説明

超純水製造装置

【課題】高い水回収率を保ちつつ金属濃度の極めて低い超純水を製造するための超純水製造装置を提供する。
【解決手段】前処理システム1、一次純水製造装置10、二次純水製造装置20を有する超純水製造装置において、二次純水製造装置20のポンプ22のシール排水を一次純水製造装置のタンク11に返送する。タンク11は一次純水装置の最前段に設けられてもよく、イオン交換装置13を最前段とし、その次段にタンク11を設置してもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は超純水製造装置に係り、特に、金属濃度がきわめて低い超純水を製造することができる超純水製造装置に関する。
【背景技術】
【0002】
半導体洗浄用水として用いられている超純水は、図2に示すように前処理システム1、一次純水製造装置10、二次純水製造装置20から構成される超純水製造装置で原水(工業用水、市水、井水等)を処理することにより製造される。図2において各システムの役割は次の通りである。
【0003】
凝集、加圧浮上(沈殿)、濾過(膜濾過)装置など(この従来例では凝集濾過装置)よりなる前処理システム1では、原水中の懸濁物質やコロイド物質の除去を行う。また、この過程では高分子系有機物、疎水性有機物などの除去も可能である。
【0004】
前処理された水のタンク11、熱交換器15、逆浸透膜処理装置(RO装置)12、イオン交換装置(混床式又は4床5塔式など)13及び脱気装置14を備える一次純水製造装置10では、原水中のイオンや有機成分の除去を行う。なお、逆浸透膜処理装置12では、塩類を除去すると共に、イオン性、コロイド性のTOCを除去する。イオン交換装置13では、塩類を除去すると共にイオン交換樹脂によって吸着又はイオン交換されるTOC成分の除去を行う。脱気装置14では無機系炭素(IC)、溶存酸素の除去を行う。
【0005】
一次純水製造装置で製造された一次純水は、配管16を介して二次純水製造装置20へ送水される。この二次純水製造装置20は、純水タンク21、ポンプ22、熱交換器23、低圧紫外線酸化装置(UV装置)24、イオン交換装置25及び限外濾過膜(UF膜)分離装置26を備えている。低圧紫外線酸化装置24では、低圧紫外線ランプより出される185nmの紫外線によりTOCを有機酸、さらにはCOまで分解する。分解により生成した有機物及びCOは後段のイオン交換装置25で除去される。限外濾過膜分離装置26では、微粒子が除去され、イオン交換樹脂からの流出粒子も除去される。
【0006】
この二次純水製造装置20で製造された超純水は、配管30を介してユースポイント40に送られ、未使用の超純水は配管50を介してタンク21へ戻される。なお、ポンプ22の圧力が不足する場合は、イオン交換装置25の上流側(例えばUV酸化装置24とイオン交換装置25の間)に昇圧ポンプが設置されることもある。
【0007】
熱交換器23は、二次純水製造装置20からユースポイント40に送水される超純水の水温を所定温度(例えば約25℃程度)に保つためのものである。
【0008】
一般に、二次純水製造装置20で製造された超純水はユースポイントへ供給され、余剰の超純水(未使用)はユースポイント40から二次純水製造装置20へ返送され、再度該二次純水製造装置20で処理されて一定の超純水水質を維持されながら循環する。そして、常時循環することで水が滞留せず、微生物の繁殖が抑制されている。この循環途中において、ポンプ22や低圧紫外線酸化装置24の紫外線照射のランプの熱などにより循環超純水の水温が上昇するのを熱交換器23によって奪熱し、循環する超純水の水温を所定温度に維持する。
【0009】
なお、この二次純水製造装置からの超純水をさらに三次純水製造装置で処理して不純物濃度をさらに低下させることもある。三次純水製造装置としては、二次純水製造装置と同様の構成のものが用いられる。
【0010】
ところで、LSIの超微細化、高集積化に伴い、超LSIチップ製造における洗浄水としての超純水中の不純物の影響はより大きくなってきている。
【0011】
集積度1メガビット以下のLSIにおいては従来の超純水水質で半導体製品(LSI等)の製品に関する不良トラブルは発生しなかったが、LSIの集積度が向上した現在、超純水中の極微量金属に起因する製品不良(主にライフタイム不良)が発生している。
【0012】
調査分析の結果、原水中の金属は超純水製造装置にて除去されているが、二次純水製造システム内で発生(溶出)する金属が超純水に混入することが認められた。極微量分析の結果、超純水水質の金属濃度は約0.1〜5ng/L程度である。
【0013】
超純水中に溶出した金属は、微量の酸素などと結合してコロイド粒子化しており、二次純水製造システムのイオン交換装置では除去できず、後段の限外濾過膜にて捕捉され、膜表面を汚染する。この限外濾過膜面に濃縮した金属は、超純水にて再溶解して超純水中の金属濃度を高くすることが認められ、特に通水初期には超純水中の金属濃度が高くなることが認められた。
【0014】
二次純水製造装置内の機器からの金属の溶出を調査した結果、超純水中の金属濃度を上昇させる主原因は供給ポンプ、昇圧ポンプからの金属溶出であることが認められた。
【0015】
以上のような問題点を解決するために、特許第3778158号には、金属イオン濃度が著しく低い超純水を製造することができる超純水製造装置として、一次純水製造装置に通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造装置において、送水用のポンプにおけるポンプ軸受け部の通過水(シール水)をポンプ吐出水に混合させることなく排出する排水機構を有するポンプを用いることが記載されている。かかるポンプを用いることにより、シール水にポンプから金属が溶出することを防止することができ、超純水を低金属イオン濃度に維持しつつ送水することが可能となる。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特許第3778158号
【発明の概要】
【発明が解決しようとする課題】
【0017】
近年では超純水製造装置に対するクローズドシステム化への要求が一段と高まってきており、水回収率のさらなる向上が求められてきている。上記特許文献2において、ポンプのシール水を系外に排出するようにした場合には、その分だけ水回収率が低くなってしまう。
【0018】
本発明は、金属イオン濃度が著しく低い超純水を製造することができ、かつ高い水回収率を維持できる超純水製造装置を提供することを目的とする。
【課題を解決するための手段】
【0019】
本発明(請求項1)の超純水製造装置は、逆浸透膜分離手段を備える一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造装置において、二次純水製造装置内の送水用のポンプは、二次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とするものである。
【0020】
本発明(請求項2)の超純水製造装置は、逆浸透膜分離手段を備える一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して二次純水を製造し、この二次純水を三次純水製造装置に通水して超純水を製造する超純水製造装置において、三次純水製造装置内の送水用のポンプは、三次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とするものである。
【0021】
請求項3の超純水製造装置は、請求項2において、二次純水製造装置内の送水用のポンプは、二次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とするものである。
【発明の効果】
【0022】
本発明の超純水製造装置を用いると、溶存金属濃度が著しく低い超純水を製造することができ、かつ高い水回収率を維持することができる。
【0023】
即ち、本発明では、二次純水製造装置又は三次純水製造装置の送水用のポンプのシール排水を一次純水製造装置に返送して再利用するので水回収率が向上する。
【0024】
なお、ポンプのシール水はポンプなど系内で発生する金属イオンをわずかに含むものの、元々は二次純水製造装置又は三次純水製造装置から供給される純水であるため、水質は高い。シール排水を一次純水製造装置の逆浸透膜処理装置よりも上流側に返送することにより、該逆浸透膜処理装置でシール排水中の金属イオンが除去される。
【図面の簡単な説明】
【0025】
【図1】実施の形態に係る超純水製造装置の系統図である。
【図2】従来例に係る超純水製造装置の系統図である。
【図3】実施の形態に用いられるポンプの断面図である。
【図4】実施例の測定結果を示すグラフである。
【図5】別の実施の形態に係る超純水製造装置の系統図である。
【発明を実施するための形態】
【0026】
本発明の超純水製造装置は、一次純水製造装置及び二次純水製造装置あるいはさらに三次純水製造装置を備えたものにおいて、二次純水製造装置や三次純水製造装置のポンプとして、当該二次又は三次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構を設けたものである。
【0027】
この一次純水製造装置の前段には、通常の場合、前処理装置が設けられる。
【0028】
前処理装置では、原水の濾過、凝集沈殿、精密濾過膜などによる前処理が施され、主に懸濁物質が除去される。この前処理によって通常、水中の微粒子数は10個/mL以下となる。
【0029】
一次純水製造装置は、逆浸透(RO)膜分離装置、脱気装置、再生型イオン交換装置(混床式又は4床5塔式など)、電気脱イオン装置、紫外線(UV)照射酸化装置等の酸化装置などを備え、前処理水中の大半の電解質、微粒子、生菌等の除去を行うものである。一次純水製造装置は、例えば、熱交換器、2基以上のRO膜分離装置、混床式イオン交換装置、及び脱気装置で構成される。
【0030】
二次純水製造装置は、給水ポンプ、熱交換器、低圧紫外線酸化装置又は殺菌装置といった紫外線照射装置、非再生型混床式イオン交換装置あるいは電気脱イオン装置、限外濾過(UF)膜分離装置又は精密濾過(MF)膜分離装置等の膜濾過装置で構成されるが、更に膜脱気装置、RO膜分離装置、電気脱イオン装置等の脱塩装置が設けられている場合もある。二次純水製造装置では、低圧紫外線酸化装置を適用し、その後段に混床式イオン交換装置を設け、これによって水中のTOCを紫外線により酸化分解し、酸化分解生成物をイオン交換によって除去する。
【0031】
三次純水製造装置は、装置構成としては二次純水製造装置と同様の構成を備えるものであり、これにより二次純水を更に精製して高純度の超純水を製造するものである。
【0032】
二次純水製造装置や三次純水製造装置を構成する各機器の構成、作用等は周知であるが、念のため一例を説明すると下記の通りである。
【0033】
(a)低圧紫外線酸化装置;前段から流入してくる残留TOCを主波長185nmの紫外線によって二酸化炭素やカルボン酸などの有機酸類に酸化分解する。
(b)混床式イオン交換装置;紫外線酸化によって分解され、残留した炭酸イオン、有機酸類、アニオン性物質や前段より流入してくる金属イオンやカチオン性物質をイオン交換によって除去する。
(c)脱気装置;混入しているDO(溶存酸素)などの溶存ガスを除去する。
(d)UF膜分離装置;微粒子を除去する。
【0034】
なお、ここで「純水」とは一般に用途ごとに規定された純度の高い水のことを指すが、半導体製造工程で用いられる一次、二次、三次純水の純度は例えば次の通りである。ただし原水水質やシステム構成によっては下記の範囲を外れる場合もある。
(A)一次純水
電気比抵抗;10MΩ・cm以上
TOC;5〜50μg/L
(B)二次純水
電気比抵抗;18MΩ・cm以上
(金属イオン濃度:5ng/L以下、残留イオン濃度:10ng/L以下)
微粒子数;1mL中に0.1μm以上の微粒子5個以下
TOC;1〜10μg/L
(C)三次純水
TOC;0.1〜5μg/L
微粒子数;1mL中に0.1μm以上の微粒子5個以下
【0035】
なお、紫外線照射量が多い紫外線酸化装置では、被処理水中のTOC濃度が低い場合には、水の分解で生成したOHラジカルが過剰となるため、余剰のOHラジカルが会合することで過酸化水素となる。発生した過酸化水素は後段の混床式イオン交換装置のイオン交換樹脂と接触すると分解されるが、その際、イオン交換樹脂を劣化させ、イオン交換樹脂の分解で新たにイオン交換樹脂由来のTOCが生成し、得られる超純水の水質低下の原因となる。また、混床式イオン交換装置に通水後もなお残留する過酸化水素は、混床式イオン交換装置の後段の脱気装置やUF膜を劣化させる。
【0036】
しかも、過酸化水素がイオン交換装置や更に後段の脱気装置、UF膜分離装置内で分解すると、以下の反応が生じ、酸素を生成することで水中のDOが増加することになる。
【0037】
2H→2HO+O
【0038】
そこで、このような過酸化水素に起因する問題を解決するために、紫外線酸化装置と混床式イオン交換装置との間にアニオン交換樹脂を充填したアニオン交換塔や、炭素系吸着剤を充填した吸着塔を設け、紫外線酸化装置で生成した過酸化水素を混床式イオン交換装置の前段で除去した後、混床式イオン交換装置に通水することもある。なお、紫外線酸化装置の後段で白金系金属による過酸化水素分解触媒に接触させて過酸化水素を分解し、次いで発生したDOを脱気装置で除去した後に混床式イオン交換装置に通水することもできる。
【0039】
以下、図面を参照して本発明についてさらに詳細に説明する。図1は実施の形態に係る超純水製造装置の系統図である。
【0040】
この実施の形態では、図2の従来の超純水製造装置において、ポンプ22として、二次純水製造装置20内の純水をシール部に導入する構造のものが用いられており、このシール排水は、二次純水に混入することなく、配管22aを介して一次純水製造装置10のタンク22へ返送される。
【0041】
ユースポイント40からの未使用超純水は、返送用配管50を介して二次純水製造装置の純水タンク21へ返送される。
【0042】
また、二次純水製造装置20を構成する各機器としてのタンク21、ポンプ22、熱交換器23、低圧紫外線酸化装置24、イオン交換装置25、限外濾過膜分離装置26と、各機器間の通水接続部材と、各配管22a,30,50の接水面はいずれもSUS製の部材にて構成されている。
【0043】
なお、ガラス繊維、炭素繊維等で補強された繊維強化合成樹脂(FRP)は、タンクの構成材として好適である。
【0044】
純水タンク21は、フッ素樹脂製、ポリエチレン製、ステンレス製のもの等であってもよい。
【0045】
配管としては、フッ素樹脂製、ポリエーテルエーテルケトン製、ポリ塩化ビニル製のものが例示される。
【0046】
低圧紫外線酸化装置24の容器としてはステンレス製が好適である。ランプ保護面は石英製が好ましい。
【0047】
イオン交換装置25の容器はFRP、ステンレス等で構成されることが好ましい。このイオン交換装置25は、カチオン交換樹脂とアニオン交換樹脂とを充填した混床式イオン交換装置が好適であり、再生型、非再生型のいずれでもよい。電気脱イオン装置であってもよい。
【0048】
限外濾過膜分離装置26の容器は、ポリサルホン製、FRP製、ステンレス製が好適である。
【0049】
ポンプ22としては、SUS製のものが用いられる。また、このポンプ22は、軸受部を通過した水が超純水と混ざらないようにポンプ外に排出されるよう構成したものが用いられる。
【0050】
次に図3を参照して二次純水製造装置20に設置するポンプ22の好適例について説明する。
【0051】
インペラ用ハウジング60内にインペラ62が配置されている。このインペラ62はシャフト64によって回転される。ハウジング60の中央部には水の流入口66が設けられ、外周部に流出口68が設けられている。インペラ62が回転することにより、水が流入口66から吸い込まれ、流出口68から送水される。
【0052】
このインペラ用ハウジング60に隣接して設けられた封水用ハウジング70を該シャフト64が貫通している。シャフト64とハウジング70との間はシールリング72を有したメカニカルシール機構によってシールされている。このシールリング72の外周とハウジング70との間にはリテーナリング74が設置されている。シールリング72はスプリング76によって図の左方に付勢されている。
【0053】
シールリング72とシャフト64との間には若干の隙間があいており、インペラ用ハウジング60内の水の一部がシール水としてスロート部80及びこの隙間を通って封水用ハウジング70内に流入し、該ハウジング70のドレンポート82からポンプ外へ排出される。このシール排水は、前述の通り、配管22a,27aを介して一次純水製造装置のタンク11へ返送させる。
【0054】
なお、本発明に用いるポンプは、シール水が系内の超純水に混合しないような構造であればよく、図3の構造のポンプに限定されず用いることができる。
【0055】
図1のその他の構成は図2と同一であり、同一符号は同一部分を示している。
【0056】
このように構成された超純水製造装置において、原水は前処理システム1で凝集濾過等の処理がなされた後、タンク11に貯留される。次いで、被処理水は熱交換器15で降温された後、逆浸透膜分離装置12、イオン交換装置13、脱気装置14の順に流れる。その後、配管16を経て二次純水製造装置20の純水タンク21に送水され、ここで配管50からの返送未使用超純水が混合される。このタンク21内の水は、ポンプ22、熱交換器23、低圧紫外線酸化装置24、イオン交換装置25及び限外濾過膜分離装置26にて処理されて超純水となり、配管30を介してユースポイント40へ送水される。
【0057】
この実施の形態では、二次純水製造装置の純水をポンプ22のシール水として用い、シール排水を一次純水製造装置のタンク11に返送するようにしているので、シール排水を廃棄する場合に比べて水回収率が高いものとなる。また、この返送シール排水に微量の金属イオンが含まれていても、逆浸透膜分離装置12で分離されるので、シール排水をそのまま系内に戻す場合に比べて超純水の水質に影響はない。
【0058】
ポンプ22の圧力が不足する場合はイオン交換装置25の上流側にさらにポンプを設置することができるが、このポンプのシール排水も一次純水製造装置のRO膜装置の分離膜よりも上流側に返送するようにしてもよい。
【0059】
上記図1の実施の形態では、ポンプ22のシール排水をタンク11に返送しているが、逆浸透膜処理装置12の逆浸透膜よりも上流側であればよく、これに限定されない。
【0060】
図5を参照して別の実施の形態について説明する。
【0061】
図5の超純水製造装置において、原水は前処理システム1で凝集濾過等の処理がなされ、イオン交換装置13でイオン交換処理された後、タンク11に貯留される。次いで、被処理水は熱交換器15で降温された後、逆浸透膜分離装置12、脱気装置14の順に流れる。その後、配管16を経て二次純水製造装置20の純水タンク21に送水され、ここで配管50からの返送未使用超純水が混合される。このタンク21内の水は、ポンプ22、熱交換器23、低圧紫外線酸化装置24、イオン交換装置25及び限外濾過膜分離装置26にて処理されて超純水となり、配管30を介してユースポイント40へ送水される。ポンプ22のシール排水はタンク11へ返送される。
【0062】
本発明では、三次純水製造装置を設置してもよく、この三次純水製造装置のポンプのシール排水を一次純水製造装置のRO装置の分離膜よりも上流側に返送するようにしてもよい。この場合、三次純水製造装置のポンプのシール排水を一次純水製造装置のRO装置の分離膜よりも上流側に返送するだけでなく、二次純水製造装置及び三次純水製造装置のポンプのシール排水を一次純水製造装置のRO装置の分離膜よりも上流側に返送するようにするのが好ましい。
【0063】
三次純水製造装置の装置構成は、二次純水製造装置として用いられるものと同様のものとすればよい。なお、三次純水製造装置の装置構成は、その前段に設置されている二次純水製造装置と同一であってもよく、異なっていてもよい。例えば、二次純水製造装置20と同一構成の三次純水製造装置を設置してもよく、それとは異なる構成の三次純水製造装置を設置してもよい。二次純水製造装置20とは異なる構成の三次純水製造装置としては、タンク、紫外線酸化装置、混床式イオン交換装置、脱気装置及び限外濾過膜分離装置を備えたものや、タンク、紫外線酸化装置、過酸化水素分解触媒塔、脱気装置、混床式イオン交換装置、限外濾過膜分離装置を備えたものなどが例示される。
【実施例】
【0064】
以下、実施例及び比較例について説明する。
【0065】
ポンプ22として図3に示すものを採用した図1と図2の超純水製造装置についてそれぞれ同一の原水を通水して超純水を製造し、二次純水製造装置20からの超純水中のFe濃度を測定し、結果を図4に示した。なおここでいうFe濃度は通常はFe2+やFe3+といった鉄イオンを指すが、もし水中に鉄イオン以外の溶解性鉄が含まれる場合はそれも含んだ溶解性鉄の濃度を指す。
【0066】
なお、図1と図2の熱交換器15,23は同一のものである。
【0067】
実施例1に係る図1では、ポンプ22のシール排水を一次純水製造装置10のタンク11に返送しているが、比較例1では図2においてポンプ22のシール排水をそのまま二次純水系内に戻している。
【0068】
図4の通り、実施例1によると、比較例1に比べFe濃度が低いことが認められ、特に実施例1では起動直後のFe濃度が比較例1に比べ著しく低いことが認められる。
【0069】
即ち、比較例1の超純水製造装置では、起動初期の超純水中のFe濃度は5ng/L以上であり、時間経過とともにFe濃度は減少して行くが、定常のFe濃度(0.1ng/L以下)となるまでには約1ヶ月を要する。それに対し、実施例1では、起動時初期から0.1ng/L以下の測定値である。
【0070】
また、起動初期(3〜5分)のポンプ22出口のFe濃度を測定したところ、比較例1では21ng/Lであるのに対し、実施例1では0.1ng/L以下であった。
【0071】
さらに、ポンプのシール水の水量をポンプメーカーのmin(最小)推奨水量に従って二次純水製造装置内の約2%の純水をポンプのシール水として用いた。比較例2では図2において、このシール排水を系外に排出したが、実施例1では図1においてシール排水を一次純水製造装置のタンク11に返送した。これにより実施例1の装置は、比較例2の従来の装置と比較して水回収率は2%高かった。よって本発明の超純水製造装置を用いることにより水回収率を向上することができた。
【0072】
なお、例えば濃厚廃液を蒸発濃縮で濃縮し、廃棄物を削減すると共に凝縮水を回収することがあるが、これが2%程度である。従って水回収率2%の差とは高回収率をねらう現場においては大きな意味を持つものである。
【符号の説明】
【0073】
10 一次純水製造装置
20 二次純水製造装置
40 ユースポイント
50 超純水返送用配管
60,70 ハウジング
62 インペラ
82 ドレンポート

【特許請求の範囲】
【請求項1】
逆浸透膜分離手段を備える一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して超純水を製造する超純水製造装置において、
二次純水製造装置内の送水用のポンプは、二次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、
該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とする超純水製造装置。
【請求項2】
逆浸透膜分離手段を備える一次純水製造装置に原水を通水して一次純水を製造し、この一次純水を二次純水製造装置に通水して二次純水を製造し、この二次純水を三次純水製造装置に通水して超純水を製造する超純水製造装置において、
三次純水製造装置内の送水用のポンプは、三次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、
該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とする超純水製造装置。
【請求項3】
請求項2において、二次純水製造装置内の送水用のポンプは、二次純水製造装置の系内から引水した純水をポンプ軸受け部のシール水として使用する構造になっており、
該ポンプのシール排水を一次純水製造装置の逆浸透膜分離手段の分離膜よりも上流側に返送する送水機構が設けられていることを特徴とする超純水製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−214300(P2010−214300A)
【公開日】平成22年9月30日(2010.9.30)
【国際特許分類】
【出願番号】特願2009−64625(P2009−64625)
【出願日】平成21年3月17日(2009.3.17)
【出願人】(000001063)栗田工業株式会社 (1,536)
【Fターム(参考)】