説明

複合多孔性中空糸膜、膜モジュール、膜ろ過装置、水処理方法

【課題】無機物および/または有機物を含有する液体の処理に好適な、多孔質層の剥離耐性が高い複合多孔性中空糸膜、この複合多孔性中空糸膜を用いた膜モジュール、水ろ過装置、及び水処理方法を提供する。
【解決手段】本発明に係る複合多孔性中空糸膜は、多孔質層と当該多孔質層を支持する支持体とを備えた複合多孔性中空糸膜であって、前記多孔質層は、その少なくとも一部が外周部を形成し、前記外周部の前記多孔質層には凹凸が付与されていることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複合多孔質中空糸膜に関する。本発明は、具体的には、多孔質層の外周部に凹凸を有する複合多孔性中空糸膜、該複合多孔質膜を用いた膜モジュール、ろ過装置、さらに、該複合多孔質膜を用いて無機物および/または有機物を含有する水を処理する方法に関する。
【背景技術】
【0002】
近年、限外ろ過膜、精密ろ過膜などの多孔膜は、電着塗料の回収、超純水からの微粒子除去、パイロジェンフリー水の製造、酵素の濃縮、発酵液の除菌・清澄化、上水・下水・排水処理など、幅広い分野で用いられている。特に多孔性中空糸膜は、単位体積あたりの膜充填密度が高く、処理装置をコンパクト化できることなどから、広く用いられている。
【0003】
近年では特に排水処理等のニーズが高まりつつあり、MBR(膜分離活性汚泥法)の用途に多孔性中空糸膜が使用されることが多くなっている。これらの濾過用途では、濾過時に膜の物理的な閉塞(ファウリング)が起こり、透水能力が低下してしまう。この閉塞を解消する手段として、膜への化学洗浄や物理洗浄がよく用いられる。化学洗浄とは、閉塞の原因となる有機物や無機物をアルカリや酸化剤、および酸により除去する方法である。また、物理洗浄とは、膜面や膜内部の洗浄をおこなう目的で、原水中に空気を連続的あるいは断続的に送って膜を振動させるエアースクラビングや、中空糸膜の二次側から水や薬液を濾過させて内部の汚れを押し出す逆圧洗浄といった方法が良く用いられている。したがって、多孔性中空糸膜にはこれらの化学洗浄や物理洗浄に耐える高い化学的強度および物理的強度が要求される。
【0004】
多孔質膜の物理的強度を向上させる方法として、特許文献1には中空状の組紐の外表面側に多孔質層を貼り合わせ、濾過性能と物理的強度を両立させた多孔質膜が開示されている。しかしながら、このような膜では、組紐繊維軸方向への機械的強度を大きく向上させることができるが、多孔質層と組紐層の接着性が低く、多孔質層が剥離し易い。その結果、現在の排水用途等で要求されている年単位での使用においては、多孔質層の剥離により阻止性能が大きく低下してしまい、実用に適さない。
【0005】
更に、この多孔質層の剥離による透水性能低下を解決する手段として、特許文献2には組紐の表面に緻密層を有する第一多孔層を組紐内部に部分的に含浸させた積層し、更に第一層に隣接する第二多孔層を積層させた複合多孔性中空糸膜が開示されている。特許文献2によると、第一層(中間層)と第二層(最外層)をほぼ溶着させないことで収縮等による剥離を抑制できると共に第二層が剥がれても第一層により阻止性能が保持される。しかしながら、このような複合膜では、逆に物理的洗浄等による最外層の剥離が起こりやすくなり、更にその後に薬品洗浄等による組紐と第一多孔層の剥離が起こるため、阻止性能低下までの期間を延ばすことはできるが、抜本的には、多孔層剥離による阻止性能低下の問題の解決策とはなっていない。さらに、このような構造の膜の製造方法は、特許文献2にも開示されているように、非常に工程が多く、また品質を安定させる為のコントロールも難しい。その結果、生産コストが増大してしまう、という問題もある。
【0006】
したがって、高い化学的および物理的耐久性を有する実用的な複合膜は、これまで得られていなかった。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第5472607号明細書
【特許文献2】国際公開第2004/043579号
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明が解決しようとする課題は、無機物および/または有機物を含有する液体の処理に好適な、多孔質層の剥離耐性が高い複合多孔性中空糸膜、この複合多孔性中空糸膜を用いた膜モジュール、水ろ過装置、及び水処理方法を提供することである。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、組紐表面の多孔質層の外周部に凹凸を付与することが、組紐部と多孔質層の剥離を抑制するために、極めて重要であることを見出し、本発明に至った。
【0010】
すなわち、本発明は、以下のとおりである。
(1)多孔質層と当該多孔質層を支持する支持体とを備えた複合多孔性中空糸膜であって、前記多孔質層は、その少なくとも一部が外周部を形成し、前記外周部の前記多孔質層には凹凸が付与されていることを特徴とする複合多孔性中空糸膜、
(2)前記複合多孔性中空糸の膜断面において、外周長に占める前記凹凸の割合が30%以上であることを特徴とする(1)に記載の複合多孔性中空糸、
(3)前記多孔質層が、熱可塑性樹脂からなる(1)又は(2)に記載の複合多孔性中空糸膜、
(4)前記熱可塑性樹脂がポリフッ化ビニリデン、ポリオレフィン又はポリサルホンであることを特徴とする(3)記載の複合多孔性中空糸、
(5)前記凹凸が膜長手方向に連続していることを特徴とする(1)〜(4)の何れか一項記載の複合多孔性中空糸、
(6)前記凹凸の延在方向が膜中空糸膜の長手方向に対して、1°以上の角度を持って螺旋状となっていることを特徴とする(1)〜(5)の何れか一項記載の複合多孔性中空糸、
(7)(1)〜(6)の何れか一項記載の複合多孔性中空糸を有する膜モジュール、
(8)(7)に記載の前記膜モジュールを具備する膜ろ過装置、
(9)(8)に記載の膜ろ過装置を用いて、無機物および有機物の少なくとも一方を含有する被処理液をろ過する水処理方法、
【発明の効果】
【0011】
本発明によれば、無機物および/または有機物を含有する液体の処理に好適な、多孔質層の剥離耐性が高い複合多孔性中空糸膜、この複合多孔性中空糸膜を用いた膜モジュール、水ろ過装置、及び水処理方法を低コストで得ることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施形態に係る複合多孔性中空糸膜の実施形態の一例を説明する概略図である。
【図2】図1の複合多孔性中空糸膜の長手方向に垂直な断面を示す断面図である。
【図3】図1の複合多孔性中空糸膜の変形例を示す図であり、図2に対応する断面図である。
【図4】図1の複合多孔性中空糸膜の変形例を示す図であり、図2に対応する断面図である。
【図5】図2の断面図の一部を拡大したものであり、凹凸の高さ及び幅について説明する図である。
【図6】図1の複合多孔性中空糸膜の変形例を示す図である。
【図7】本実施形態の異形多孔性中空糸膜の製造方法に係る中空糸膜成型装置を説明する概略構成図である。
【図8】中空糸膜モジュールの構成を示す図である。
【図9】加圧ろ過方式のろ過装置の一例を示す構成図である。
【発明を実施するための形態】
【0013】
以下、本発明を実施するための形態(以下、本実施の形態という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して用いることができる。
【0014】
<複合多孔性中空糸膜>
まず、図1,2を参照して、本実施形態に係る複合多孔性中空糸膜を説明する。図1は、本実施形態に係る複合多孔性中空糸膜の構成を説明する概略図である。また、図2は図1の複合多孔性中空糸膜の長手方向に垂直な断面を示す断面図である。
【0015】
本実施形態に係る複合多孔性中空糸膜1は、図1に示すように、中心部分に開孔2が設けられた略円筒状の形状であって、その外周部に、長手方向に沿った凹凸3を有する中空糸膜である。なお、「外周部」とは、複合中空糸膜の外表面部を意味する。「長手方向」とは、複合多孔性中空糸膜1の外周円に対し直行する方向(すなわち、開孔2の延在方向であって、図1中の矢印Xで示す方向)を意味する。「連続した凹凸を有する」とは、任意の箇所における、複合多孔性中空糸膜1の長手方向と直交する外周円方向の断面(以下、複合多孔性中空糸膜1の断面という)が略同様の凹凸構造を有していることを意味する。各々の凹凸は、複合多孔性中空糸膜1の長手方向に沿って延在している。したがって、複合多孔性中空糸膜1の切断位置にかかわらず切断面では略同様の凹凸構造を形成している。
【0016】
本実施形態に係る複合多孔性中空糸膜1は、支持体4と多孔質層5とを有し、更に支持体4と接していない側、すなわち、外周部の多孔質層5の表面に凹凸を有することを特徴とする膜である。凹凸を有することで、基材となる支持体4が薬品洗浄等で収縮または膨潤した際に、支持体4が収縮する分を多孔層表面の凹凸が変形することで吸収し、支持体4と多孔質層5の界面にかかる応力を緩和できるため、効果的に多孔質層5の剥離を防止できる。なお、複合多孔性中空糸膜1の外周部全てが多孔質層5により形成されている必要は無くその一部に例えば支持体4が露出している構成でもよい。
【0017】
<支持体>
本実施形態に係る支持体4の一例として、組紐や不織布等が挙げられる。組紐は、繊維が一本以上束ねられて形成された複数本の糸を管状に組むこと形成されたものである。組紐を構成する繊維の素材としては、ナイロン6やナイロン66、芳香族ポリアミド等のポリアミド系、ポリエチレンテレフタレート、ポリ乳酸、ポリグリコール等のポリエステル系、ポリエチレンやポリプロピレン等のポリオレフィン系、ポリ塩化ビニルやポリ塩化ビニリデン等のポリ塩化ビニル系、ポリテトラフルオロエチレンやポリフッ化ビニリデン等のポリフッ素系、ポリビニルアルコール系、ポリアクリロニトリル系、ポリ尿酸系、ポリアルキレンパラオキシベンゾエート系、ポリウレタン系、などの合成高分子素材や、セルロース系、タンパク質系、種子毛繊維、石綿などの天然高分子素材、或いは金属繊維、炭素繊維、ケイ酸塩繊維などの無機素材などから、或いは前記素材を組み合わせたものを、用途に応じて適切なものを選ぶことが可能である。水処理等の用途においては、コストや繊維形状の自由度の高さから合成高分子素材が最も好ましい。
【0018】
繊維の太さは特に限定されないが、直径1μm以上100μm以下が好ましい。1μm以上であれば、表面の毛羽立ち等が無く、多孔質層との高い接着性を発揮でき、100μm以下であれば得られる組紐がしっかりと組まれ、高い圧縮強度を発揮できる。マルチフィラメント糸の場合、糸1本における繊維の本数は、10本以上1000本以下であることが好ましい。10本以上であれば、マルチフィラメント糸およびこれから成る組紐の柔軟性が高く、結果としてエアースクラビング等で良く揺れる洗浄効果の高い複合膜が得られる。一方、1000本以下であれば、マルチフィラメント糸が太くなりすぎず、高い圧縮強度を有する組紐を得ることができる。組紐の打ち数は、5以上100以下であることが好ましい。5以上であれば得られる組紐が高い圧縮強度を発現でき、100以下であれば収縮による構造変化を好ましい範囲に抑えることができる。本願における組紐の断面形状は、円筒形や三角形状、四角形状、その他の異形断面形状など、様々な形状において効果を発揮することができる。生産性や中空部の潰れへの耐久性の観点からは、円筒形が最も好ましい。
【0019】
不織布としては、長繊維から成るもの、短繊維から成るもの、およびそれらを混織したものが挙げられる。繊維の素材としては、セルロースやポリエステルなど、一般的に不織布の素材として用いられているものが好適に利用できる。
【0020】
<多孔質層>
本実施形態に係る多孔質層5は熱可塑性樹脂から成ることが好ましい。熱可塑性樹脂(熱可塑性高分子)は、常温では変形しにくく弾性を有し塑性を示さないが、適当な加熱により塑性を現し、成型が可能になり、冷却して温度が下がると再びもとの弾性体に戻る可逆変化を行い、その間に分子構造など化学変化を生じない性質を持つ樹脂である(化学大辞典編集委員会編集、化学大辞典6縮刷版、共立出版、860及び867頁、1963年)。
【0021】
熱可塑性樹脂の例としては、14705の化学商品(化学工業日報社、2005年)の熱可塑性プラスチックの項(1069〜1125頁)記載の樹脂や、化学便覧応用編改訂3版(日本化学会編、丸善、1980年)の809−810頁記載の樹脂等を挙げることができる。具体例名を挙げると、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレンービニルアルコール共重合体、ポリアミド、ポリエーテルイミド、ポリスチレン、ポリサルホン、ポリビニルアルコール、ポリフェニレンエーテル、ポリフェニレンサルファイド、酢酸セルロース、ポリアクリロニトリル、などである。中でも、結晶性を有する、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、エチレンービニルアルコール共重合体、ポリビニルアルコールなどは強度発現の面から好適に用いることができる。さらにそれら結晶性熱可塑性樹脂の中でも、疎水性ゆえ耐水性が高く、通常の水系液体のろ過において耐久性が期待できる、ポリエチレンやポリプロピレンなどのポリオレフィン、ポリフッ化ビニリデン又はポリサルホン等の疎水性結晶性熱可塑性樹脂がさらに好適に用いることができる。さらにこれら疎水性結晶性熱可塑性樹脂の中でも、耐薬品性等の化学的耐久性に優れるポリフッ化ビニリデンが、特に好適に用いることができる。ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリマーや、フッ化ビニリデン比率50モル%以上のフッ化ビニリデン共重合体が挙げられる。フッ化ビニリデン共重合体としては、フッ化ビニリデンと、四フッ化エチレン、六フッ化プロピレン、三フッ化塩化エチレン又はエチレンから選ばれた1種以上との共重合体を挙げることができる。ポリフッ化ビニリデンとしては、フッ化ビニリデンホモポリマーが最も好ましい。
【0022】
また、多孔質層5は網目構造であることが好ましい。通常、多孔質層5の構造は網目構造と球状構造があり、構造上、連結している熱可塑性樹脂の体積が少ない球状構造よりも連結部分の体積が多い網目構造の方が一般的に高い伸度を有する。したがって、組紐部が寸法変化して多孔構造が伸ばされる場合、ポリマー連結部のミクロな破断等が起こり難い網目構造の方が好ましい。
【0023】
また、多孔質層5の断面構造は、乾湿式法により得られる膜に見られるような、表面から孔が大きくなっていく傾斜構造でも、熱誘起相分離法に見られるような比較的均質な構造でも好適に本発明の効果を発揮できる。また、図3に示す複合多孔性中空糸膜1Aのように、多孔質の一部が支持体4の厚みに対して5%以上支持体4に含浸されることで含浸層6が形成されることが、支持体4と多孔質層5との界面の剥離をより向上させるために好ましい。5%以上であれば、十分なアンカー効果を発揮でき、剥離を大きく抑止できる。上限は特に設けないが、多孔質層が含浸している厚みが多くなることで、膜全体の透水性能は低くなる傾向があるため、用途、多孔質層に応じて、適宜含浸する厚みを設定すれば良い。
【0024】
さらに、MFサイズの多孔質層5の場合は、多孔質層5の厚みが透水性能へ与える影響が小さいため、図4に示す複合多孔性中空糸膜1Bのように、多孔質が支持体に含浸された含浸層6が多孔質層5の中に内包される形も好適に用いることができる。なお、含浸層6のように多孔質が含浸していない構成であってもよい。
【0025】
更に、多孔質層5の厚みは、膜の寸法により適宜設定できるが、例えば、水処理等の比較的高い物理的耐久性が要求される分野では、10μm以上1000μm以下の厚みであることが好ましい。10μm以上であれば、表面の削れ等による阻止性能の低下のリスクが少なく、長期間に渡って安定に阻止性能を発現し易く、1000μm以下であれば十分な透水性能が発揮できる。より好ましくは50μm以上500μm以下、更に好ましくは100μm以上、300μm以下である。
【0026】
<凹凸形状>
次に、上記の複合多孔性中空糸膜1の外周部に形成される凹凸について説明する。図5は、図2の断面図の一部(一点鎖線で囲んだ領域Y)を拡大したものであり、凹凸の高さ及び幅について説明する図である。
【0027】
本発明における凹部及び凸部とは、複合多孔性中空糸膜1の断面において、膜外周部の外側に凸(曲率中心が多孔性中空糸の外周部よりも内側となる領域)である部分を凸部、膜外周部の外側に凹(曲率中心が多孔性中空糸の外周部よりも外側となる領域)である部分を凹部という。また、凹凸の数が少ない膜の場合、通常の円形の膜と同様に内径と同心円状の円周(線)を外周の一部に持つ膜が得られる。この場合は、内径と同心円状の外周部分を円周部とし、上述の突起による凸部と明確に区別することとする。基本的に、凸部は組紐が膨潤する際に寸法変化の吸収シロとなり、凹部は組紐が膨潤および収縮する両方の場合において収縮シロとなる。円周部が無く、外周部が凹部と凸部から成る場合が、多孔質層の耐剥離性が高く(寸法変化を効率良く吸収できるため)、より好ましい。また、表面に凹凸を付与することで、実液性能や耐擦過性も向上する。実液性能は凹凸を付与することでエアースクラビングやクロスフローによる膜表面付近の流れが乱れることにより、洗浄効果が向上すると考えられる。耐擦過性に関しては、凸部に限定して膜同士が接触することにより、凸部の一部以外の大部分が擦過せず、結果、膜表面の開孔部が閉塞しにくい。
【0028】
凹凸の高さ、幅、及び膜外周部における凹凸の数は、中空糸膜の外周長や凹凸の高さと幅により一概に規定できないが、下記の範囲にあることが本発明の効果を十分に発揮する上で好ましい。
【0029】
凹凸の高さHは、1μm以上320μm以下であることが好ましい。ここで言う凹凸の高さとは、図3に示すように、複合多孔性中空糸膜1の膜厚(開孔2の内面から外周部までの距離)が最も薄い箇所(通常は凹部の底)或いは、凹凸がない円周部が形成されている場合には、この円周部の表面から凸部の頂点までの長さを言う。凹凸の高さHが1μm以上であれば、膨潤に対しての変形を好適に吸収することができ、320μm以下であれば、モジュール化する際に実用的な充填率で膜を集積することができる。より好ましくは5μm以上200μm以下、さらに好ましくは10μm以上160μm以下である。
【0030】
凹凸の幅Wは1μm以上500μm以下であることが好ましい。ここで言う凹凸の幅とは、図3に示すように、複合多孔性中空糸膜1の凹凸の高さHを2等分した位置において、凹凸幅を測定した値である。凹凸の幅Wが1μm以上であれば、組紐部の変形を好適に吸収できる。また、500μm以下であれば、外周部に十分な数の凹凸数を付与することができる。
【0031】
凹凸の数である複合多孔性中空糸膜1の外周部における条数は、1条以上300条以下であることが好ましい。1条以上あれば、多孔質層の剥離防止効果を発揮でき、また、300条以下であれば、中空糸多孔膜の外周部に突起を精度良く、形成することが可能となる。より好ましくは8条以上200条以下、さらに好ましくは12条以上150条以下である。
【0032】
凹凸の形状としては、特に限定されず、例えば、凸型、凹型などの種々の形状が挙げられるが、凹部と凸部の両方を有していることが組紐の膨潤、収縮の両方に対して効果的であるため、好ましい。また、凹部の幅が凸部の幅よりも狭いことが好ましい。凹部の幅が凸部より狭いことで、実際の濾過運転時にエアースクラビング等により膜同士が接触した場合でも凹部に接触しない箇所があり、その結果、膜表面の孔が閉塞して透水性能が低下する(擦過)影響を抑えることができる。
【0033】
また、凹部があることは、膜の乾きを防止する観点からも好ましい。通常、特にケースレスタイプの浸漬型モジュールに収納する(特に疎水性の)多孔性中空糸膜は、使用時に低い圧力で簡便に通水できるようにグリセリン等の湿潤化剤を含んだ形で出荷し、現場にてモジュールをラックに取り付け、その後ラックを槽に浸漬して使用する。その際に、湿潤化剤が蒸発して膜が乾いてしまい、通水しない部分ができてしまう。その結果、本来の膜全体を有効利用できなくなってしまう。中空糸膜が凹部を有することで、凹部に湿潤化剤が保持され、膜の乾きを防止することができるため、好ましい。
【0034】
本発明においては、全外周長における凹凸の占める割合が30%以上であることが高い耐剥離性を発揮する観点から好ましい。30%以上あれば、組紐の寸法変化を十分に吸収できる。より好ましい凹凸の占める割合は50%以上、更に好ましくは75%以上、最も好ましくは100%である。
【0035】
また、凹凸は、膜の長手方向に連続的に付与されていることが好ましい。連続的に付与されていることで、複合多孔性中空糸膜のどの断面においても、多孔層の剥離を抑止する効果が得られる。更には、図6に示す複合多孔性中空糸膜1Dのように、凹凸の延在方向が膜長手方向に対して1°以上の角度がついている、すなわち螺旋状に捩れていることも好ましい。ここで、凹凸の延在方向とは、略円筒状の外周部を平面上に広げた場合において、連続する凹凸により形成される直線のことを言う。そして、この直線と長手方向とのなす角度が1°以上であることが好ましい。外周部に捩れた凹凸を付与することで、膜断面方向だけでなく、中空糸膜の長手方向に対する寸法変化に対しても吸収することができるため、更に好適に用いることができる。
【0036】
<表面孔径>
多孔質層5の表面の孔径については、用途に応じて、UFサイズからMFサイズまで適宜選択すれば良い。
【0037】
複合多孔性中空糸膜1の内径(開孔2の径)は0.1mm〜5mmであることが好ましい。内径が0.1mm以上であれば、ろ過水が中空部を流れる時に発生する圧力損失を低く抑えることが可能であり、また、5mm以下であれば、単位体積当たりの膜充填密度を高くすることができ、コンパクト化が可能である。また、多孔質層の剥離の問題も、この寸法サイズで最も起こりやすい。より好ましくは0.3mm〜4mm、さらに好ましくは0.5mm〜3mmである。
【0038】
<複合多孔性中空糸膜の製造方法>
次に、本実施形態に係る複合多孔性中空糸膜を作る好ましい製法の例を組紐の場合を例に記載する。
【0039】
複合多孔性中空糸膜製造装置の模式図を図6に示す。図7は、中空糸膜製造装置の概略構成図である。図7に示す中空糸膜製造装置10は、押出機11、中空糸成形用ノズル12(中空糸成形用の異形ノズル)、吸引機13、冷却槽14及び巻取りローラ15を含んで構成される。この中空糸膜製造装置10では、押出機11から供給された溶融混練物Aが中空糸成形用ノズル12から吐出され、吸引機13による冷却風を受けながら空走された後、冷却槽14での冷却浴を経て溶融混練物が固化し、この固化後の中空糸状物巻取りローラ15によって巻き取られる。
【0040】
複合多孔性中空糸膜に用いられる組紐は、市販されている種々の組紐を好適に用いることができる。二重の吐出口を有する中空糸成形用ノズルの内側の吐出部(中心部)に組紐を通し、外側の吐出口から多孔質層を形成する製膜原液を吐出し、組紐に対して製膜原液を塗布する。外側の吐出口の外周部には凹凸状になっており、これにより多孔質層となる製膜原液を凹凸上に組紐に塗布することができる。その後、空走部を経て、浴槽に浸漬させることで多孔質層を形成、および構造を固定させた後、必要に応じてカセ等に巻き取る。その後、必要に応じて製膜原液に含まれる溶媒や造孔剤等を抽出により除去することで複合多孔質膜を好適に得ることができる。
【0041】
多孔質膜の製膜法としては、非溶剤と接触させることで相分離を起こし多孔質層を形成させる乾湿式法(非溶媒相分離法)、冷却することにより相分離を起こし多孔質層を形成させる熱誘起相分離法の何れも好適に採用することができる。
【0042】
吐出する際の製膜原液の粘度は、0.1Pa・secから500Pa・secの範囲にあることが好ましい。0.1Pa・sec以上であれば、目的とする凹凸形状を得ることができ、500Pa・sec以下であれば、組紐部に十分に含浸させることができる。製膜原液の粘度を向上させる方法の一例として、製膜原液に無機微粉を添加することも好適に用いることができる。通常、粘度を上げるためにはポリマー濃度を上げる、或いは高い分子量のポリマーを使うことが多いが、前者は濾過に寄与する空孔率が低下する、後者は成型不良等の問題が起こり易い。無機微粉を添加することで、ポリマーの分子量や濃度の制約無しに溶融混練物の粘度を向上させ、紡口から吐出してから冷却するまでの空走部において凹凸形状の変形を抑えることができ、その結果、安定に異形多孔性中空糸膜を得ることができる。吐出時の粘度は、キャピログラフを用いて、実際に紡口から吐出する際のシェアレートで測定することにより測定することができる。
【0043】
無機微粉としては、シリカ、アルミナ、酸化チタン、酸化ジルコニア、炭酸カルシウム等が挙げられるが、特に平均一次粒子径が3nm以上500nm以下の微粉シリカが好ましい。より好ましくは5nm以上100nm以下である。凝集しにくく分散性の良い疎水性シリカ微粉がより好ましく、さらに好ましくはMW(メタノールウェッタビリティ)値が30容量%以上である疎水性シリカである。ここでいうMW値とは、粉体が完全に濡れるメタノールの容量%の値である。具体的には、MW値は、純水中にシリカを入れ、攪拌した状態で液面下にメタノールを添加した際に、シリカの50質量%が沈降した時点の水溶液中におけるメタノールの容量%を求めて決定される。
【0044】
無機微粉の添加量は、溶融混練物中に占める無機微粉の質量比率が、5質量%以上40質量%以下が好ましい。無機微粉の割合が5質量%以上であれば、無機微粉混練による効果が十分に発現でき、40質量%以下であれば、安定に紡糸できる。
【0045】
<モジュール、ろ過装置及びろ過方法>
以上のようにして得られた複合多孔性中空糸膜1は、中空糸膜モジュール、この中空糸膜モジュールが取り付けられたろ過装置、及びろ過装置による水処理(水処理方法)等に用いられる。
【0046】
以下、中空糸膜モジュール、この中空糸膜モジュールを用いたろ過方法及びろ過装置について説明する。なお、中空糸膜モジュールとしては、種々の態様が想定されるが、以下の説明においては、ケーシングタイプの加圧ろ過方式の膜モジュールを一例として説明する。
【0047】
図8は、中空糸膜モジュールの構成を示す図である。図8(a)に示すように、中空糸膜モジュール20は、上述の多孔性中空糸膜1の束(以下、中空糸膜束)21を備えている。中空糸膜束21は、その上端部と下端部とが固定部22a,22bにて固定されている。さらに、中空糸膜束21及び固定部22a,22bは、パイプ状のケース23に収納されている。このような構成を有する中空糸膜モジュール20においては、ケース23と中空糸膜束21の間に下部(図示下方向)から被ろ過液Lが供給され、圧力をかけることによって複合多孔性中空糸膜1により被ろ過液Lをろ過し、中空糸膜モジュール20の上方に配置されたヘッダ管などを介してろ過液が輸送される。図8(b)に示すように、ろ過時には、中空糸膜モジュール20内の被ろ過液Lが多孔性中空糸膜1の外表面側から内表面側に向けて複合多孔性中空糸膜1を透過してろ過される。また、固定部22a,22bには、被ろ過液L及び空気をケース23と中空糸膜束21の間に供給する貫通孔24が設けられており、中空糸膜モジュール20では、貫通孔24から空気を供給することで中空糸膜束21のエアースクラビングが行われる。
【0048】
上述の複合多孔性中空糸膜1を集積したモジュールとしては、その他の態様も想定され、例えば、上述のケーシングタイプに限定されず、非ケーシングタイプでもよい。また、モジュールの断面形状も上述の円型(いわゆる円筒型モジュール)だけでなく、角型(いわゆるカセ型モジュール)などでもよい。さらに、被ろ過液である原水を直接的に多孔性中空糸膜1によりろ過してもよいし、あるいは凝集剤やオゾン等の酸化剤の添加を前処理としておこなった後に複合多孔性中空糸膜1によりろ過してもよい。ろ過方式(ろ過方法)としては、全量ろ過方式でもクロスフローろ過方式であってもよいし、加圧ろ過方式あるいは吸引ろ過方式でもよい。さらに、運転方法として、膜表面に堆積した被ろ過物を除去する目的で用いられるエアースクラビングや逆圧洗浄を別々に行ってもよいし、それらを同時に行ってもよい。また、逆圧洗浄に用いられる液体としては、次亜塩素酸ナトリウムや二酸化塩素、オゾン等の酸化剤なども好適に用いることができる。
【0049】
続いて、加圧ろ過方式のろ過装置について説明する。図9は、加圧ろ過方式のろ過装置の一例を示す構成図である。同図に示すように、ろ過装置30としては、中空糸膜モジュール20に圧力を供給するポンプ31、被ろ過液を貯めるタンク32、ろ過液とを貯めるタンク33、また必要に応じて逆圧洗浄に用いる薬液タンク34及び送液ポンプ35、エアースクラビングに必要なエアーを送るポンプ36、エアースクラビングや逆洗時の排液をドレインする配管37等を具備した装置を好適に用いることができる。
【0050】
本実施形態に係るろ過方法(水処理方法)では、上述の多数の複合多孔性中空糸膜1を備えた中空糸膜モジュール20、ろ過装置30、ろ過方法を利用することにより、低コストを実現でき、さらに長期的な安定運転が可能となる。
【実施例1】
【0051】
以下、本実施の形態を実施例及び比較例によってさらに具体的に説明するが、本実施の形態は、これらの実施例のみに限定されるものではない。なお、本実施の形態に用いられる測定方法は以下のとおりである。以下の測定は特に記載がない限り全て25℃で行った。以下では、評価方法について説明した後、実施例及び比較例の製造方法及び評価結果について説明する。
【0052】
<評価方法>
(1)複合多孔性中空糸膜の内径(mm)、凹部外径(mm)、凸部外径(mm)の測定
組紐が緩まないように接着剤を含浸させて固めたのち、複合多孔性中空糸膜を膜長手方向に垂直な向きにカミソリ等で薄く切り、顕微鏡を用いて断面の内径、凸部外径、凹部外径を測定し、算術平均により下記式(1)〜(3)からそれぞれ算出した。ここでいう、凸部外径とは、凸部の頂点を通る内径と同心円の直径である。凹部外径とは、凹部の頂点(膜厚が最も薄くなる部分)を通る同心円の直径である。
【数1】


【数2】


【数3】

【0053】
(2)複合多孔性中空糸膜の凹凸の高さH(μm)、幅W(μm)および凹凸の数の測定
走査型電子顕微鏡により、複合多孔性中空糸膜断面の外周部の凹凸の形状を明確に確認できる任意の倍率で撮影した写真を用いた。その写真上で、膜厚が最も薄い部分(通常、凹部の頂点)を通る内径と同心円状の円の直径と凸部の頂点(最も膜厚が厚い箇所)を通る内径と同心円状の円の直径の差を測定し、下記式(4)により凹凸の高さHとした。また凹凸幅は、膜厚が最も薄い箇所から凹凸の高さHの半分となる位置における凸部の幅を凹凸の幅とした。凹凸の数は、膜断面全体の画像を撮影し、目視で凹凸の数を数えた。
【数4】

【0054】
(3)外周部の周長に占める凹凸の割合(%)
走査型電子顕微鏡により、多孔性中空糸膜断面の外周部の凹凸の形状を明確に確認できる任意の倍率で撮影した写真を用いた。写真上で円周部と凹部、凸部を区別し、下記式(5)にて外周部の周長に占める凹凸の割合を算出した。
【数5】

【0055】
(4)中空糸長手方向に対する凹凸の角度
マイクロスコープにて中空糸の長手方向が明確に確認できる倍率の写真を用いた。写真上で、凸部(或いは凹部)の線と中空糸長手方向の線との角度を幾何学的に求め、凹凸の角度を算出した。
【0056】
(5)組紐に含浸している多孔質層の割合(%)
(2)と同様にして、走査型顕微鏡により複合多孔質中空糸膜の多孔質層における多孔質構造を明確に確認できる倍率で撮影した写真を用いた。写真上で、多孔質層が組紐部に含浸している厚みを測定し、下記式にて組紐に含浸している多孔質層の割合を算出した。
【数6】

【0057】
(6)複合多孔性中空糸膜の純水透水率(L/m/hr)の測定
約10cm長の湿潤中空糸膜の一端を封止し、他端の中空部内へ注射針を入れ、注射針から0.1MPaの圧力にて純水を中空部内へ注入し、外表面へと透過してくる純水の透過水量を測定し、以下の式により純水透水率を決定した。なお、膜有効長とは、注射針が挿入されている部分を除いた、多孔性中空糸膜の正味の膜長を指し、πは、円周率を指す。
【数7】

【0058】
(7)多孔質層の耐剥離性(%)
約15cm長の湿潤中空糸膜を4%水酸化ナトリウム水溶液に45℃で10日間浸漬し、浸漬後の膜を(1)と同様にして薄く切ったサンプルを20個、顕微鏡で観察して多孔質層の剥離の有無を観察した。20個中、多孔質層が剥離していないサンプルの個数から、下記式にて耐剥離性を算出した。
【数8】

【0059】
(8)加圧型中空糸膜モジュールの作製
以下のようにして、膜面積50mの加圧型中空糸膜モジュールを作製した。複数の多孔性中空糸膜を束ねた後、中空糸束の片側端部面中空部を目止め処理し、内径150mm、長さ2000mmの、ポリスルフォン製円筒状モジュールケースに収納し、目止め処理を行った端部には、接着治具のみを、他方端部には、多孔性中空糸膜と平行に、外径11mmのポリプロピレン製棒状物を合計24本配置した後に液密的に接着治具を取り付けた。
【0060】
上記接着治具が両側に取り付けられたモジュールケースを2液性エポキシ樹脂により、遠心注型した。
【0061】
遠心注型後、接着治具、ポリプロピレン製棒状物を取り除き、エポキシ接着部が充分に硬化した後、封止処理をおこなった側の接着端部を切断し、中空糸中空部を開口させた。以上のようにして、中空糸膜束から成る加圧型の中空糸膜モジュールを得た。
【0062】
(9)陰圧型中空糸膜モジュールの作製
国際公開第2004/112944号に記載の方法と同様にして、膜面積25mの陰圧型中空糸膜モジュールを作製した。
【0063】
すなわち、複数の多孔性中空糸膜の両端をウレタン樹脂で接着固定し、一方の端部の外周に液密に接着固定されたカートリッジヘッドと他方端部外周に液密に接着固定された下部リングとを有し、円筒型の中空糸膜モジュールを作成した。カートリッジヘッド側、及び下部リング側接着固定層のろ過部界面間の有効長が2000mmであった。中空糸両端の接着固定層の直径は約150mmであった。以上のようにして、陰圧型の中空糸膜モジュールを作成した。
【0064】
(10)中空糸膜モジュールの透水量測定実験1(加圧)
(8)で得られた中空糸膜モジュールを使用し、原水として濁度が5〜10度、水温が18〜25℃の河川表流水を用いた。透水量は、ポンプによる加圧により、外圧の全量ろ過方式で段階的に透水量を上げていき、膜間差圧が急激に上昇しない(25℃換算で10kPa/週を越えない)限界の透水量を測定した。
【0065】
上記のろ過運転は、ろ過/(逆洗とエアバブリング)のサイクル運転とした。それぞれのサイクルは、ろ過/(逆洗とエアバブリング)タイムサイクル:29分/1分であり、逆洗時の逆洗流量は、2.3L/分/モジュール、エアバブリング時のエアー流量は、4.6NL/分/モジュールとした。
【0066】
(11)中空糸膜モジュールの透水量測定実験2(陰圧)
(9)で得られた中空糸膜モジュールを使用し、8mの容積の活性汚泥槽に浸漬した。また、原水としてBODが750mg/Lである工場排水を用いた。活性汚泥中のMLSS濃度は約10g/Lで一定とした。透水量は、吸引ポンプにより膜の中空部を陰圧にして、全量ろ過方式で段階的に透水量を上げていき、膜間差圧が急激に上昇しない(25℃換算で10kPa/週を越えない)限界の透水量を測定した。
【0067】
上記のろ過運転は、膜曝気量6Nm/時間の空気を常に曝気しつつ、ろ過/逆洗のサイクル運転とした。ろ過/逆洗のタイムサイクルはろ過/逆洗:9分/1分、逆洗時の逆洗流量はろ過時の流量と同流量とした。
【0068】
[実施例1]
非溶剤誘起型相分離法用の製膜原液として、重量平均分子量30万のポリフッ化ビニリデンポリマー(商品名:Solef6010)、溶媒としてN,N−ジメチルアセトアミド(和光純薬製)、重量平均分子量35,000のポリエチレングリコール(メルク社製)を27.0:57.5:15.5(質量%)の組成にて70℃で均一に混合したものを用いた。また、組紐としては、外径1.3mm、内径1.1mmのポリエステル製の組紐(組打数24打、繊維直径22μm、330デシックス/72フィラメント)を用いた。
紡口ノズルとして、製膜原液吐出口の外周部に高さ200μm、幅400μmの凸部を20個有する紡口ノズルを用いた。まず、紡口中心部から組紐を導出し、上記で作製した製膜原液を吐出して組紐に塗布した。その後、約3mmのチムニー内を空走させた後、80℃の水浴に浸漬して固化させ、15m/分の速度で巻き取った。更に80℃の熱水中で6時間水洗することで、溶媒とポリエチレングリコールを除去し、複合多孔性中空糸膜を得た。
【0069】
得られた複合多孔性中空糸膜は、外周部が凹部と凸部のみから成り、多孔質層は外表面にUFサイズの孔径を持つ緻密なスキン層、断面にボイドを有する非対称構造であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においても、組紐と多孔質層の剥離がおこらず、極めて優れた耐剥離性を示した。
【0070】
[実施例2]
熱誘起相分離法用の溶融混練物として、熱可塑性樹脂としてフッ化ビニリデンホモポリマー(呉羽化学製、商品名:KF#1000)、有機液体としてフタル酸ビス(2−エチルヘキシル)とフタル酸ジブチルとの混合物、無機微粉として微粉シリカ(日本アエロジル社製、商品名:AEROSIL−R972)を用い、溶融押出しを行った。吐出する溶融混練物として組成がフッ化ビニリデンホモポリマー:フタル酸ビス(2−エチルヘキシル):フタル酸ジブチル:微粉シリカ=34.0:33.8:6.8:25.4(質量比)の溶融混練物を、樹脂温190℃で吐出した以外は実施例1と同様にして組紐の上に溶融混練物を塗布した。その後、300mmの空走距離を経て、30℃の水浴中に導き入れることで冷却固化させ、30m/分の速度でかせに巻き取った。得られた中空糸状押出し物をイソプロピルアルコール中に浸漬させてフタル酸ビス(2−エチルヘキシル)およびフタル酸ジブチルを抽出除去した後、乾燥させた。次いで、40質量%のエタノール水溶液中に30分間浸漬させた後、水中に30分間浸漬し、中空糸膜を湿潤化した。次いで、20質量%NaOH水溶液中に70℃にて1時間浸漬し、さらに水洗を繰り返して微粉シリカを抽出除去することで、複合多孔性中空糸膜を得た。
【0071】
得られた複合膜は、外周部が凹部と凸部のみから成り、多孔質層は断面方向の孔径変化が少ない均質な網目構造であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においても、組紐と多孔質層の剥離は発生せず、極めて優れた耐剥離性を示した。
【0072】
[実施例3]
紡口ノズルとして、製膜原液吐出口の外周部に高さ200μm、幅400μmの凸部を4個有する紡口ノズルを用いた以外は実施例1と同様にして複合多孔性中空糸膜を得た。得られた膜は、外周部が凸部と円周部から成る多孔性中空糸膜であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においても、組紐と多孔質層の剥離がほとんどおこらない良好な耐剥離性を示した。
【0073】
[実施例4]
紡口ノズルとして、製膜原液吐出口の外周部に高さ200μm、幅400μmの凸部を4個有する紡口ノズルを用いた以外は実施例2と同様にして複合多孔性中空糸膜を得た。得られた膜は、外周部が凸部と円周部から成る多孔性中空糸膜であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においても、組紐と多孔質層の剥離がほとんどおこらない良好な耐剥離性を示した。
【0074】
[実施例5]
支持体として、不織布(セルロース長繊維不織布、製品名:ベンリーゼ)を用いた以外は、実施例2と同様にして複合多孔性中空糸膜を得た。
【0075】
得られた複合膜は、外周部が凹部と凸部のみから成り、多孔質層は断面方向の孔径変化が少ない均質な網目構造であった。また、不織布は多孔質層の厚みの中央部に完全に内包されていた。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においても、不織布と多孔質層の界面における剥離は発生せず、極めて優れた耐剥離性を示した。
【0076】
[比較例1]
紡口ノズルとして、製膜原液吐出口の外周部に凸部の無い円環状の吐出口を有する紡口ノズルを用いた以外は実施例1と同様にして複合多孔性中空糸膜を得た。得られた膜は、外周部が円周状の多孔性中空糸膜であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においては、組紐と多孔質層の剥離が起こり、低い耐剥離性を示した。
【0077】
[比較例2]
紡口ノズルとして、製膜原液吐出口の外周部に凸部の無い円環状の吐出口を有する紡口ノズルを用いた以外は実施例2と同様にして複合多孔性中空糸膜を得た。得られた膜は、外周部が円周状の多孔性中空糸膜であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においては、組紐と多孔質層の剥離が起こり、低い耐剥離性を示した。
【0078】
[比較例3]
紡口ノズルとして、製膜原液吐出口の外周部に凸部の無い円環状の吐出口を有する紡口ノズルを用いた以外は実施例5と同様にして複合多孔性中空糸膜を得た。得られた膜は、外周部が円周状の多孔性中空糸膜であった。得られた多孔性中空糸膜の諸物性及び耐剥離性、実液性能の評価結果を表1に示す。(6)記載の耐剥離性試験においては、不織布と多孔質層の剥離が起こり、低い耐剥離性を示した。
【0079】
以上の実施例1〜5及び比較例1〜3を用いて(1)〜(11)の評価を行った結果を表1に示す。
【0080】
【表1】

【産業上の利用可能性】
【0081】
本発明によれば、無機物および/または有機物を含有する液体の処理に好適な、多孔質層の剥離耐性が高い複合膜、その製造方法、この複合膜を用いたモジュール、ろ過装置、及び水処理方法を低コストで得ることができる。本発明は、水処理の分野において産業上の利用可能性を有する。
【符号の説明】
【0082】
1…複合多孔性中空糸膜、2…開孔部、3…凹凸、3A…凸部、3B…凹部、10…中空糸膜製造装置、20…中空糸膜モジュール、30…ろ過装置。



【特許請求の範囲】
【請求項1】
多孔質層と当該多孔質層を支持する支持体とを備えた複合多孔性中空糸膜であって、
前記多孔質層は、その少なくとも一部が外周部を形成し、
前記外周部の前記多孔質層には凹凸が付与されていることを特徴とする複合多孔性中空糸膜。
【請求項2】
前記複合多孔性中空糸膜の膜断面において、外周長に占める前記凹凸の割合が30%以上であることを特徴とする請求項1記載の複合多孔性中空糸膜。
【請求項3】
前記多孔質層が、熱可塑性樹脂からなる請求項1又は2に記載の複合多孔性中空糸膜。
【請求項4】
前記熱可塑性樹脂がポリフッ化ビニリデン、ポリオレフィン又はポリサルホンであることを特徴とする請求項3記載の複合多孔性中空糸膜。
【請求項5】
前記凹凸が膜長手方向に連続していることを特徴とする請求項1〜4の何れか一項記載の複合多孔性中空糸膜。
【請求項6】
前記凹凸の延在方向が、膜長手方向に対して、1°以上の角度を持って螺旋状となっていることを特徴とする請求項1〜5の何れか一項記載の複合多孔性中空糸膜。
【請求項7】
請求項1〜6の何れか一項記載の複合多孔性中空糸を有する膜モジュール。
【請求項8】
請求項7に記載の前記膜モジュールを具備する膜ろ過装置。
【請求項9】
請求項8に記載の膜ろ過装置を用いて、無機物および有機物の少なくとも一方を含有する被処理液をろ過する水処理方法。



【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2012−40464(P2012−40464A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2010−181393(P2010−181393)
【出願日】平成22年8月13日(2010.8.13)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】