造の最も近接した部分の間の適切な距離(d)(即ち、離隔)は、約2〜約120ミクロンの範囲であってよく、更に好ましくは、約10〜約50ミクロンの範囲であってよい。窪んだ表面の表面面積の適切な割合は、平坦な表面の合計面積(即ち、窪んだ又は凹入した平坦な表面の面積+凹入した微細構造を取り囲む隆起した平坦な表面の面積)の約5%〜45%であることを要する。一例においては、複数の矩形の微細構造は、それぞれ、6ミクロンの深さと、11ミクロンの幅と、約10ミクロン〜約50ミクロンの範囲の隣接する微細構造の間の変化する距離(d)と、を具備する。図20は、基材2001の上部表面内に形成された図11を参照して前述した湾曲した星形パターンにおける凹入し且つ湾曲した細長い微細構造2000のSEM顕微鏡写真である。
【0046】
図21は、その上部表面上に分布した複数の微細構造(例えば、図1〜図20の説明において記述した微細構造など)を具備する基材2102を製造する例示用のロールツーロールエンボスシステム2100を示す。いくつかの実装においては、システム2100を使用し、実質的に連続したプロセスにおいて、微細パターン化された基材又は保護レイヤの細長いシール又はロールを製造可能である。
【0047】
システム2100は、コーティングモジュール2110と、乾燥モジュール2120と、エンボスモジュール2130と、を含む。コーティングモジュール2110は、パターン化されていない基材2102(例えば、ポリエチレンテレフタレートフィルム(PET))のロール2112を受け取る。いくつかの実施例においては、パターン化されていない基材2102のロール2112は、コーティングのためのパターン化されていない基材2102の別の形態の供給源によって置換可能である。例えば、パターン化されていない基材2102は、平坦なシートとして供給可能であり、この場合には、シートフィーダメカニズムを実装可能である。別の例においては、パターン化されていない基材2102は、(例えば、コンピュータ用紙のような)ファンフォールドの形態において供給可能であり、この場合には、基材2102は、ジグザグパターンを形成するべく周期的に折り畳まれた実質的に平坦なシートとして提示される。
【0048】
コーティングモジュール2110は、基材2102に塗布される樹脂2114(例えば、紫外線硬化型アクリレート)の供給源を含む。いくつかの実装においては、基材2102は、樹脂2114の塗布の前にクリーニング可能である。樹脂2114は、様々な方法で塗布可能である。例えば、基材2102を樹脂2114の容器に通過させるか又は浸漬することにより、基材をコーティング可能である。その他の実装においては、樹脂2114を噴霧、転写、刷け塗り、又はその他の方法によって基材2102上に堆積可能である。
【0049】
基材2102は、乾燥モジュール2120を通過する。いくつかの実装においては、乾燥モジュール2120は、基材2102を熱又は紫外線(UV)放射線に露出させることにより、基材2102に予め塗布された樹脂2114を乾燥又は部分的に乾燥させるか、加熱するか、硬化させるか、又はその他の方法によって処理可能である。いくつかの実装においては、樹脂2114を少なくとも部分的に乾燥又は硬化させることにより、樹脂を基材2102に接合させることができる。
【0050】
基材2102は、エンボスモジュール2130によって処理される。エンボスモジュール2130は、紫外線(UV)ランプ2132と、エンボスローラー2134と、を含む。いくつかの実装においては、エンボスローラー2134には、図1〜図20の説明において前述した微細構造などの微細構造の反転された(例えば、ネガティブ)パターンによってカバーされたマスタシムがスリーブ状に装着されている。いくつかの実施例においては、微細構造の反転パターンは、フォトリソグラフィプロセスを使用して形成可能である。例えば、マスタシムの基材をクリーニングし、且つ、フォトレジスト材料によってコーティング可能であり、次いで、焼成又は紫外光への露出により、事前硬化可能である。次いで、投影画像又は光学マスクを使用することにより、事前硬化されたフォトレジスト上に望ましい微細構造パターンを転写可能である。標準的なフォトリソグラフィ技法により、フォトレジストを現像し(例えば、エッチングし)、望ましい微細構造のパターン化されたレジストを形成可能であり、この後に、パターン化されたレジストを事後硬化可能である。次いで、パターン化されたフォトレジスト材料を金属(例えば、銅)によってコーティングし、表面に導電性を付与可能であり、且つ、次いで、金属コーティングされたパターン化レジストにニッケルを電気鍍金し、これにより、ニッケルマスタシムを形成可能である。次いで、ドラムの周りに巻き付けてエンボスローラー2134を形成することができるように、ニッケルマスタシムを基材から分離可能である。
【0051】
エンボスローラー2134を基材2102上の樹脂2114コーティングとの転がり接触状態にする。エンボスローラー2134が基材2102上を転がるのに伴って、微細構造の反転パターンが樹脂2114コーティング内に刻印される。紫外線ランプ2134は、樹脂2114を硬化させて樹脂を少なくも部分的に硬化させ、これにより、樹脂2114内に刻印された微細構造のパターンを保持する。基材2102を成型するか、熱によって形成するか、エンボス加工するか、エッチングするか、又はいくつかのポリマー加工技法の中のいずれかのものを使用してその他の方式によってパターン化し、保護レイヤの表面上に微細構造を形成可能である。基材2102は、ロール2136によって巻き取られる。いくつかの実装においては、ロール2136は、分離されたシート、ファンフォールド式のシート、又は加工の後のその他の形態の基材2102用の容器により、置換可能である。いくつかの実装においては、基材2102の加工が完了したら、接着剤及び保護ライナを基材2102の滑らかな(例えば、パターン化されていない)面に適用可能である。いくつかの実装においては、基材2102を望ましいサイズに切断可能である。例えば、基材2102は、光学ディスプレイの画像表面を実質的にカバーする断片に切断可能である。
【0052】
前述のように、保護レイヤの実施例は、保護レイヤの表面内に複数の微細構造(例えば、湾曲した細長い微細構造)を形成するべく加工可能な本質的に任意のポリマーによって製造可能である。いくつかの適切なポリマーは、ポリエチレンテレフタレート(PET)、アクリル、シリコーン、及びウレタンを含む。保護レイヤの材料及び厚さは、特定のアプリケーション及び/又は十分な耐久性を提供するべく必要とされる予想される取り扱いの程度に従って最適化可能である。一例においては、成型プロセスを使用してレイヤの上部表面上に形成された複数の湾曲した細長い微細構造(例えば、同心破断リングパターン)を有するように、アクリレートから製造された20ミクロンの厚さの保護レイヤを製造可能である。細長い湾曲した微細構造は、約4ミクロンの高さと、約8ミクロンの幅と、約11ミクロンの隣接する微細構造の間の距離と、を具備する。保護レイヤの滑らかな面を、通常は、透明なガラス基材である、携帯電話機のタッチパッド上に配置又は取り付けることにより、タッチパッド機能の喪失を伴うことなしに、耐指紋性をタッチパッドに対して提供可能である。
【0053】
滑らかな面とも呼ばれる保護レイヤの第2表面を別の基材(例えば、透明な基材)上に配設する。任意選択により、滑らかな面を低粘着性接着剤によってコーティングし、使用の際の保護レイヤの望ましくない運動を低減可能である。或いは、この代わりに、滑らかな面を静電気に帯電させ、透明な基材に付着させることも可能である。低粘着性接着剤及び静電気の帯電は、配置の容易性及び調節性を実現し、且つ、必要な際の保護レイヤの容易な交換を可能にする(即ち、使い捨て可能である)。
【0054】
又、取り扱いによる汚染の影響(例えば、指紋の影響)を低減する表面トポグラフィーの具備に加えて、本発明の実施例の保護レイヤ及び/又は基材は、例えば、いくつかの例を挙げれば、プライバシーフィルム(視野角の低減)、輝度向上フィルム(光学エネルギーを主要な視角にリダイレクトする)、反射防止フィルム(例えば、反射防止コーティング又は再帰反射構造を具備する)、耐スクラッチ性フィルム、自浄型の表面(例えば、自己組織化単分子膜コーティングの使用)、抗菌性フィルム、及び/又は帯電防止フィルムなどを特徴とするその他の望ましい属性を具備することも可能である。
【0055】
例えば、硬さ又は耐スクラッチ性をポリマー保護レイヤ又は基材に対して提供するには、いくつかの例を挙げれば、サファイア、シリコン酸化物(例えば、SiO2)、及びチタニウム酸化物などの硬い粒子を微細構造の製造の際にポリマー樹脂に添加することにより、良好な耐磨耗性及び耐損耗性を基材(又は、保護レイヤ)の微細構造表面に付与可能である。これらの硬い粒子は、粒子が保護レイヤ(即ち、透明な保護レイヤ)に内蔵された際に透明になるように、光の波長よりも小さい粒子サイズを具備する(即ち、ナノ粒子である)。微細構造の製造の際に、これらの硬い粒子は、保護レイヤの表面に均一に分散及び移動する傾向を有し、これにより、良好な耐磨耗性及び耐損耗性が保護レイヤの微細構造表面に対して付与される。
【0056】
別の例においては、反射防止コーティングを複数の微細構造及び保護レイヤ又は基材の上部表面上に堆積させる(即ち、複数の微細構造及び凹入エリアをコーティングする)ことにより、反射防止又は防眩属性を保護レイヤ又は基材に対して付与可能である。適切な反射防止コーティングは、約1〜約1.35の範囲の低屈折率を具備する材料を有する。例示用の材料は、約1.3の屈折率を具備するフッ化マグネシウム又はフルオロポリマーを含む。
【0057】
別の例においては、フッ化又はクロロフルオロ機能性ポリマーモノレイヤを有する自己組織化単分子膜(SAM)を複数の微細構造及び基材又は保護レイヤの上部表面上に堆積させることにより、自浄表面の属性を保護レイヤ又は基材に対して付与可能である。これらの話題のモノレイヤの適用により、表面が疎水性及び撥油性の両方の特性を有するように、表面エネルギーを劇的に増大させることができる。疎水性及び撥油性表面の特性は、指紋の除去を改善する。別の例においては、ヒドロキシル、カルボキシル、又はポリオール機能性モノレイヤを有する親水性SAMを複数の微細構造及び保護レイヤ又は基材の上部表面上に堆積させることにより、自浄属性を保護レイヤ又は基材に対して付与可能である。親水性モノレイヤは、水が表面に吸着すると共に結合し、表面を流れて表面の汚染物質を洗い流す液滴を形成するように、低表面エネルギーを付与する。
【0058】
別の例においては、保護レイヤ又は基材の表面上における微細構造の製造の際に、1つ又は複数の殺生物剤をポリマー樹脂に添加することにより、抗菌性表面の属性をポリマー保護レイヤ又は基材に対して付与可能である。例示用の殺生物剤は、銀ナノ粒子及びトリクロサンである。
【0059】
別の例においては、保護レイヤ又は基材の表面上における微細構造の製造の際に、1つ又は複数の親水性添加物をポリマー樹脂に添加することにより、帯電防止表面の属性をポリマー保護レイヤ及び基材に対して付与可能である。この表面特性は、摩擦電気の帯電の影響を受け易いポリマー保護レイヤ又は基材材料(例えば、ポリマーやガラス)の場合に、特に有用である。例えば、静電荷は、表面の接触又は取り扱い(例えば、擦れ)の際に、指先から保護レイヤ(又は、基材)の表面に移動可能である。適切な親水性添加物は、四級アミン及びポリエチレングリコールを含む。十分な量の親水性添加物をポリマー保護レイヤ又は基材に内蔵させ、ポリマー樹脂の電気体積抵抗率を約1012Ω−cm未満の、好ましくは、約10〜1011Ω−cmの範囲の体積抵抗率に低減させる。これらの材料の場合には、電子が、表面にわたって、且つ、材料を通じて、流れることにより、静電荷を発散可能である。
【0060】
図23を参照すれば、保護レイヤの一例の耐指紋性を試験するべく、前述の微細構造を具備する基材のシート(即ち、保護レイヤ)2301を携帯電話機のディスプレイ2308の右側に張り付けた。略、指紋の半分を露出したディスプレイ上に、且つ、もう半分を保護レイヤ2301上に堆積させるべく、単一の指紋を左側の露出したディスプレイと保護レイヤ2301の両方に跨るように堆積させた。この結果は、保護レイヤ2301上における実質的に検出不能な指紋であり、これにより、微細構造のパターンによって提供される耐指紋性が証明された。この例においては、保護レイヤ2301は、図16の説明において前述したものなどの実質的にランダム化された微細構造の染色体パターンを利用した。この例の微細構造には、約22.5%の密度が付与されており、且つ、それぞれの寸法は、長さが約120ミクロンであり、幅が34ミクロンであり、且つ、高さが4ミクロンであった。
【0061】
図24は、別の保護フィルム2401の耐指紋性の一例を示す。図23におけるように、携帯電話機2408のディスプレイの半分(この例においては、左側)をカバーするように、保護フィルム2401を切断し、且つ、指紋の半分が右側において露出したディスプレイ上に堆積され、もう半分が保護レイヤ2401上に堆積されるように、指紋を堆積させた。この例の保護レイヤ2401には、約15%の微細構造の密度が付与されており、且つ、図23の保護レイヤ2301よりも乏しい耐指紋性が証明された。従って、4ミクロンの高さの微細構造の場合には、好適な密度の範囲は、約15〜約35%の、更に好ましくは、約20%〜約30%の範囲である。
【0062】
又、2つの市販の製品を使用し、図23及び図24において実行及び図示されたものに類似した試験を実行した。1つの製品は、カリフォルニアのバーバンクに所在するパワーサポート社(Power Support)によって製造されたフィルム2551であった。この製品のパッケージには、フィルム2551が「防眩」フィルムであり、且つ、汚れ及び指紋に対する抵抗性を有すると記載されている。図25に示されているフィルム2551の拡大図は、このフィルムが、マット仕上げと、実質的にランダムな表面粗度と、を具備することを示しており、干渉分光法による計測によれば、ピーク対谷(Rt)値が約5.7ミクロンであり、平均表面粗度(Ra)が約0.4ミクロンであった。携帯電話機2608のディスプレイの半分(この例においては、右側)をカバーするべく、フィルム2551を切断し、且つ、図26に示されているように、指紋の半分が左側において露出したディスプレイ上に堆積され、且つ、もう半分がフィルム2551上に堆積されるように、指紋を堆積させた。露出したディスプレイ表面と比較した場合には、その出現の度合いが低いが、堆積した指紋が観察者から依然として可視状態にあるため、耐指紋性は乏しい。更には、フィルム2551内の不透明なミクロンサイズのフィラー2553が、ヘイズと、携帯電話機2608の下の光学ディスプレイから放射された画像の光学品質の低下と、を生成する。
【0063】
図27及び図28を参照すれば、試験したもう1つの製品は、ユタ州ソルトレイクシティに所在するザッグ社(Zagg,Inc.)から市販されている「インヴィジ−シールド(Invisi−Shield)」と呼ばれる滑らかなフィルム2771であった。図27は、フィルム2771の拡大図を示しており、これは、干渉分光法によって計測された約1.5ミクロンのピーク対谷表面粗度(R)と、約0.06ミクロンの平均表面粗度(R)と、を具備していた。携帯電話機2808のディスプレイの半分(この例においては、右側)をカバーするべく、フィルム2771を切断し、且つ、図28に示されているように、指紋の半分が左側において露出したディスプレイ上に堆積され、且つ、もう半分がフィルム2771上に堆積されるように、指紋を堆積させた。ザッグ社(Zagg,Inc.)の製品は、「耐スクラッチ性(scratch resistant)」フィルムとして広告されており、耐指紋性を謳ってはいない。従って、フィルム2771は、ほとんど耐指紋性を示さなかった。
【0064】
一般に、約5.7ミクロンの意図的な実質的にランダムな表面粗度を有するマットフィルム(例えば、図25及び図26に示されているフィルム)は、乏しい耐指紋性及び光学性能を示し、実質的に滑らかなフィルム(例えば、図27及び図28に示されているフィルム)は、顕著な指紋に対する耐性を示さない。しかしながら、本発明の実施例による保護レイヤ上への微細構造の導入は、図23に示されている例において先程示したように、非常に良好な耐指紋性を示す表面を結果的にもたらす。
【0065】
図29は、輝度データの2つの表を示す。第1の表は、露出した携帯電話機のディスプレイ上において採取された輝度計測値の集合を含み、且つ、第2の表は、同一の携帯電話機のディスプレイ上において採取されたが、本発明の実施例による微細構造を有するようにパターン化された例示用の保護レイヤ(即ち、「FPRフィルム」)によってカバーされた類似の計測値を含む。保護レイヤを有する及び有さないディスプレイ上において輝度を計測した。図示の計測値から、この例において使用された保護レイヤは、約2.4%の光損失のみを伴う高度な輝度性能を示した。
【0066】
別の例においては、丸い端部を有する湾曲した細長い構造の二種集団(例えば、図17及び図18Aに示されているものなどの約75×15×4ミクロン及び約45×15×4ミクロンのホットドッグ形状の構造)を具備する保護レイヤのヘイズを約420×320ミクロンの面積にわたって計測した。図30には、保護レイヤを通じて透過したヘイズのプロットが側壁表面の面積(例えば、ホットドック形状の構造の垂直表面の面積)の関数として示されている。このプロットは、所与の高さ(例えば、この例においては、約4ミクロン)において、微細構造の密度の増大に伴って、ヘイズの量も増大することを示している。いくつかの実施例においては、望ましくない量のヘイズを生成しないように、光学ディスプレイ用の保護レイヤ上の微細構造の密度を制限可能である。
【0067】
本発明には、様々な変更及び代替形態が可能であるが、一例として、特定の実施例について、図面に示し、且つ、本明細書において詳細に説明した。しかしながら、本発明は、開示した特定の形態に限定されることを意図したものではないことを理解されたい。むしろ、本発明は、添付の請求項に定義されている本発明の精神及び範囲に含まれるあらゆる変更、均等物、及び代替物を含むものである。

【特許請求の範囲】
【請求項1】
耐指紋性基材であって、
複数の湾曲した細長い微細構造と、
前記基材の外部表面内に形成された前記複数の湾曲した細長い微細構造の中の隣接する微細構造の間の隙間エリアと、を有し、
前記複数の微細構造のそれぞれは、平坦な上部表面と、垂直又は略垂直の側壁と、を備え、
前記隣接する微細構造の間の前記隙間エリアは、その全体にわたる流体移動を許容するように構成された凹入エリアである基材。
【請求項2】
前記複数の湾曲した細長い微細構造のそれぞれは、幅を上回る長さを備える請求項1記載の耐指紋性基材。
【請求項3】
前記複数の湾曲した細長い微細構造のそれぞれは、その長さに沿って湾曲している請求項2記載の耐指紋性基材。
【請求項4】
前記複数の湾曲した細長い微細構造のそれぞれは、約1ミクロン〜約25ミクロンの範囲の高さを有する請求項1記載の耐指紋性基材。
【請求項5】
前記複数の湾曲した細長い微細構造のそれぞれは、約3ミクロン〜約10ミクロンの範囲の高さを有する請求項4記載の耐指紋性基材。
【請求項6】
前記複数の湾曲した細長い微細構造のそれぞれは、約2ミクロン〜約120ミクロンの範囲の幅を有する請求項1記載の耐指紋性基材。
【請求項7】
前記複数の湾曲した細長い微細構造のそれぞれは、約10ミクロン〜約50ミクロンの範囲の幅を有する請求項6記載の耐指紋性基材。
【請求項8】
前記複数の湾曲した細長い微細構造のそれぞれは、約2ミクロン〜約120ミクロンの範囲の幅を有する請求項4記載の耐指紋性基材。
【請求項9】
前記複数の湾曲した細長い微細構造は、約1〜約13の範囲の幅対高さ(W:H)のアスペクト比を有する請求項8記載の耐指紋性基材。
【請求項10】
前記複数の湾曲した細長い微細構造のそれぞれは、約10ミクロン〜約250ミクロンの範囲の長さを有する請求項1記載の耐指紋性基材。
【請求項11】
前記複数の湾曲した細長い微細構造のそれぞれは、約35ミクロン〜約100ミクロンの範囲の長さを有する請求項10記載の耐指紋性基材。
【請求項12】
前記複数の湾曲した細長い微細構造のそれぞれは、約10ミクロン〜約250ミクロンの範囲の長さを有する請求項8記載の耐指紋性基材。
【請求項13】
前記複数の湾曲した細長い微細構造の中の2つの隣接する微細構造のうち最も近接した部分間の距離は、約2ミクロン〜約120ミクロンの範囲である請求項1記載の耐指紋性基材。
【請求項14】
前記複数の湾曲した細長い微細構造の中の2つの隣接する微細構造のうち最も近接した部分間の前記距離は、約10ミクロン〜約50ミクロンの範囲である請求項13記載の耐指紋性基材。
【請求項15】
前記複数の湾曲した細長い微細構造の中の2つの隣接する微細構造のうち最も近接した部分間の距離は、約2ミクロン〜約120ミクロンの範囲である請求項8記載の耐指紋性基材。
【請求項16】
前記複数の湾曲した細長い微細構造の密度は、前記複数の湾曲した細長い微細構造の前記平坦な上部表面が前記基材の外部表面の平坦な表面の面積の約5%〜約45%の範囲の表面面積を有するようになっており、前記平坦な表面の面積は、前記平坦な上部表面の表面面積と前記凹入エリアの合計である請求項1記載の耐指紋性基材。
【請求項17】
前記複数の湾曲した細長い微細構造の密度は、前記複数の湾曲した細長い微細構造の前記平坦な上部表面が前記基材の外部表面の平坦な表面の面積の約5%〜約45%の範囲の表面面積を有するようになっており、前記平坦な表面の面積は、前記平坦な上部表面の表面面積と前記凹入エリアの合計である請求項8記載の耐指紋性基材。
【請求項18】
前記基材の前記外部表面は、約25ダイン毎平方センチメートル〜約35ダイン毎平方センチメートルの範囲の表面エネルギーを有する請求項1記載の耐指紋性基材。
【請求項19】
前記基材の前記外部表面は、約25ダイン毎平方センチメートル〜約35ダイン毎平方センチメートルの範囲の表面エネルギーを有する請求項8記載の耐指紋性基材。
【請求項20】
前記複数の湾曲した細長い微細構造のそれぞれは、ほぼランダムな向きを有する請求項1記載の耐指紋性基材。
【請求項21】
前記複数の湾曲した細長い微細構造は、ほぼランダムな分布を有する請求項1記載の耐指紋性基材。
【請求項22】
前記複数の湾曲した細長い微細構造のそれぞれは、ほぼランダムな向きを有する請求項15記載の耐指紋性基材。
【請求項23】
前記複数の湾曲した細長い微細構造は、ほぼランダムな分布を有する請求項22記載の耐指紋性基材。
【請求項24】
前記基材は、透明なガラス又はポリマーを有する請求項1記載の耐指紋性基材。
【請求項25】
前記基材は、不透明な材料を有する請求項1記載の耐指紋性基材。
【請求項26】
前記基材は、光学ディスプレイの外側表面上に配設されるように適合されたポリマーフィルムである請求項23記載の耐指紋性基材。
【請求項27】
前記凹入エリアは、その全体にわたる前記流体移動を許容するように構成された単一の連続した凹入エリアである請求項1記載の耐指紋性基材。
【請求項28】
前記凹入エリアは、その全体にわたる前記流体移動を許容するように構成された単一の連続した凹入エリアである請求項8記載の耐指紋性基材。
【請求項29】
耐指紋性基材であって、
光学ディスプレイと、
前記光学ディスプレイの基材の外側表面上に配設された耐指紋性フィルムと、を有し、
前記フィルムは、複数の湾曲した細長い微細構造と、前記フィルムの外部表面内に形成された前記複数の湾曲した細長い微細構造の隣接する微細構造の間の隙間エリアと、を有し、前記複数の微細構造のそれぞれは、平坦な上部表面と、垂直又は略垂直の側壁と、を有し、前記隣接する微細構造の間の前記隙間エリアは、その全体にわたる流体移動を許容するように構成された平坦な凹入エリアである、システム。
【請求項30】
前記複数の湾曲した細長い微細構造のそれぞれは、ほぼランダムな向きを有する請求項29記載の耐指紋性基材。
【請求項31】
前記複数の湾曲した細長い微細構造は、モアレが人間の眼によって検出不能となるように、ほぼ十分にランダムな分布を有する請求項30記載の耐指紋性基材。
【請求項32】
前記平坦な凹入エリアは、その全体にわたる前記流体移動を許容するように構成された単一の連続した平坦な凹入エリアである請求項31記載の耐指紋性基材。
【請求項33】
耐指紋性基材であって、
複数の湾曲した細長い微細構造と、
前記基材の外部表面内に形成された前記複数の湾曲した細長い微細構造の隣接する微細構造の間の隙間エリアと、を有し、
前記複数の微細構造のそれぞれは、平坦な凹入エリアと、垂直又は略垂直の側壁と、を有し、
前記隣接する微細構造の間の前記隙間エリアは、前記基材の前記外部表面の全体にわたって延びる隆起エリアである、基材。
【請求項34】
前記複数の湾曲した細長い微細構造のそれぞれは、ほぼランダムな向きを有する請求項33記載の耐指紋性基材。
【請求項35】
前記複数の湾曲した細長い微細構造は、ほぼランダムな分布を有する請求項34記載の耐指紋性基材。
【請求項36】
前記隆起エリアは、単一の連続した隆起エリアである請求項33記載の耐指紋性基材。
【請求項37】
耐指紋性基材であって、
光学ディスプレイと、
前記光学ディスプレイの基材の外側表面上に配設された耐指紋性フィルムと、を有し、
前記フィルムは、複数の湾曲した細長い微細構造と、前記フィルムの外部表面内に形成された前記複数の湾曲した細長い微細構造の隣接する微細構造の間の隙間エリアと、を有し、
前記複数の微細構造のそれぞれは、平坦な凹入表面と、垂直又は略垂直の側壁と、を有し、
前記隣接した微細構造の間の前記隙間エリアは、前記フィルムの前記外部表面の全体にわたって延びる隆起エリアである、基材。
【請求項38】
前記複数の湾曲した細長い微細構造のそれぞれは、ほぼランダムな向きを有する請求項37記載の耐指紋性基材。
【請求項39】
前記複数の湾曲した細長い微細構造は、モアレが人間の眼によって検出不能なように、ほぼ十分にランダムな分布を有する請求項38記載の耐指紋性基材。
【請求項40】
前記隆起エリアは、単一の連続した隆起エリアである請求項39記載の耐指紋性基材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公表番号】特表2011−530403(P2011−530403A)
【公表日】平成23年12月22日(2011.12.22)
【国際特許分類】
【出願番号】特願2011−522290(P2011−522290)
【出願日】平成21年8月7日(2009.8.7)
【国際出願番号】PCT/US2009/053195
【国際公開番号】WO2010/017503
【国際公開日】平成22年2月11日(2010.2.11)
【出願人】(507385800)ユニ−ピクセル・ディスプレイズ・インコーポレーテッド (6)
【Fターム(参考)】